
Providing Secure Coordinated Access to Grid Services
David W Chadwick

University of Kent
Computing Laboratory
Canterbury CT2 7NF

+44 1227 82 3221

d.w.chadwick@kent.ac.uk

Linying Su
University of Kent

Computing Laboratory
Canterbury CT2 7NF

+44 1227 82 4768

L.Su-97@kent.ac.uk

Romain Laborde
University of Kent

Computing Laboratory
Canterbury CT2 7NF

+44 1227 82 4769

r.laborde@kent.ac.uk

ABSTRACT
Coordinating the cumulative use of distributed resources in a grid
environment so that users do not consume too much is a difficult
task. This paper presents one approach that we have implemented
in Globus Toolkit version 4 (GT4), that uses an SQL database to
hold “coordination” data, and policy decision points (PDPs) to
make access control decisions about whether the user’s request
for more resources can be granted or denied. When access is
granted, obligations in the policy ensure that the coordination
database is appropriately updated. In our initial implementation,
the coordination service is imbedded into the GT4 authorization
chain as a custom PDP so that any web service can be provided
with a security policy that provides a coordination capability. In
the final section we describe how coordinated decision making
could be more tightly integrated into a future version of GT.

Categories and Subject Descriptors
D.4.6 Security and Protection: Access Controls

C.2.4 Distributed Systems: Distributed applications

General Terms
Design, Security, Standardization.

Keywords
PDPs, coordinated decision making, policy based access controls,
grid computing

1. INTRODUCTION
Automated Teller Machines (ATMs) have the capability to
coordinate the withdrawal of money on a daily basis from any
cash point in the world. This is achieved by standardization of the
protocols within and between the banks, direct access to the user’s
account and the transactions that he has made, and the ability to
write information to the security token (the bank card) that the
user carries around with him. Providing a similar capability for
grid jobs, for example, to limit the amount of storage that a user
may request per day or per job from any storage location on the

grid, is not so easy. The grid job will almost certainly run on
different machines under different administrative control, will
probably run under different account names on each machine, and
the access control mechanism of one machine is typically unable
to communicate with those of the other machines. The security
token that is often passed from machine to machine is the proxy
certificate [1] but this is not used by the policy decision points
(PDPs) to communicate with each other, and is not under their
direct control (unlike the bank card inserted into an ATM).
Consequently this presents a number of challenges to the designer
of a policy based coordinated access control system.

The lack of communication between the PDPs of distributed
applications can be addressed today by sidestepping the issue and
using a centralised PDP with a common policy that is used by all
the grid resources (see Figure 1). Such a system has been
available for several years to Grid applications that use Globus
Toolkit (GT) from v3.3 onwards. GT is capable of making an
external authorization callout using the GGF SAML
Authorisation protocol specification [3] and several PDPs such as
the PERMIS authorisation infrastructure [2] have implemented
this protocol. This sort of access control infrastructure allows a
common policy to be used by all the resources of a grid but since
most PDPs today are stateless, they are still unable to coordinate
their access control decisions across multiple access requests. A
further disadvantage of this configuration is that the central PDP
is a bottleneck to performance because every request needs to be
diverted to it.

Standalone
PDP

GT3.3 GT3.3GT3.3

Common policy

Distributed application
Site 1 Site 3Site 2

SAML
responseSAML

decision
requestSAML

decision
request

SAML
decision
request

SAML
response SAML

response

Figure 1. Use of a common policy in today’s distributed grid

applications
It is far more preferable for each site to have its own PDP under
its direct control and for the common policy to be distributed to it
so that the administrator can load it into his PDP. This approach
will increase the performance of the access control decision
making, but it still lacks coordination throughout the distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MGC '06, November 27, 2006 Melbourne, Australia Copyright 2006
ACM 1-59593-581-9... $5.00

application. Furthermore, the common policy will contain
superfluous information for each of the PDPs, since it must cater
for access requests to all of the resources in the grid.
To counteract these problems we have taken a multi-pronged
approach. Firstly, in order to remove the superfluous information
from each PDP’s policy, we have designed and built a policy
refinement engine that will decompose a common grid-wide
policy and create resource specific policies for each resource
PDP. We do not propose to describe the policy refinement process
in this paper, but interested readers can consult [4]. Secondly, in
order to address the coordination problem, the common policy
(and consequently each refined resource specific policy) contains
conditions and obligations that allow coordination to take place
between multiple requests. Conditions are placed on granting
access to a user’s request that depend upon previous access
control decisions e.g. a project member is allowed access to
memory only if less than 20GB memory has already been
requested. Obligations are then placed on the policy enforcement
point (PEP) to record the resources that have been authorized for
consumption. Coordination between the PDPs takes place by
successively retrieving and updating this state information that is
stored in an external coordination database. We chose to
implement the system by using an external coordination database
rather than storing the state information in each PDP for several
reasons. Firstly most of today’s PDPs are stateless, so they will
not need to be modified in order to support our secure
coordination service. Secondly, if the state information were
stored in each PDP, then each PDP would need to communicate
with every other PDP, which would become increasingly difficult
to engineer and manage as the number of PDPs grows. Thirdly,
by making the coordination database a grid service, we get the
benefits of secure communications between the PEP and the
service using the existing grid security infrastructure (GSI) [5].
Finally, by using database technology we benefit from its
extensive research into fast and efficient data handling, searching,
locking, distribution etc.

Figure 2. Coordinated decision making in distributed

applications
A simplified picture of our overall design is shown in Figure 2.
Each PDP loads its own resource specific policy, which may have
optionally been created by refinement of a common grid wide
policy. When coordinated access control decisions need to be

made, each PDP communicates with all the other PDPs in the grid
via the coordination database, to ensure that all the policy
conditions are obeyed. This architecture is designed to have
optimal performance for the decision making, since local
uncoordinated decisions wont need to interact with the
coordination database, whilst only coordinated ones will need to.
The rest of this paper is structured as follows. Section 2 describes
the coordination policy, with its coordination attributes and
obligations. Section 3 describes the coordination database grid
service which holds the coordination data. Section 4 describes the
coordination aware PDP and how this is currently integrated into
GT4. Section 5 concludes by looking at the limitations of the
current research, reviewing related research, and indicating where
future research is needed.

2. COORDINATION POLICIES
In our model, a PDP is considered to be stateless and makes its
access control decisions against the current policy in isolation to
all past, present and future access control decisions. The PDP is
given details (in the form of attributes) about the subject, the
resource, the requested action and the environment (e.g. current
time, temperature etc.). This set of attributes is known as the
request context in the XACML specification [6]. The policy may
place constraints on any of the request context attributes i.e. on
the subject (e.g. only subjects who are students), the resource (e.g.
may only access resources of type printer), the action (e.g. may
only print a maximum of 10 pages), and the environmental (e.g.
between 9am and 5pm) attributes. If any access control decision
will produce state changes in this context and these changes will
affect future access control decision, then coordination between
the access control decisions is required. For example, if the policy
states that students can only print up to 10 pages per day, then if a
student asks to print 5 pages this will be allowed but the granted
action must be remembered so that the next time the same student
makes a request on the same day he will only be allowed to print
up to 5 pages. This type of constraint on subject, action and/or
environmental attributes will always require coordination between
access control decisions, regardless of whether the system has a
single centralised PDP or multiple distributed PDPs. The use of a
policy to specify the constraints, and a coordination database to
hold the request context attributes that need to be coordinated,
makes the coordination process independent of the number of
PDPs involved in the grid access control decision making.

2.1 Coordination Attributes
In order to store the coordination data we have defined a fifth type
of request context attribute which we term coordination attributes.
Coordination attributes are conceptually the same as any other
type of request context attribute (resource, subject, action or
environment) but in this case they are attributes of the
coordination object, rather than the resource, subject, action or
environment objects. The coordination object is conceptually a
repository storing the data that is necessary to allow coordination
to take place between all of the access control decisions in a
distributed system. The semantics of the coordination attributes
are known to the coordination object but not to the PDPs, since
the latter do not know the semantics of any of the attributes of the
request context (environment, subject etc.). The PDPs only know
that the request context attributes hold values that need to be
compared with those in the access control policy to see if the

access control conditions are fulfilled.

The coordination object is considered to be persistent and stateful,
in much the same way that the environment object stores the
environmental attributes in a persistent way. In this way the PDPs
remain stateless. A significant difference between the
environmental and coordination attributes is that the access
control process only needs to read the former, whereas it needs to
read and update the latter. Furthermore, a coordination attribute is
related to attributes of a subject, resource, action, or the
environment, and can be indexed on any combination of those
types of attributes.

We specify a coordination attribute as follows:
Att[SubDim, ResDim, ActDim, EnvDim](C)

where Att is the name of a coordination attribute belonging to the
coordination object C, and [SubDim, ResDim, ActDim, EnvDim]
are optional multiple dimensions of the coordination attribute.
SubDim, ResDim, ActDim and EnvDim denote the subject,
resource, action and environment dimensions of the coordination
attribute, respectively. Every attribute in SubDim (ResDim,
ActDim or EnvDim), if any, come from the request context.
Examples of coordination attributes are: usage(C) which means
the coordination attribute called usage has a single value that is
used by all subjects accessing all resources over all actions and
environments; usage[{username(S)}](C) which means the
coordination attribute called usage has a different value per
subject, where each subject is identified by their username
attribute.
An example policy with a coordinated constraint is: users,
identified by their userIDs, cannot use more than 3GB of storage
each throughout the grid. This can be written as type(R)=storage
∧type(A)=use∧amount(A) + alreadyUsed[{userID(S)}](C) ≤ 3.
Most PDPs should now be capable of evaluating this type of
policy, providing the request context contains the value of the
alreadyUsed coordination attribute. The fact that the coordination
attribute contains embedded encoding in the form of
[{userID(S)}] should be transparent to the PDP, since the names
of attributes have no semantic meaning to the PDP. All the PDP
needs to do is compare the value of the coordination attribute
presented in the request context with the corresponding value in a
policy constraint.

2.2 Obligations
The next thing we need to ensure is that the coordination
attributes are updated once/if the user has been given access to the
resource. This is achieved by the use of appropriate obligations in
the coordination policy. Obligations are actions placed on the PEP
that have to be obeyed if/when the user is given the requested
access to a resource. In the XACML standard [6] an obligation is
defined as a set of attribute assignments, for example, assign
balance[{id(S)}](C) + amount(A) to balance[{id(S)}](C). Since it
is the PEP that enforces the grant or deny decisions of the PDP,
and is responsible for enforcing all obligations, it seems
appropriate that the PEP should also be the entity that updates the
coordination object. In order to specify when the obligations
should be enacted, we define the Chronicle parameter of an
obligation. The Chronicle parameter can take one of three values:
Before, After or With. Chronicle=After indicates that the
obligation should be enacted only after the user’s access request

has been enforced. Chronicle=Before indicates that the obligation
should take place before the user’s request is enforced.
Chronicle=With indicates that the obligation and the user’s
request should be enforced as an atomic action. It is up to the
coordination policy writer to determine which Chronicle value to
use. Note that XACML does not have a Chronicle parameter,
since it implicitly assumes the semantics of the With value.

There are important implications in the use of the alternative
Chronicle values. Chronicle=Before means that the coordination
attribute will be updated before the user’s request is processed.
Therefore if the user’s request subsequently fails for some
unexpected reason e.g. the ATM machine jams and cannot
dispense any money, the user may be prevented from performing
the same action again at a later time. This is because the
coordination attribute has already recorded the action prior to it
taking place. Similarly Chronicle=After means that the user is
allowed to perform his action before the coordination attributes
are updated. If anything goes wrong with the subsequent
coordination attribute update, the user’s action will not be
recorded and the user may be allowed to perform the same request
again, in contravention of the coordination policy. However
Chronicle=After might be the option that some policy writers
prefer e.g. banks might prefer ATM withdrawals to occasionally
allow a customer to withdraw over his daily limit than to risk
upsetting him by occasionally not allowing him to withdraw his
daily limit. Chronicle=With does not suffer from either of the
previous deficiencies, since the user’s request and the
coordination attribute update are performed as an atomic action.
However it does mean that transactions have to be enacted on the
coordination database, and the coordination attributes have to be
write locked for the duration of the user’s action. This may cause
an unacceptable bottleneck to performance in many grid
applications that can run for hours or even days. Therefore the
policy writer has to choose the most appropriate Chronicle setting
for his resources and the applications that use them.

Further details about the coordination policy specification and its
refinement can be found in [7].

3. THE COORDINATION DATABASE
GRID SERVICE
The coordination database is a grid service with a backend SQL
database that provides access to the coordination attributes needed
by the multiple PDPs. The service supports seven methods,
namely:

- checkWS checks if the service is available or not,

- getCoordAttrVal returns the value of a coordination
attribute given its name and an XACML request context
(that contains the values of the dimensional attributes that
are embedded in the coordination attribute name). If no
value currently exists for this element, then the service
creates a new one and initializes it with the initial value
known to the coordination object.

- setCoordAttrVal similarly sets the value of a coordination
attribute.

- isCoordAttr queries if a coordination attribute of this name
exists in the coordination database

- getAttributeDefinition returns an XML element which
contains the definition of the coordination attribute
including the attributes that are embedded in its name

- lockCoordAttrs allows multiple attributes in the database to
be read or write locked

- unlockCoordAttrs removes all the locks in the database held
by the current thread.

The structure of the backend SQL database is a series of tables, in
which each table represents one coordination attribute. In every
table there is one column for each subject, action, resource or
environment attribute that is contained in the definition of that
coordination attribute plus one column to hold the coordination
attribute values. The general formula for the size of a table is

(|SubDim|+|ResDim|+|ActDim|+|EnvDim|+1) x N
where |XDim| represents the number of members in the set Dim
and N represents the number of rows in the table. For example,
the coordination attribute recording the number of user accesses
in different modes to files in different filestores could be held as
numberOfAccesses [{id(S)},{id(R)},{mode(A),fileName(A)}](C)
and is represented as a table which consists of 5 columns. Every
unique combination of user id, filestore id, mode of access and
filename will create a new row in the table, with the final column
recording the number of accesses for that user to that file in that
access mode. Assume a subject (id = X) wants to access a file
(mode = M, fileName = F) on a filestore (id = Y), then the current
value of the numberOfAccesses may be located from this table by
the following SQL command: SELECT value FROM
numberOfAccesses WHERE id(S)=X AND id(R)=Y AND
mode(A)=M AND fileName(A)=F. If no record can be located
using these dimensional attribute values, this means that it is the
first user access of this kind to this file, and a new row, consisting
of these dimensional attribute values and an initial value for the
numberOfAccesses should be inserted into the table. The initial
value is part of the semantics of the coordination object and is
part of the schema of the coordination database grid service.

3.1 Securing Access to the Coordination
Database Grid Service
The coordination database grid service, being a standard grid
service, is protected by GSI and its own PDP that ensures that
only authorised coordination aware PDPs can access it. This is
easily achieved by assigning a digitally signed X.509 attribute
certificate with a role of “Coordinator” to the Coordinator
component of the GT4 Custom PDP of Figure 3, and having a
standard role based access control (RBAC) policy that says that
only subjects with the role of “Coordinator” are allowed to access
the coordination database. This allows any number of
coordination aware PDPs to access the coordination database.
Each Coordinator has its own public key certificate and DN so
that it can strongly authenticate to the coordination database grid
service. In our implementation the “Coordinator” attribute
certificate is pulled from an LDAP repository by the service’s
PDP (we use the PERMIS PDP that supports both the push and
pull modes of attribute retrieval).

4. THE COORDINATION AWARE PDP
The GT4 authorisation framework implements a decision engine
which evaluates a chain of PDPs in order to determine the access

rights of the user making a request for a particular Grid service or
resource (the Target in Figure 3). This authorisation chain may
also include Policy Information Points (PIPs), which do not return
any decisions but instead are used to collect information i.e.,
attributes or attribute assertions, necessary for the decision-
making process. Both PDPs and PIPs are classified by GT4 as
interceptors. Globus Toolkit itself is the PEP that enforces the
decisions made by the PDPs, and passes the information returned
by the PIPs to the PDPs. PIPs are needed to pick up the attributes
of the subject, the action, the resource and the environment. GT4
requires that PDPs implement the
org.globus.wsrf.security.authorization.PDP interface and return a
permit or deny decision on the basis of the subject’s distinguished
name (DN) obtained from the proxy certificate, the requested
operation and the request context. PIPs must implement the
org.globus.wsrf.security.authorization.PIP interface, and must
place the set of retrieved subject, action, resource and
environmental attributes in the request context.
Ideally we would like GT4 to be modified in order to integrate
our coordination aware authorization infrastructure directly into
the PEP. However, if we did this it would cause integration
problems for other users and long term support issues for us.
Consequently we have adopted an interim approach of plugging
our entire coordination infrastructure into GT4 as a single custom
PDP. This has limitations as described in section 5, but still
allows secure coordination to take place. In section 5 we describe
how the coordination infrastructure could be more tightly
integrated into GT to become an integrally supported feature.

Figure 3. Adding coordination to GT4
When GT4 is given a user’s request to access a grid service, our
coordination aware PDP is called via the GT4 authorisation chain.
Our java code (labelled Coordinator in Figure 3) is acting as a
PDP from GT4’s perspective, and a PEP from the actual PDP’s
perspective. The actual PDP is the one making authorisation
decisions based on the coordinated access control policy. One of
the first steps the Coordinator takes is to write lock and retrieve
the required coordination attributes from the coordination
database grid service, using its in-built coordination PIP.

The obvious question to ask is, how does the Coordinator know
which coordination attributes are needed, since the coordination
database could contain many thousands of attributes. However,

this question is not a new one, since even without coordination
attributes the PEP still needs to know which other attributes
(environmental, action etc) are needed by the PDP. There are (at
least) three possible solutions to this problem. Firstly, the PEP can
be configured in an application specific manner with the correct
set of attributes that need to be passed to the PDP in each request
context. Secondly, a getAttributes method can be added to the
PDP which is called at initialisation time and returns the complete
set of all attributes that are needed by the current authorisation
policy. Thirdly, the authorisation decision request can return the
set of additional attributes that are needed in order to answer the
current authorisation decision request. This latter mechanism is
the one adopted by XACML. Since the second mechanism is
simply an automation of the first they will be treated as equivalent
in the following discussion. Having the complete list of attributes
at initialisation time will mean that the PDP only needs to be
called once per authorisation decision, but will result in surplus
information being passed in the request context. Not knowing the
correct set of attributes to pass when the PDP is called will result
in multiple calls to the PDP, and possibly to the coordination
database, but no surplus information will be passed in the request
context. The latter approach is expected to be most efficient when
policies are large and different attributes are needed for different
policy rules, whilst the former approach is expected to be most
efficient for small policies that only require a limited number of
attributes. We have currently implemented the second approach
and have added a getAttributes method to the XACML and
PERMIS PDPs. Future work will be to measure the performance
trade offs between the two approaches.

When the appropriate coordination attributes have been returned
from the coordination database grid service, the Coordinator adds
them to the request context obtained from the GT4 PEP, and
passes this expanded context to the actual PDP. The coordination
attributes are actually packaged as environmental ones. The PDP
returns an authorisation decision, according to its evaluation of
the user’s request against the coordinated access control policy. If
the PDP returns access granted the authorisation decision may
contain obligations to update appropriate coordination attribute
values. The Coordinator makes various calls to an obligations
service (see below) which evaluates the obligations and updates
the coordination database. The Coordinator then removes the
locks on the database and returns the granted response to the GT4
PEP (minus the obligations). The user is then allowed access to
the service by GT4. The reader will note that this design only
supports the Chronicle=Before option for obligations. In section 5
we describe how the other Chronicle options can be implemented.

The obligations service has 3 methods:

- getChronicle. This method is given the authorisation
decision response and returns the value of the Chronicle
parameter, or an exception if the response does not contain
any obligations.

- evaluateObligation is passed the request context and
authorisation response and evaluates the various attribute
assignments in the obligation, including the arithmetic
expressions such as addition, subtraction, multiplication etc.
e.g. assign balance[{id(S)}](C) + amount(A) to
balance[{id(S)}](C), and places the result in the response.

- performObligation extracts the coordination attribute values

from the response, and updates the coordination database by
making repeated calls to setCoordAttrVal.

We have currently only implemented a simple service as proof of
concept, which simulates an ATM withdrawal. When the service
is asked to dispense money it returns a receipt to the user. Without
the coordination capability, a standard PDP can only have a
policy constraint that limits each withdrawal to a particular value,
say £250. If a user requests £250 or below the request will be
granted by the PDP and the ATM service will return a receipt
saying the money has been dispensed. If a user requests greater
than £250 the PDP will deny access to the service. Of course, a
user can make several consecutive requests for £250 or less and
therefore withdraw an unlimited amount of money. Once the
coordination aware PDP is configured into the grid service, a user
can only withdraw up to £250 per day, and after that all his
subsequent requests are denied. The system works regardless of
how many different ATM services and PDPs are plugged into
GT4, since all the PDPs coordinate their decisions via the same
coordination DB service.

5. LIMITATIONS, CONCLUSIONS AND
FUTURE WORK
As stated previously, the current implementation only implements
the Chronicle=Before option, since the Coordinator has to update
the coordination database before returning the granted response to
the GT4 PEP. It might have been possible to implement the
Chronicle=After option as well if we could have made GT4 make
a second call out to our custom PDP after the user’s service has
completed successfully, but we did not think that this extra effort
was necessarily worthwhile. Our preferred solution is for the
coordination infrastructure to be tightly integrated into GT by
taking the various components of the Coordinator and integrating
them into the GT PEP as follows.

Figure 4. Integrating coordination into GT
The Coordination PIP and Obligations Service, which are
currently part of the Coordinator, will become stand alone
services directly called by the GT PEP. In addition, the PEP will
be responsible for setting the write locks on the coordination
attributes in the coordination database. The GT PEP will need
enhancing to repeatedly call the custom PIPs and the PDP, if the

PDP returns a set of additional attributes that are needed before
and authorization decision can be made (as in the XACML
model). Once an authorization decision has been returned the PEP
will need to call the obligations service to process the obligations
and update the coordination database, and then remove the
coordination database locks.

In order to correctly handle the Chronicle parameter, the PEP
needs to undertake enforcement of the user’s access request and
updating of the coordination database in different sequences.
Unfortunately the type of Chronicle is not known until after the
authorization decision has been made, but locking the
coordination database is needed before the decision is made, i.e.
when the coordination values are first read by the coordination
PIP. This leads us to define two different procedures for the PEP,
which we term Lock All Decide Once and Multiple Decisions.
The former procedure is used if the PEP is able to get the full set
of attributes that are needed at initialization time, the latter if it is
not (i.e. the XACML model).

In Lock All Decide Once, the PEP obtains the full set of
coordination and environmental attributes that are needed by the
PDP in either an application specific manner or via a call to the
PDP’s getAttributes method. After each user presents an access
request, the PEP locks the coordination attributes in the
coordination database and calls the custom PIPs (subject, action,
resource, environment and coordination) to fetch the required
attributes. The PEP creates the expanded request context and calls
the PDP passing it the full set of attributes. An authorization
decision and optional obligations are returned in the response
context. The PEP calls the getChronicle method of the
Obligations Service passing it the returned authorization response.
If Chronicle=After is returned, the PEP removes the coordination
attribute locks, enforces the user’s access request, and after this
has finished updates the coordination database (through calls to
Evaluate and Perform Obligations). If Chronicle=Before is
returned, the PEP updates the coordination attributes first, then
removes the locks and afterwards enforces the user’s access
request. If Chronicle=With is returned, the PEP enforces the
user’s access request and after this has finished, updates the
coordination attributes and finally removes the locks.
In the Multiple Decisions procedure the PEP does not call the
environmental or coordination PIPs after the user has presented an
access request, since it does not know which attributes are
needed, but rather calls the PDP first. The PDP returns the set of
environmental and coordination attributes that are needed for this
access request, and the PEP locks the coordination attributes and
calls the custom PIPs to retrieve the attributes. The PDP is now
called for a second time, passing it the required environmental
and coordination attributes. (Note that this process may need to be
repeated again if the PDP returns further needed attributes instead
of an authorization decision.) Once the authorization decision and
optional obligations are returned the procedure continues in the
same way as before in the Lock All Decide Once procedure.
In conclusion, we have shown how coordination between access
control decision making can be modeled and implemented in a
grid environment. We have defined the necessary coordination
attributes and obligations that are needed to support the model,
including a Chronicle parameter that indicates when the
coordination attributes have to be updated. We have implemented
the Chronicle=Before procedure in GT4 by building a custom

PDP. Finally, we have described how coordinated decision
making can be more tightly integrated into GT so as to support
the Chronicle=After and Chronicle=With variants as well. We are
not aware of any other similar research, although grid accounting
systems such as the SEGAS Bank service [8] address similar
concerns. In this, the user’s access request is intercepted by the
Job Account Reservation Manager (JARM) and an amount of
units, sufficient to run the job, are placed on hold in the user’s
account. If a user has insufficient funds his job will be rejected.
JARM gains access to the user’s bank account by using the proxy
certificate delegated to the job by the user. Once the user’s job
has finished JARM debits the user’s account with the actual
amount of units consumed. The Bank service keeps a complete
transaction history of all accesses to a user’s account, and holds
on units automatically expire after a user determined period to
cater for jobs that crash prematurely. Future research should
investigate integrating our authorization system with grid
accounting systems.

6. ACKNOWLEDGMENTS
We should like to thank the UK EPSRC who have funded this
research under the Distributed Programmable Authorisation
project (GR/S69061/02).

7. REFERENCES
[1] S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson.

“Internet X.509 Public Key Infrastructure (PKI) Proxy
Certificate Profile”. RFC3820, June 2004.

[2] D.W.Chadwick, A. Otenko “The PERMIS X.509 Role Based
Privilege Management Infrastructure”. Future Generation
Computer Systems, 936 (2002) 1–13, December 2002.
Elsevier Science BV

[3] Von Welch, Rachana Ananthakrishnan, Frank Siebenlist,
David Chadwick, Sam Meder, Laura Pearlman. “Use of
SAML for OGSI Authorization”, Aug 2005

[4] Su, L. Chadwick, D.W., Basden, A., Cunningham, J.A..
“Automated Decomposition of Access Control Policies”.
Proc of 6th IEEE International Workshop on Policies for
Distributed Systems and Networks, Stockholm, 6-8 June
2005. pp 3-13

[5] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J.,
Czajkowski, K., Gawor, J., Kesselman, C., Meder, S.,
Pearlman, L., and Tuecke, S. (2003) “Security for Grid
Services”, 12th IEEE International Symposium on High
Performance Distributed Computing

[6] OASIS “eXtensible Access Control Markup Language
(XACML) Version 2.0” OASIS Standard, 1 Feb 2005

[7] David W Chadwick, Linying Su, Oleksandr Otenko, Romain
Laborde. “Coordination between Distributed PDPs”. Proc of
7th IEEE International Workshop on Policies for Distributed
Systems and Networks, London, Ontario, 5-7June 2006
pp163-172

[8] E. Elmroth, P. Gardfjell, O. Mulmo, and T.Sandholm. An
OGSA-Based Bank Service for Grid Accounting Systems. In
J. Wasniewksi et. al. (eds). Applied Parallel Computing.
State-of-the-art in Scientific Computing. Springer Verlag,
Lecture Notes in Computer Science, 2004.

