Efficient Magnification of Bi-Level Textures

Jorn Loviscach*
Hochschule Bremen

1 Introduction

Standard texture magnification through bilinear interpolation blurs
road signs and similar items excessively. We use a small, single-
channel MIP map and a pixel shader of twelve instructions to
strongly improve the look of bi-level (aka binary) textures. The
main idea is to threshold the most detailed level of the MIP texture
into a bi-level image. For an optimum result, the texture does not
contain the original image, but a processed version.

The focus on bi-level textures and on strict efficiency (one texture
read, no branching) sets this method apart from recent work: Rama-
narayanan et al. [2004] as well as Tumblin and Choudhury [2004]
introduce data structures for textures containing smooth gradients
as well as hard edges. Sen [2004] additionally addresses GPU-
based rendering using a pixel shader of 45 instructions.

2 Thresholding and Preprocessing

Instead of pure thresholding, a variable scaling a is used to deter-
mine the grayscale pixel color ¢ € [0,1] by ¢ = clamp(% +(r— %)a),
where ¢ € [0,1] is the result of a MIP texture request. The clamp-
ing to [0, 1] is built into graphics hardware. Using the screen space
derivatives of the texture coordinates we estimate the local number
p of texels per length of a screen pixel and then set @ = max(3/p, 1).

On strong minification (p > %) we have the same output as for clas-
sical MIP mapping, i.e. we see grayscale averages. For increasing
magnification, p — 0 and a — oo, thus producing a thresholded im-
age. This smooth transition from grayscale to bi-level hides the
switching between MIP map level O and 1. Furthermore, on mag-
nification it introduces anti-aliasing through a grayscale transition
region between ¢ = 0 and ¢ = 1. Due to the term 3/p, this region is
approximately one third of a pixel wide.

The upper MIP levels are filled as usual; level O is specially op-
timized. Starting from a vector graphics file, we create a high-
resolution bitmap of the image. Here, we find where and at which
angle the outline intersects the edges between the centers of level-0
texels. Our objective is to fill level O of the MIP map in such a way
that the thresholded bilinearly interpolated image behaves similarly.
For this image, locations and angles of the intersections can easily
be found from the grayscale values at the adjacent texels.

An outline that intersects n edges between texels leads to 2n condi-
tions: n locations and n angles. The shape of the contour is affected
by at most 2n texels, often only a few less than that. Thus, when
trying to solve what grayscale values should be assigned to these
texels, we have slightly too few unknowns to satisfy all conditions
precisely. We even lose one unknown because the thresholded im-
age does not change if we scale all grayscale values about %

Since the system is overdetermined, we employ an optimization
process: MIP map level O is filled with the values 0 and 255 ac-
cording to the high-resolution image at the texel centers. Then we
restrict our view to the small number of texels along contours. We
find their values using an approach related to simulated annealing.

*e-mail: jlovisca@informatik.hs-bremen.de

This optimization minimizes the deviation from the high-resolution
image. To create a distance metric, we sum all quadratic differences
between the intended and the actual locations of the intersections.
For the angle data we add a similar expression, thus enforcing a
smooth outline. To keep the stem width of typeface characters con-
stant, the weight of the location-error terms is increased the more
the intended outline runs in perfect horizontal or vertical direction.

During the optimization we keep grayscale values away from the
middle range 112 to 143. So after optimization the outline gener-
ated by thresholding still intersects the same edges between texels.
Furthermore, this gap in the range ensures that no grayscale val-
ues around 128 are introduced. Otherwise, the small scaling factor
a in the transition to the first level of the MIP map would lead to
dust-like artifacts around the outline.

3 Results

Lettering such as that in Fig. 1 can be created by textures of a few
thousand texels using a pixel shader with a fillrate of 850 Mpixel/s
on an Nvidia GeForce 6800 GT. The transition from MIP map level
0 to level 1 does not introduce sudden blur. On top of that, the use
of scaling instead of pure thresholding suppresses jaggies.

Visually robust shapes such as found on road signs are reproduced
well. Detailed shapes such as serifs may suffer, however, from soft-
ening. The method cannot resolve two outline curves within a sin-
gle texel. However, even sub-texel features may be approximated
if the user adjusts the location and angle values. An authoring soft-
ware to create and edit the optimized texture has been developed.

%\GS’Q&?Q\

%\@Q@Q\

Figure 1: Bilinear interpolation (upper left), optimized texture be-
fore and after thresholding (upper/lower right), all at 128 x 32 tex-
els; a texture of 2048 x 512 texels for comparison (lower left).

References

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-based textures. In Eurographics Workshop on Render-
ing, A. K. H. W. Jensen, Ed., 265-274.

SEN, P. 2004. Silhouette maps for improved texture magnification.
In Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, Eurographics Association, 65-73.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Eurographics Work-
shop on Rendering, A. K. H. W. Jensen, Ed., 186-196.

© ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published on the SIGGRAPH 2005 Conference CD-ROM and
DVD-ROM.


Jörn j Loviscach
© ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published on the SIGGRAPH 2005 Conference CD-ROM and DVD-ROM.




