
Analyzing the Input Stream for Character-
Level Errors in Unconstrained Text
Entry Evaluations

JACOB O. WOBBROCK

University of Washington

and

BRAD A. MYERS

Camegie Mellon University

Recent improvements in text entry error rate measurement have enabled the running of text entry

experiments in which subjects are free to correct errors (or not) as they transcribe a presented

string. In these “unconstrained” experiments, it is no longer necessary to force subjects to unnat-

urally maintain synchronicity with presented text for the sake of performing overall error rate

calculations. However, the calculation of character-level error rates, which can be trivial in arti-

ficially constrained evaluations, is far more complicated in unconstrained text entry evaluations

because it is difficult to infer a subject’s intention at every character. For this reason, prior character-

level error analyses for unconstrained experiments have only compared presented and transcribed

strings, not input streams. But input streams are rich sources of character-level error information,

since they contain all of the text entered (and erased) by a subject. The current work presents an

algorithm for the automated analysis of character-level errors in input streams for unconstrained

text entry evaluations. It also presents new character-level metrics that can aid method designers

in refining text entry methods. To exercise these metrics, we perform two analyses on data from an

actual text entry experiment. One analysis, available from the prior work, uses only presented and

transcribed strings. The other analysis uses input streams, as described in the current work. The

results confirm that input stream error analysis yields richer information for the same empirical

data. To facilitate the use of these new analyses, we offer pseudocode and downloadable software

for performing unconstrained text entry experiments and analyzing data.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User

Interfaces—Evaluation/methodology, theory and methods, input devices and strategies (e.g., mouse,
touchscreen)

This work was funded in part by the NEC Foundation of America, Microsoft Corporation, General

Motors, and by the National Science Foundation under grant number UA-0308065. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect those of the National Science Foundation.

Authors’ addresses: J. O. Wobbrock, The Information School, University of Washington, Box 352840,

Mary Gates Hall Ste 370, Seattle, WA 98195-2840; email: wobbrock@u.washington.edu; B. A.

Myers, Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon Uni-

versity, 5000 Forbes Ave., Pittsburgh, PA 15213-3891; email: bam@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1073-0616/06/1200-0458 $5.00

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006, Pages 458–489.

Analyzing the Input Stream for Character-Level Errors • 459

General Terms: Algorithms, Design, Experimentation, Measurement

Additional Key Words and Phrases: Text entry, text input, error rate, presented string, transcribed

string, input stream, optimal alignment, stream alignment, minimum string distance, confusion

matrix, gesture, stroke, recognizer, character recognition, nonrecognition, substitution, insertion,

omission, deletion, EdgeWrite

1. INTRODUCTION

Text entry research has seen a revival in recent years due to the advent of
numerous mobile devices. Many of these devices are communicators that would
benefit from rapid and accurate text entry for the sending of information from
one party to another [Zhai et al. 2005]. For example, mobile phones are used
to send more than 15 billion SMS messages per month in Europe [GSM World
2004]. New communication devices appear all the time, many requiring a text
entry method of some kind.

With the advent of new devices and text entry methods, however, comes new
pressure on evaluation methodologies. Rigorous evaluations of new methods
are required to validate their strengths and weaknesses; informal, subjective
results do not warrant trust or comparison [MacKenzie and Soukoreff 2002a].
For this reason, current practice is to rival two or more text entry methods
against one another in controlled experiments. In these experiments, subjects
are told to transcribe presented phrases as quickly and accurately as possible
[MacKenzie and Soukoreff 2003] while data is logged for later analysis.

Hand tabulation of log files is tedious and prone to error, since experiments
may contain upwards of 400,000 character entries [MacKenzie and Zhang
1999]. To avoid hand tabulation, automated procedures for computing speed
and accuracy are essential. While the computation of speed is straightforward,
the computation of error rates is not [Soukoreff and MacKenzie 2001]. For ex-
ample, in Figure 1, P is a string presented to a subject and T is the subject’s
transcription (i.e., the final text the subject produced). How many errors are
there?

In Figure 1, a simple pairwise comparison suggests that everything after
the “c” in T is in error. But this is probably not the case. More likely, there was
one insertion error: the “x” in T . Automatically detecting such errors between
P and T has been the subject of recent work [Soukoreff and MacKenzie 2001,
2003].

What if we consider not just the final transcribed string, but the entire in-
put stream, the record of all input events produced by the subject? If errors
were made and corrected, the input stream would hold more error information
than the transcribed string. This information could be useful to designers and
evaluators for improving techniques. For example, the transcription in Figure 1
could have been produced from the input stream (IS) in Figure 2.

In the input stream in Figure 2, “<” symbols indicate backspaces and bold
letters compose the final transcribed phrase T . Clearly, there were more errors
in transcribing this text than T alone reveals. Thus, an analysis of T with-
out IS paints an impoverished picture of errors. We could try to analyze IS for

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

460 • J. O. Wobbrock and B. A. Myers

Fig. 1. An example presented (P) and transcribed (T) string.

Fig. 2. An example input stream (IS) resulting in T from Figure 1. Transcribed letters are in bold

and backspaces are represented by “<”.

errors, but input streams are messy and ambiguous, and determining errors
within them is difficult. The core challenge in determining input stream errors
is assessing intention. What is the subject trying to enter at every character po-
sition? Because of the difficulty in answering this question, many previous text
entry evaluation strategies unnaturally constrained text entry experiments so
as to make the determination of errors, particularly character-level ones, triv-
ial. But this comes at the cost of so totally altering the natural transcription
process that results from such studies are unavoidably cast into doubt.

For example, one artificially constrained experimental paradigm disallows
erroneous characters completely. As the subject transcribes text on a line be-
neath the presented text, any attempted character that does not match the
character directly above it is not displayed. Often in this paradigm, the en-
try of an erroneous character results in an audible “beep.” Subjects may incur
many successive beeps, without ever seeing characters appear because their
entries do not match the presented character at their current position. What’s
worse, the backspace is rendered irrelevant, even though backspace is the sec-
ond most common keystroke in real desktop text entry after space [MacKenzie
and Soukoreff 2002a]. However, inferring intention in this paradigm is trivial
because we assume that a subject is always trying to enter the next character in
the presented text, even though this is often not the case. Not surprisingly, the
experience for subjects entering text in these types of evaluations is potentially
frustrating, since each error effectively creates a “road block” that stops them
abruptly, often for many entries. Nevertheless, this paradigm’s ease of use has
caused many to employ it [Venolia and Neiberg 1994; Isokoski and Kaki 2002;
Evreinova et al. 2004; Ingmarsson et al. 2004].

Another way to unnaturally constrain text entry experiments for the sake
of measuring errors is to allow erroneous entries, but to prevent error correc-
tion, usually by disabling backspace. Two examples are in the evaluations of
the OPTI keyboard [MacKenzie and Zhang 1999] and the Half-Qwerty [Matias
et al. 1996]. In this paradigm, subjects are free to enter any letter, but once
entered, letters can not be backspaced. Characters are deemed erroneous if
they do not agree with the presented letter at their position. Erroneous charac-
ters are often accompanied by an audible “beep” and accuracy is calculated as a
pairwise comparison between the letters of P and T . Thus, when subjects make
errors, they are forced to mentally “catch up” to the presented text by entering
the next letter at the current position, rather than by trying the missed letter
again. Maintaining synchronicity is therefore of utmost importance, and sin-
gle insertion errors often result in multiple successive out-of-synchronization

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 461

errors known as “error chunks” [Matias et al. 1996]. Given the importance and
prevalence of error correction during real text entry, this paradigm, like the one
before it, is quite artificial and often frustrating for users.

A third approach has been simply to ignore errors. In this paradigm, errors
are not recorded, analyzed, or reported. Indeed, some published studies fall into
this category [Lewis et al. 1999; MacKenzie et al. 1999; Rodriguez et al. 2005].
The obvious drawback is that speed and errors are tradeoffs, and analyzing one
without the other encourages unreliable and uninformative comparisons.

Unfortunately, all three of these contrived paradigms are uninformative and
rather unnatural. This fact has motivated recent developments in automated
error rate calculation [Soukoreff and MacKenzie 2001, 2003] and the advent of
the unconstrained text entry evaluation paradigm. In unconstrained text entry
experiments, subjects are presented with phrases and told to transcribe them
“quickly and accurately.” Subjects are neither forced to maintain synchronicity
with the presented text nor required to fix errors, but they may (and usually
do). In essence, subjects are free to enter text nearer to how they would in “the
real world.” Importantly, subjects’ subjective experiences more closely match
their customary text entry experiences, where error beeps, stalled text cursors,
and error chunks are not the norm. The data acquired in unconstrained eval-
uations is automatically analyzed by algorithms designed to accommodate it.
The current work contributes to this set of algorithms by improving our ability
to discern intention within the unconstrained paradigm.

1.1 Aggregate and Character-Level Errors

Aggregate error rates give an indication of a text entry method’s accuracy over
all entered characters. A commonly used aggregate measure for accuracy is
keystrokes per character (KSPC) [Soukoreff and MacKenzie 2001], which is a
ratio of all entered characters, including backspaces, to final characters appear-
ing in the transcribed string. Although the calculation of KSPC requires the
input stream, it only requires a count of characters entered, not the discovery
of what these characters were intended to be. This is also true of a widely used
definition of “corrected errors” [Soukoreff and MacKenzie 2003] which treats
any backspaced character as an error, even if the erased character was, in fact,
correct. A later article acknowledged this limitation [Soukoreff and MacKenzie
2004], separating backspaced letters into two categories: corrected-but-right
and corrected-and-wrong. However, this article did not offer any algorithms for
performing this separation, which is something the current work provides.

Many evaluators have reported KSPC error rates based on the number of
backspaces made during entry [Sears and Zha 2003; Wobbrock et al. 2003; Gong
and Tarasewich 2005], but these are aggregate, not character-level, error rates.
While aggregate error rates provide a baseline for comparison, they are not
sufficiently fine-grained to aid designers in targeting problematic characters.
Designers and evaluators need more than aggregate measures; they need an
indication of what is happening at the level of individual characters. For exam-
ple, a character-level error analysis can tell us the probability of entering a “y”
when attempting a “g”. It can also tell us which characters are prone to errors

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

462 • J. O. Wobbrock and B. A. Myers

of insertion, omission, or substitution, or which are particularly slow or fast to
produce.

Until now, however, the unconstrained text entry paradigm has lacked a
formal character-level error analysis that handles input streams. While the
unconstrained experimental paradigm is a significant advance over more arti-
ficial paradigms mentioned in the previous section, the lack of a character-level
error analysis for input streams is a major drawback. Thus far, character-level
error analyses for the unconstrained paradigm have focused on presented and
transcribed strings [MacKenzie and Soukoreff 2002b], not on input streams. As
mentioned, the difficulty in analyzing input streams is that they are fraught
with ambiguity, making it hard to discern the subject’s intention at each char-
acter position. The current work addresses this ambiguity by using a small set
of reasonable assumptions. We argue that over the course of a text entry study,
the number of times the assumptions are invalid will be far outweighed by the
number of times they are valid, a claim supported by empirical results. These
carefully formulated assumptions enable us to unlock the rich character-level
information of input streams.

1.2 Advantages of Using Input Streams

Analyzing input streams from unconstrained text entry evaluations has a num-
ber of practical benefits for designers and evaluators of text entry methods.
Among these benefits are:

—The input stream usually yields more data per trial than the transcribed
string, since by definition |IS| ≥ |T |. Therefore, depending on the research
questions being asked, analyzing the input stream for character-level errors
may allow us to run fewer trials and save time and money on evaluations,
which are often time-consuming and expensive [Jeffries et al. 1991]. Such
savings will be possible if it is error data that we are after. However, if we are
interested in learning rates as measured by speeds over sessions, analyzing
IS will not reduce the number of sessions required.

—When instructed to “enter the text quickly and accurately” [Soukoreff and
MacKenzie 2003], subjects tend to fix most, if not all, of their errors in text
entry trials. For example, in the study accompanying a character-level error
analysis from the prior work [MacKenzie and Soukoreff 2002b], subjects left
only 2.23% errors in T . Other studies show even fewer uncorrected errors:
0.79% [Soukoreff and MacKenzie 2003], 0.53% [Wobbrock et al. 2004], and
0.36% [Wobbrock et al. 2003]. In the extreme case, if subjects correct all
errors, P and T will be identical and no character-level error information will
be available. Such a contingency does not reduce the value of IS, however,
since corrected errors (the errors subjects made but fixed) are still captured
therein.

—Speed and uncorrected errors are tradeoffs in text entry. Therefore, to equi-
tably compare speeds, some experiments [Lewis 1999] have required perfect
transcription, where leaving errors in T is not permitted. But character-level
error analyses of perfect transcription studies are useless when employing

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 463

only P and T , since they will always be identical. Analyzing IS, on the other
hand, allows for the extraction of character-level results, even in perfect tran-
scription studies.

—For stroke-based or handwritten text entry, such as Graffiti [Palm Inc. 1995],
one possible outcome of an attempted character is a nonrecognition. By def-
inition, T cannot contain nonrecognitions, but IS can. Therefore, looking at
IS can be valuable to designers who are trying to identify characters that are
difficult to recognize in stroke-based text entry methods.

1.3 Limitations of This Analysis

Like any automated analysis, the current work has limitations. It is designed
to analyze data from unconstrained text entry experiments in which subjects
transcribe, rather than generate, text. Although generating text is more natu-
ral, it has numerous problems when used in experiments, such as introducing
thinking time, complicating the identification of errors, and abdicating control
of letter and word distributions [MacKenzie and Soukoreff 2002a, 2003]. For
these reasons, text entry evaluations nearly always involve text transcription.

In the unconstrained paradigm, text is assumed to flow serially forward with
the entry of new characters and backward with the correction operation (i.e.,
backspace). Therefore, the current analysis does not accommodate “random
access” editing using cursor keys, multicharacter selection, or the mouse cursor.
Indeed, a comprehensive analysis of text entry performance is a current goal of
researchers, but even the metrics for such an analysis are not yet understood,
let alone algorithms for their automated measurement.

The current analysis does not accommodate method-specific tokens in the in-
put stream, such as the individual keypresses in Multitap (e.g., 222-NEXT-2-8 =
“cat”). Rather, the current analysis examines input streams containing all en-
tered characters and backspaces in a method-agnostic fashion that makes it
suitable for any character-level text entry method. Method-specific analyses
would have to be implemented in a method-specific fashion, and are viewed as
supplements to this work.

The current work functions well for any type of character-level method. These
methods include typing, unistrokes, stylus keyboards, eye-tracking keyboards,
thumbwheels, character recognizers, and so on—any technique that produces
one character at a time. The results are less informative, however, for word-level
methods that produce multicharacter chunks. Examples of such methods are
word-producing sokgraphs [Zhai and Kristensson 2003], word prediction sys-
tems [Wobbrock et al. 2006], and speech recognition systems [Karat et al. 1999].
Although the algorithms we present will work for such methods, character-level
errors are less relevant, since the “character” is not the unit of production. Our
algorithms could be adapted to accommodate word-level entry by treating mul-
ticharacter chunks as the individual units of production. Such an extension is
not a theoretical complication, but is beyond the scope of this work.

In the remainder of this article, we first describe a character-level error anal-
ysis for the unconstrained text entry paradigm from prior work [MacKenzie and
Soukoreff 2002b]. This prior analysis examines only P and T , but is built upon

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

464 • J. O. Wobbrock and B. A. Myers

Fig. 3. The example used in the prior analysis [MacKenzie and Soukoreff 2002b]. We continue

with this example for continuity.

directly by the current work. Next, we describe our extensions to this prior work
that allow us to analyze input streams. We present a taxonomy of input stream
error types, including the assumptions underlying each, and give algorithms
for their detection. Finally, we offer two analyses of real experimental data,
one with the prior analysis of just P and T , and one with our new analysis
using P , T , and IS. With our new analysis and the software that implements
it, designers and evaluators stand to benefit from richer character-level error
information which, in turn, will result in more refined text entry techniques
and rigorous evaluations.

2. RELATED WORK

There is much work in the general area of string sequence comparisons [Sankoff
and Kruskal 1983]. Algorithms have been developed in computer science and
computational biology to find common sequences within a single string [Karp
et al. 1972], within a family of strings [Landraud et al. 1989], and within a set
of molecules [Waterman 1984]. An in-depth review of this work is beyond the
scope of this article, but it should be noted that our current problem, inferring
the intention for each character in the input stream, does not reduce to finding
common substrings or repeating patterns. Rather, it is specific to the activity of
transcribing a presented string in an unconstrained text entry experiment. This
involves, for example, the unique treatment of backspace as a special character
that removes the previous character. The current work is therefore not just an
application of prior algorithms, but a new procedure developed for use in the
domain of text entry evaluation.

The current work builds on a prior character-level analysis of just P and
T [MacKenzie and Soukoreff 2002b]. This technique must first be understood
before describing the current work. A brief overview is therefore presented.
Readers are directed to prior work for more details [Soukoreff and MacKenzie
2001; MacKenzie and Soukoreff 2002b].

The prior analysis began by asking, “How many errors are in the transcrip-
tion shown in Figure 3?”

A pairwise comparison of the letters in Figure 3 suggests that all letters
after the “qu” are in error. But intuition tells us that the “kly” at the end seems
correct. How can we determine the correct number of errors?

The answer is by using the minimum string distance (MSD) [Levenshtein
1965; Wagner and Fischer 1974; Soukoreff and MacKenzie 2001].1 The MSD
statistic tells us the shortest “distance” between two strings, which can be
characterized as the minimum number of errors between them. This is also
equivalent to the minimum number of simple editing operations, so-called

1The MSD algorithm is often attributed to Vladimir I. Levenshtein [1965] but was discovered

independently by others (e.g., Wagner and Fischer [1974]. The algorithm appears in Figure 28.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 465

Fig. 4. The optimal alignments of “quickly” and “qucehkly” [MacKenzie and Soukoreff 2002b].

“Morgan’s operations” [Morgan 1970], required to turn one string into the
other.

In Figure 3, MSD = 3. This means that there are a minimum of 3 errors in T
relative to P . It also means that in no less than 3 simple editing operations we
can make “quickly” and “qucehkly” into equivalent strings.2 The error types and
associated corrections described next are treated in greater detail elsewhere
[Gentner et al. 1984]. Note that these are ”method-agnostic” types that may
occur in any character-level text entry system.

Insertion: occurs when a letter appears in T , but not in P . For example, if
P is “cat” and T is “cart”, there is an insertion for “r”. We can represent an
insertion by placing a hyphen “-” in P where the insertion appears in T . For
example, we would write “cat” as “ca-t”.

Omission: occurs when a letter appears in P , but not in T . For example,
if P is “cat” and T is “ct”, there is an omission of “a”. We can represent an
omission by placing a hyphen in T where the omitted letter appears in P .
For example, we would write “ct” as “c-t”. Other work has coined these errors
“deletions” [MacKenzie and Soukoreff 2002b], but “omission” will be used here,
as in earlier articles [Gentner et al. 1984].

Substitution: occurs when corresponding letters in P and T do not agree. For
example, if P is “cat” and T is “kat”, there is a substitution of “k” for “c”.

As stated, MSD = 3 for our example. But although we know that 3 errors
exist between P and T , and therefore 3 editing operations are necessary to
equate them, we do not know which 3 errors occurred or which 3 operations
reflect the subject’s intentions. For example, did the subject substitute the “c”
for “i” in Figure 3 or did he omit the “i” and correctly enter the “c”?

To handle this ambiguity, we first generate all possible operation sets of
cardinality 3 that make P and T equivalent. These are called the optimal
alignments of P and T [MacKenzie and Soukoreff 2002b]. There are 4 optimal
alignments for our example in Figure 3, shown in Figure 4.

To detect errors after identifying the optimal alignments, we simply move
through the (Pn, Tn) pairs, comparing letters in a pairwise fashion at each
position. If two letters agree, a no-error is the result. If two letters disagree,

2These simple editing operations were noted from examining the most common mistakes in writing

computer programs [Damerau 1964]. They were later applied to automatic spelling correction

[Morgan 1970], and automated with the MSD algorithm [Wagner and Fischer 1974].

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

466 • J. O. Wobbrock and B. A. Myers

a substitution occurred. If a hyphen appears in P , an insertion occurred. If a
hyphen appears in T , an omission occurred.

Ambiguity is handled by weighting each error by the inverse of the number
of alignments. For example, in our aforementioned 4 alignments, each of the
3 substitutions for “i” is tallied as 1 × 0.25. Summed together, we get 0.75 as
the total substitution error rate for “i”. That is, we can say that there is a 75%
chance that the user committed a substitution for “i” while entering “qucehkly”.
Accordingly, there is only a 25% chance that the user omitted “i”, as seen in the
fourth alignment.

The main limitation of this prior analysis is that it ignores all backspaced
characters. In most unconstrained text entry experiments, corrected errors
greatly outnumber uncorrected errors. This means that much richer error data
is available to us if we include corrected errors in our analyses. This is par-
ticularly true for character-level errors, since uncorrected character-level er-
rors may be infrequent for any given character. Including corrected character-
level errors allows us to see which characters really are error-prone during
entry.

3. MAKING SENSE OF INPUT STREAMS

The analysis of input streams yields new types of errors. It also entails new
complexities due to ambiguity. This section describes both.

3.1 Input Stream Error Types

When we move from an analysis of just P and T to an analysis of P , T , and IS,
new types of errors arise. These new error types provide more detail about the
text entry process and give us a more powerful scope under which to view errors.
This section presents a taxonomy of input stream error types with relevant
examples. The assumptions used in this section are made explicit in Section 3.2.

3.1.1 Uncorrected No-Errors, Substitutions, Insertions, and Omissions.
Hereafter, Gentner et al.’s errors [Gentner et al. 1984] are prefaced with the
term “uncorrected” to indicate that these errors remain in the transcribed
string. So, we now have uncorrected no-errors, uncorrected substitutions, un-
corrected insertions, and uncorrected omissions. The definitions of uncorrected
errors remain unchanged from prior work [Gentner et al. 1984; MacKenzie and
Soukoreff 2002b].

We now turn to the new error types introduced by the current work, namely,
corrected character-level errors.

3.1.2 Corrected No-Errors. Characters that are already correct are erased
surprisingly often in the text entry process, particularly when touch-typing
[Soukoreff and MacKenzie 2004]. We call these correct-but-erased characters
corrected no-errors. When combined with uncorrected no-errors, they compose
the set of all correctly entered characters.

3.1.3 Corrected Substitutions. Consider the input stream in Figure 5,
where “<” is a backspace.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 467

Fig. 5. An input stream showing difficulty entering “u”.

Fig. 6. The “v” and “w” are corrected substitutions for “u”, while the “x” is an uncorrected substi-

tution for “u”.

Fig. 7. The “vl” is erroneous, but the subject did not correct these letters until after correctly

entering the first “ck”.

This input stream shows a correctly entered “q”, but apparent trouble pro-
ducing the following “u”. The subject first entered, and then backspaced, a “v”
and a “w” before correctly entering the “u”. This might be because “u”, “v”, and
“w” are keys that are physically too close together on a mobile device’s minia-
ture keyboard, or because the user easily confused strokes for “u”, “v”, and “w”
in a stylus method. For example, “u”-“v” confusion is common for novices when
writing Graffiti [MacKenzie and Zhang 1997].

In Figure 5, “v” and “w” are considered corrected substitutions for “u” because
if either “v” or “w” (but not both) were left in lieu of “u”, we would have had
an uncorrected substitution for “u”. Note that the term “corrected” refers to the
fact that “v” and “w” were backspaced, not to the fact that “u” correctly ended
up in T . For example, “v” and “w” are corrected substitutions for “u” in Figure 6,
despite an “x” persisting as an uncorrected substitution for “u”.

Subjects in text entry experiments often go a few letters past erroneous
entries before noticing their errors and backspacing to fix them [Soukoreff and
MacKenzie 2004]. This can result in an input stream like that of Figure 7.

In Figure 7, the subject may not have spotted the erroneous “vl” until after
the first “ck”. The “v” should be classified as a corrected substitution for “u”, the
“l” as a corrected substitution for “i”, and the erased “ck” as corrected no-errors,
since they were initially correct, despite having to be erased.

3.1.4 Nonrecognition Substitutions. A nonrecognition substitution occurs
when an attempt to produce a character yields no result. Although nonrecogni-
tions are more applicable to stroke-based entry than to keys or buttons, virtual
keyboards may regard clicks or taps in the “dead space” between keys or along
their margins as nonrecognitions, since these are also unproductive attempts
to enter characters. Thus, nonrecognitions are applicable to methods beyond
those that use recognizers. Indeed, any method in which an attempt to produce
a character can produce nothing at all is relevant.

We can represent nonrecognitions in the input stream as “ø”. Consider the
input in Figure 8. In this example, the first attempt at “u” produced no actual
character (“ø”). The second attempt produced a “u”, and the subject proceeded

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

468 • J. O. Wobbrock and B. A. Myers

Fig. 8. The input stream contains a nonrecognition “ø”.

Fig. 9. The “x” in the input stream is a corrected insertion.

Fig. 10. The input stream shows an “a” inserted beyond the corresponding length of the presented

string.

correctly thereafter. Note that no backspace is required to remove a nonrecog-
nition, since it does not represent any printed character.

There are various ways to add nonrecognitions to input streams (IS). One
is for a text entry technique to send a special nonprintable character code to
be trapped by the user test software and logged directly as a nonrecognition.
This approach may be called explicit nonrecognition handling. A second ap-
proach is for a log file analyzer to infer a nonrecognition when it sees that a
stroke (or other effort) occurred, but did not produce a character. This approach
can be called implicit nonrecognition handling. Our test software, described in
Section 5, supports both approaches.

3.1.5 Corrected Insertions. Insertions are extra characters in T or IS that
lack a corresponding character in P . Consider the input in Figure 9. Here, it
seems the subject inserted an “x” before the first “u”, but later noticed and
erased it. If the “x” were not erased, it would have resulted in an uncorrected
insertion. Note that this determination is independent of the fact that a “u” is
ultimately transcribed in T . It is not independent, however, of the fact that a
“u” immediately follows the inserted “x”. It relies on this fact to determine that
the “x” was inserted and not an attempted “u”, and the “u” an attempted “i”,
which is possible, but not likely.

Note that in Figure 9, the first “u” and “i” are treated as errors by aggre-
gate measures that only count backspaces in the input stream [Soukoreff and
MacKenzie 2003]. But clearly, the first “u” and “i” are correct, and the current
analysis treats them as such, classifying them as corrected no-errors.

A second type of corrected insertion is when characters are entered beyond
the length of P . Figure 10 shows an example. In this example, it seems that
the “a” was inserted at the end of IS and then erased. Since all the letters in P
and IS are already matched, the “a” is deemed a corrected insertion.

Yet a third type of corrected insertion occurs when we have two identical
letters in a row, and the first is correct, but the second incorrect. Consider
Figure 11. In this example, it seems likely that the third “e” is not an attempt
at “c”, but an accidental double-entry of the previous “e”. This type of cor-
rected insertion is probably more common to keypad or keyboard entry than to

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 469

Fig. 11. The third “e” in the input stream could be the result of an accidental doubling of the

correct “e” before it.

Fig. 12. The “d”s are both deemed corrected substitutions. The second “d” is not a corrected inser-

tion because the “d” before it is an error.

Fig. 13. The input stream shows two nonrecognition insertions.

Fig. 14. The “c” is initially omitted, resulting in a corrected omission.

stroke-based entry, since double-entries can occur when physical buttons are
pressed too firmly, held down too long, or because the key-repeat rate is too fast.
Double-entries sometimes occur with a stylus on a virtual keyboard for subjects
with tremor [Wobbrock et al. 2003]. Input techniques can be “debounced” to help
protect against these kinds of insertions.

A requirement for this type of corrected insertion is that the character prior to
the potential double-entry is correct (the second “e” in Figure 11). This increases
our confidence that the character under consideration (the third “e”) is indeed
a double-entry.

Now consider Figure 12. This input should probably not be treated as having
a corrected insertion for the second “d” because the first “d” itself is erroneous
as a corrected substitution for “e”. In this case, the second “d” is treated as a
corrected substitution for “c”.

3.1.6 Nonrecognition Insertions. Only the second of the three types of
corrected insertion, those caused by entering letters beyond the length of P
(Figure 10), applies to nonrecognition insertions. For example, see Figure 13.
The input stream in Figure 13 shows two nonrecognition insertions, both of
which occur after each letter in P is already paired with a letter in IS.

3.1.7 Corrected Omissions. Omissions occur when characters in P are
skipped in T or IS. Corrected omissions occur when a character in P is
initially skipped, but then later replaced, thereby remedying the omission.
Figure 14 shows an example. It seems the “c” is initially skipped, but later re-
placed, resulting in a corrected omission (corrected no-errors are tallied for the
first “kl”). Note that the classification of “c” as a corrected omission does not de-
pend on a “c” ultimately being transcribed. For example, consider Figure 15. The
input in Figure 15 contains a corrected omission for “c” because “c” was initially

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

470 • J. O. Wobbrock and B. A. Myers

Fig. 15. The “c” is initially omitted, resulting in a corrected omission, even though an “x” takes its

place as an uncorrected substitution for “c”.

Fig. 16. Our first assumption says that subjects proceed sequentially through the presented string,

so “uf” in IS is matched with “at” in P .

Fig. 17. Was the “x” an attempted “a” or merely a corrected insertion? Our first assumption favors

the former.

omitted. This classification depends on the correctly entered “k” immediately
following the “i”. If the “k” were a different letter, we would have no reason to
believe that the letter was not an attempted “c” and therefore a corrected sub-
stitution. Note that the transcribed “x” results in an uncorrected substitution
for “c”.

3.2 Assumptions for Resolving Ambiguity

The previous taxonomy made some implicit assumptions to resolve ambiguity.
This section makes these assumptions explicit, arguing for their reasonableness
and necessity if value is to be extracted from input streams at the level of
individual characters.

3.2.1 Subjects Proceed Sequentially Through P. The first assumption is
that subjects proceed sequentially through P as they enter IS. This assumption
is the bedrock on which text entry transcription studies are built. Consider
Figure 16. Our first assumption pairs “uf” with “at”. Without this assumption,
we would have to allow that any letter in IS could be paired with any letter in
P , or none in P at all! This assumption is reasonable, given the nature of text
entry experiments in which subjects are instructed to sequentially transcribe
presented strings.

Now consider Figure 17. In this example, it seems the subject entered an
“x” while attempting an “a”. But are we sure? What if the “x” was not an at-
tempted “a”, but an insertion that was promptly corrected? In other words, do
we have a corrected substitution of “x” for “a” or a corrected insertion of “x”?
Our first assumption favors the former: “x” is paired with “a”. Prior character-
level evidence shows that substitutions are much more common than insertions
[MacKenzie and Soukoreff 2002b].

However, this assumption does not prevent us from detecting corrected in-
sertions and corrected omissions. Examine Figure 18. In the first pair, was “x”
an attempted “a” and “a” an attempted “t”? Or was the “x” simply inserted?
Because the first “a” in IS1 matches the “a” in P1, we favor the latter and report
a corrected insertion for “x” and a corrected no-error for “a”.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 471

Fig. 18. These two examples show a corrected insertion and a corrected omission, respectively.

Fig. 19. Our second assumption allows for only one corrected insertion or omission in a row. Thus,

these examples contain only corrected substitutions.

Fig. 20. Our second assumption keeps us from treating the “at” in P as initially omitted and the

“xf” in IS as initially inserted. Instead, our assumption simply gives us corrected substitutions.

In the second pair in Figure 18, was “t” an attempted “a” or was “a” omitted
and then promptly added? Since the first “t” in IS2 matches the letter after
the “a” in P2 (the “t”), we favor the latter interpretation and report a corrected
omission for “a” and a corrected no-error for the first “t”.

3.2.2 Subjects Insert or Omit Only One Character in a Row. The second
assumption states that subjects insert or omit only one character at a time.
Consider these variations on the input streams from Figure 18, as depicted in
Figure 19.

In the first pair, we could regard both “x” and “f” in IS1 as corrected inser-
tions because they are followed by an “a”. But then, at how many consecutive
insertions do we draw the line? For tractability, we choose to draw it at one and
deem “xfa” an attempted “ats”, reporting them all as corrected substitutions.

In the second pair, we might regard both “a” and “t’ in P2 as corrected omis-
sions. But again, at how many consecutive omissions do we draw the line?
We choose to allow one omission in a row, since subjects are instructed to
progress sequentially through P , and skipping multiple letters is uncommon in
practice.

Our assumptions so far allow us to avoid considering unlikely possibilities,
such as that of Figure 20. The limitation of one insertion or omission in a row
prevents us from treating the “at” in P as omissions and “xf” in IS as insertions.
Instead, we simply have corrected substitutions of “xf” for “at”, which are much
more likely and straightforward.

3.2.3 Backspaces Are Made Accurately and Intentionally. The third as-
sumption is that backspaces are made both accurately and intentionally. Of
course, backspace (“<”) is fundamental to text entry. Keyboards usually have
relatively large backspace keys. Unistroke alphabets such as Graffiti [Palm Inc.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

472 • J. O. Wobbrock and B. A. Myers

Fig. 21. Our third assumption asserts that backspaces are made accurately, but “ø<” and “<<”

patterns may indicate exceptions.

Fig. 22. Our third assumption asserts that backspaces are made intentionally, but “x< . . . <x”

patterns may indicate exceptions.

1995] and EdgeWrite [Wobbrock et al. 2003] assign simple straight-line strokes
to backspace. Designers are motivated to make backspace quick and accurate
due to its frequency and importance. As previously stated, backspace has been
shown to be the second most common keystroke in actual desktop PC use, after
the spacebar [MacKenzie and Soukoreff 2002a].

The current analysis assumes that backspaces are made accurately, that is,
an attempted “<” results in a “<”. Since we do not have any backspaces in P
to compare to those in IS, there is no implied intention on which we can rely.
Accommodating the possibility of erroneous backspaces greatly complicates the
analysis and is an ambitious topic for future work.

However, not all backspaces are going to be made accurately in a large text
entry experiment. Consider the cases in Figure 21. In IS1, we regard the non-
recognition (“ø”) as an attempted “t”, after which the subject notices and erases
the erroneous “x”. But what if the nonrecognition was a failed first attempt
at a backspace? It is difficult to say, since subjects often notice errors only
after they’ve gone past them, and “ø” could easily have been an attempted
letter.

Similarly, in IS2 we regard the “z” as an attempted “t”, after which the sub-
ject notices the erroneous “x” and erases the “xz”. But what if the “z” was an
attempted backspace to begin with? Again, there is no way to know, but the
“<<” pattern may indicate a failed attempt at backspace. Then again, subjects
often move a few letters past an error before noticing and backspacing to fix it,
so perhaps the “z” was an attempted “t”, after all. There is simply no way to
know, so we rely on our assumption.

The third assumption also says that backspaces are made intentionally, that
is, an attempt at something other than “<” does not result in a “<”. Consider
the example in Figure 22. Perhaps the subject initially thought the “a” was in
error. Or perhaps the backspace was an attempted “t”, which erased the already
correct “a”, and therefore the “a” had to be replaced. Under this assumption,
we treat the backspace as intentional. Corrected no-errors like the first “a” in
Figure 22 can occur when subjects enter text quickly, since they will occasionally
anticipate an error and enter a backspace, even when their entry turns out to
have been correct.

To assess the feasibility of these assumptions about backspace for a stroke-
based method, we manually examined logs from a unistroke text entry study

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 473

Fig. 23. This input is ambiguous as to whether the “z” should be aligned with “t” or with “s”. Both

possibilities are represented in the optimal alignment set and weighted accordingly.

[Wobbrock et al. 2003]. If backspaces were error-prone, we should see many “ø<”
and “<<” patterns in the input streams. If backspaces were unintentional, we
should see many “x < · · · < x” patterns, where x is a correct entry and “. . . ” are
optional intervening characters.

Together, subjects in the study attempted 4,932 characters. Of these, 4,660
produced characters and 272 were nonrecognitions. Of the 4,660 entered charac-
ters, 4,207 were alphanumeric and 453 were backspaces. The sequence “ø<” was
observed 55 times, and “<<” was observed 38 times. In scrutinizing the strokes
by hand, however, we saw that only 8 “ø<” were due to unrecognized attempts
at backspace. Similarly, only 2 “<<” were due to misrecognized backspaces.
Thus, only 10/453, or 2.21%, of attempted backspaces appeared to violate the
first part of our assumption.

Because recognition-based methods are often less accurate than selection-
based methods during entry [Költringer and Grechenig 2004], the first part of
our third assumption is likely to hold even more reliably for stylus keyboards,
on-screen keyboards, mini-Qwerty keyboards, and others, since backspace is
selected and not the result of a potentially sloppy stroke.

The sequence “x < · · · < x”, where x is a correct entry, was observed 6 times.
This means that only 6

4207−2+6
, or 0.14%, of attempted alphanumeric characters

were unintentional backspaces, supporting the reasonableness of the second
part of our third assumption.3

This data was from a study of first-time users after minimal practice. The
aforementioned percentages would probably be even smaller for subjects with
more practice. In any event, a technique with a highly inaccurate or inadvertent
backspace should first remedy that rather dire problem before performing a
more in-depth character-level error analysis.

3.2.4 Omissions in T Are Also Omitted in IS. The fourth assumption says
that letters skipped in T are also skipped in IS. Consider Figure 23. The tran-
scription T for this input aligns with P as both “caz-” and “ca-z”. Two alignments
are needed because we cannot be sure whether “z” was an attempted “t” or an
attempted “s”. It may be that the subject was attempting “t” all along and for-
got the “s” at the end. Or it may be that the subject did not see the “t” and was
attempting the “s”. As discussed previously, weighting by the number of align-
ments accommodates this uncertainty. Thus, in the first alignment (“caz-”), “x”
and “y” are treated as attempts at “t”, while in the second (“ca-z”), they are
treated as attempts at “s”.

3The denominator is the total number of attempted alphanumerics: the total number of produced

alphanumerics (4,207) minus those that were attempted backspaces (2) plus the backspaces that

were meant to be alphanumerics (6).

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

474 • J. O. Wobbrock and B. A. Myers

Fig. 24. The fourth assumption treats the “x” and “y” as attempts at “s”.

Fig. 25. The subject overshot with backspace past the erroneous “f” and through the correct “a”,

which he or she then neglected to replace.

On the other hand, what if we had an “s” in the final transcription, instead of
a “z”? This is shown in the example in Figure 24. In this case, there is only one
optimal alignment of T with P : “ca-s”, which contains an uncorrected omission
for “t”. Because the “t” was skipped, we assume that the “x” and “y” were not
attempts at “t”, but attempts at “s”. After all, it is with the entry of an “s”
that the subject becomes satisfied with leaving a character in this position. To
assume otherwise is to allow that “x” was perhaps first an attempt at “t”, and
that “y” was another attempt at “t” —or perhaps suddenly an attempt at “s”?
We would have to assume that subjects left nothing to show for their attempts
at “t” and became misaligned as a result.

In our experience over many text entry studies, subjects are rarely this capri-
cious. Regardless of the text entry method being used, subjects try hard to stay
aligned with P while transcribing T . If they fail to obtain a correct letter after
many tries, they often leave their final incorrect attempt and proceed, thereby
remaining aligned with P , rather than erasing their final attempt and becom-
ing misaligned thereafter. In other words, if the “y” in Figure 24 was indeed
an attempt at “t”, then it is unlikely that subjects would first erase it before
attempting the “s” because this throws them out of alignment. If indeed “y” was
a failed attempt at “t”, subjects would usually leave it and simply try the “s”.
In short, subjects eschew gaps and strive for alignment.

One complication with this assumption, however, is when subjects overshoot
with backspace and neglect to replace letters. For example, Figure 25 shows the
erasure of both an erroneous “f” and correct “a”. But nothing is replaced for the
“a” that was accidentally erased, so the aligned transcription is “c-ts”, which
contains an uncorrected omission for “a”. Since the subject omitted “a” in T , it
is assumed that he or she omitted it in IS, but that is probably not true here.
This complication arises because over-backspacing without replacement injects
ambiguity into discerning intention. Fortunately, over-backspacing without re-
placement is relatively uncommon, and is discouraged by well designed user
test software that employs fixed-width fonts for P and T and displays P above
T in close proximity. Manual inspection of data from the aforementioned study
[Wobbrock et al. 2003] revealed that only 2/453, or 0.44%, of backspaces were
overshoots. For both of these overshoots, the letter erased was replaced, mean-
ing that our fourth assumption held for all 4,207 characters. Still, relaxing this
assumption is a topic for future work.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 475

Fig. 26. The first step is to flag the letters in the input stream that compose the transcribed string

using a backward pass.

Fig. 27. Algorithm for flagging the characters in IS that compose T .

4. ERROR DETECTION AND CLASSIFICATION

We have developed an algorithm to automate the detection and classification of
the 10 error types described earlier. Automatically generated error reports can
aid designers and evaluators in improving text entry techniques by revealing
troublesome characters.

4.1 Algorithm Walkthrough Step-by-Step

As noted, the algorithm from prior work on which the current work builds
compared only P and T [MacKenzie and Soukoreff 2002b]. The current work
compares P , T , and IS. We give pseudocode so that technique designers and
evaluators can incorporate this analysis into their own work. In the code, both
space and letters are referred to as just “letters” and backspace is the only
error correction. In for loops, the to keyword includes the upper bound. For
readability, string indices are not bounds-checked, and the comparison of A[i]
to B[j] is taken to be false if either index i or j is beyond the end of its respective
string A or B.4 The notation |S| denotes the length of string S or the cardinality
of set S. The “←” symbol means “assign”, while the symbol “←+” means “append
to string” or “add to set.” The style of this pseudocode is based on that of a
popular algorithms book [Cormen et al. 1990].

4.1.1 Flag the Input Stream. In the first step, we “flag” the transcribed
letters in the input stream (i.e., we flag the letters in IS that compose T). We
do this with a backward pass over IS, incrementing a counter after passing
“<”, decrementing it (but not below zero) after passing a letter, and leaving it
unchanged after passing a nonrecognition (“ø”). We flag letters for which the
counter is zero before decrementing. Figure 26 shows the hypothetical input
stream for T = “qucehkly” from Figure 3. Flagged letters are bold. The pseu-
docode for doing the flagging is given in Figure 27.

4Where necessary, one can add checks so that tests fail if an index is out of bounds. Thus, if
(A[i] = B[j]) becomes if (i < |A| and j < |B| and A[i] = B[j]).

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

476 • J. O. Wobbrock and B. A. Myers

Fig. 28. Algorithm for computing the minimum string distance. In this case, the �= comparator

returns integer ‘1’ if true and integer ‘0’ if false.

Fig. 29. Algorithm for computing the optimal alignments of P and T . Reproduced with permission

[MacKenzie and Soukoreff 2002b].

4.1.2 Compute the MSD Matrix. The second step is to compute the min-
imum string distance (MSD) matrix. The MSD algorithm fills a matrix of in-
tegers as it determines the minimum number of simple editing operations re-
quired to equate two strings. We adjust a prior version of the MSD algorithm
[Soukoreff and MacKenzie 2001] to return not just the string distance, but also
the filled MSD matrix, which we will use in the next step. Readers wishing
further details on this algorithm are directed to that article or earlier ones
[Levenshtein 1965; Wagner and Fischer 1974].

4.1.3 Compute the Set of Optimal Alignments. The third step is to compute
the set of optimal alignments of P and T , as in Figure 4. In Figure 29, D is
the MSD matrix, and x and y are initialized with the lengths of P and T ,
respectively. P ′ and T ′ are initially empty strings and the “+” operation on
them is “string concatenation.” For more information, readers are directed to
prior work [MacKenzie and Soukoreff 2002b].

4.1.4 Stream-Align IS with P and T. In the fourth step, we add a copy of
IS, still flagged, to each optimal alignment pair computed by ALIGN, turning
them into optimal alignment triplets. We then stream-align the triplets so that
P , T , and IS are all aligned. We do this by aligning the flagged letters in IS
with their correspondents in P and T . The last alignment from Figure 4 looks
like Figure 30 when stream-aligned.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 477

Fig. 30. A stream-aligned triplet of (P , T , IS). This is the fourth of the optimal alignments from

Figure 4.

Fig. 31. Algorithm for aligning P , T , and IS.

Fig. 32. Position values are shown atop characters in the input stream. They are assigned using

a forward pass.

The triplet in Figure 30 uses underscore spacers (“ ”) in P and T where
flagged letters in IS are absent, and in IS where uncorrected omissions are
in T (i.e., where “-” symbols appear in T). Figure 31 gives the pseudocode for
stream-aligning P , T , and IS.

4.1.5 Assign Position Values to Characters in the Input Stream. The fifth
step is to assign “position values” to each character in IS. Position values help
determine the intended target letter in P for each letter in IS. Flagged letters
always receive a position value of zero. Within each unflagged substring be-
tween two flags in IS, a letter’s position value is the substring index it would
have had if the substring were transcribed unto this point. A backspace’s po-
sition value, by contrast, is the position value of the letter that the backspace
erases. The position values for our example are shown in Figure 32. The algo-
rithm for assigning position values is shown in Figure 33. The function receives
the set of triplets from STREAM-ALIGN.

4.1.6 Proceed Through IS to Detect and Classify Errors. The sixth and final
step of the algorithm proceeds through each IS in each stream-aligned triplet
and classifies each input stream character. The procedure for doing this is shown
in Figures 35–37. It takes successive substrings between flagged letters in IS,
where the substrings include a flagged character on their right ends but not on
their left. Thus, the first three substrings of IS4 from Figure 30 are “ pv<<q”,
“u”, and “ c<c”. Letters within a substring are then compared to corresponding
letters in P . These corresponding letters are determined using the position
values assigned in Figure 33.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

478 • J. O. Wobbrock and B. A. Myers

Fig. 33. Algorithm for assigning position values to characters in IS. Position values help determine

the intended letter in P for each letter in IS.

Fig. 34. Comparisons made for the fourth stream-alignment (Figure 30).

The comparisons performed for the fourth stream-alignment (Figure 30) are
illustrated in Figure 34. For clarity, underscore spacers have been removed from
P . Note that this processing is applied to each alignment triplet returned by
STREAM-ALIGN, not just this one.

In Figure 35, the intended letter in P (i.e., P [target]) is determined by using
the position value at IS[i]. This value, which in DETERMINE-ERRORS is stored in
the variable v, is added to |M | – |I | to determine the target in P . The set M
stores the position values of letters that precipitate corrected omissions, and
the set I stores position values of letters that are corrected insertions. When
a backspace (‘<’) is processed, the sets M and I are inspected to see whether
they contain the position value of the backspace, that is, to see if an omission or
insertion was just corrected. If the value v is found, it is removed from M or I
accordingly. This, in turn, appropriately affects the determination of the target
index, since target is calculated as v + |M | – |I |.

Figure 38 gives the output of DETERMINE-ERRORS for the example triplet from
Figures 30 and 34. The output shows 18 results. This compares to only 9 results
available from an analysis of just P and T . Thus, using the input stream has
doubled the character-level error data available for analysis.

4.2 Character-Level Metrics

After processing data from an experiment, we have error tallies for each letter.
We also have counts: How many times was each letter presented? Transcribed?
Entered? Intended? Correct? Unrecognized? Note that only the first two of these
counts are available from an analysis of just P and T .

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 479

Fig. 35. Algorithm for classifying errors in the input stream. This algorithm finds all errors from

previous work and the new input stream error types described in Section 3.1.

4.2.1 Three Error Rates. Each character has three separate error rates:
uncorrected, corrected, and total. These are defined as follows for a given char-
acter i:

Uncorrected Error Ratei = 1 − Uncorrected NoErrorsi

Transcribedi
(1)

Corrected Error Ratei = 1 − Corrected NoErrorsi

Enteredi − Transcribedi
(2)

and

Total Error Ratei = 1 − Uncorrected NoErrorsi + Corrected NoErrorsi

Enteredi
(3)

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

480 • J. O. Wobbrock and B. A. Myers

Fig. 36. Procedure used by DETERMINE-ERRORS (Figure 35) that looks forward in string S from a

zero-based index start until a count number of CONDITION-FNs have been satisfied, returning the

index of the countth successful test.

Fig. 37. Procedure used by DETERMINE-ERRORS (Figure 35) that is analogous to LOOK-AHEAD, but

operates in the reverse direction.

Fig. 38. Classification output for the triplet from Figure 30. Each line can be read as

classification (intended, produced).

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 481

Eq. (1) answers the question, “of the i’s remaining in the transcription, what
percent were erroneous?” Eq. (2) answers, “of the erased i’s, what percent were
erroneous?” Eq. (3) answers, “of all entered i’s, what percent were erroneous?”
Note that a high rate for Eq.(2) means that most of the backspaced i’s were,
in fact, errors and should ideally have been corrected. Conversely, a low rate
for Eq. (2) means that subjects were erasing already correct i’s, which might
indicate that they were too hasty to backspace.

The total error rate for a letter (Eq. (3)) refers only to actual entries of this
letter. It says, “given that an i was entered, what are the chances that i was
correct?” Omissions of i are therefore not captured by Eq. (3). Instead, omissions
are handled by a separate error rate, described in Section 4.2.3.

4.2.2 Substitutions versus Intentions. Our data allows us to answer the
question, “what is the probability of getting i when trying for i?” For this,
we take the ratio of substitutions to intentions. The number of times a let-
ter was intended is obtained by adding its substitutions and no-errors. These
five error types (uncorrected, corrected, and nonrecognition substitutions; and
uncorrected and corrected no-errors) have intended target letters and actual
produced letters (or nonrecognitions).

Uncorrected Substitution Ratei = Uncorrected Substitutionsi

Intendedi
(4)

Corrected Substitution Ratei = Corrected Substitutionsi

Intendedi
(5)

Nonrecognition Substitution Ratei = Nonrecognition Substitutionsi

Intendedi
(6)

and

Total Substitution Ratei =

Uncorrected Substitutionsi+
Corrected Substitutionsi+

Nonrecognition Substitutionsi

Intendedi
(7)

Eq. (4) answers the question, “when trying for i, what is the probability that
we produce an uncorrected substitution for i?” Similar questions can be asked
of corrected substitutions (Eq. (5)) and nonrecognition substitutions (Eq. (6)).
Eq. (7) answers, “when trying for i, what is the probability that we don’t get i?”

4.2.3 Omissions versus Presentations. We can also determine whether
some letters are prone to omission. For this, we take the ratio of omissions
to presentations—the number of times a letter was omitted compared to the
number of times it was presented to the subject for transcription.

Uncorrected Omission Ratei = Uncorrected Omissionsi

Presentedi
(8)

Corrected Omission Ratei = Corrected Omissionsi

Presentedi
(9)

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

482 • J. O. Wobbrock and B. A. Myers

Fig. 39. The TextTest text entry evaluation program. This program writes XML log files that can

be analyzed by StreamAnalyzer (Figure 40).

and

Total Omission Ratei = Uncorrected Omissionsi + Corrected Omissionsi

Presentedi
(10)

Eqs. (9) and (10) are special in that they can be over 100% if a single presented
letter is omitted repeatedly. Although this is a theoretical possibility, subjects
are unlikely to exhibit this behavior.

4.2.4 Insertions versus Entries. We can also discover whether a letter i is
prone to insertion. For this, we take the ratio of i’s insertions to i’s entries.

Uncorrected Insertion Ratei = Uncorrected Insertionsi

Enteredi
(11)

Corrected Insertion Ratei = Corrected Insertionsi

Enteredi
(12)

and

Total Insertion Ratei = Uncorrected Insertionsi + Corrected Insertionsi

Enteredi
(13)

5. USER TEST SOFTWARE AND LOG FILE ANALYZER

To facilitate the automation of the analyses described in this article, we built
two complementary applications. The first is TextTest (Figure 39), a program
designed for conducting text entry evaluations. It runs on Microsoft Windows
systems with any text entry method, provided that the method sends characters
through the low-level keyboard input stream. For example, the SendInput() and
keybd event() Win32 functions or the SendKeys methods in Visual C# or Visual
Basic .NET do this on Windows systems. TextTest can also send or receive
characters over TCP for conducting studies on mobile devices.

Recognition-based text entry methods can send special nonprinting charac-
ter codes to TextTest for explicitly logging character starts, character ends, and
nonrecognitions. TextTest randomly presents phrases from a published corpus
of 500 [MacKenzie and Soukoreff 2003], or from any custom phrase set, and

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 483

Fig. 40. The StreamAnalyzer log file analyzer. This program reads the XML logs written by

TextTest (Figure 39) and computes various measures. Here, the program is being used to ana-

lyze input given directly on the console.

writes XML log files for easy parsing. TextTest itself is implemented in Visual
C#.

Accompanying TextTest is a log file analyzer named StreamAnalyzer
(Figure 40) that parses TextTest’s XML logs and computes various measures of
text entry performance. Alternatively, when run with the “-d” switch, Stream-
Analyzer can be used to analyze any P and IS given directly from the console.
StreamAnalyzer performs all of the analyses described in this article and in ar-
ticles on which this work builds. It writes its output to a text file, which can be
pasted into a spreadsheet for statistical analysis. Like TextTest, the analyzer
is written in Visual C#.

6. COMPARISON OF ANALYSIS TECHNIQUES

To illustrate the advantages of analyzing input streams over merely analyz-
ing transcribed strings, both analysis methods were used on text entry data
from a real experiment in which five first-time novices entered a total of 75
sentences for 3,750 presented characters. They made 4,932 attempts for 4,660
produced characters and 272 nonrecognitions. Of the characters, 4,207 were
letters (alphanumerics or spaces) and 453 were backspaces. The technique un-
der investigation was the unistroke method EdgeWrite using a stylus on a PDA
[Wobbrock et al. 2003].

6.1 Error Rate Tables

Character-level probability tables show error rates for each letter [MacKenzie
and Soukoreff 2002b]. The prior analysis of just P and T enables the production

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

484 • J. O. Wobbrock and B. A. Myers

Table I. Character-Level Results

Character Presented Transcribed Insertion Substitution Omission Sum

‘r’ 145 144 0.0% 1.1% 1.0% 2.1%

‘c’ 60 59 0.0% 1.7% 0.0% 1.7%

‘b’ 50 50 0.0% 0.7% 0.6% 1.3%

‘e’ 325 327 0.0% 0.0% 0.0% 0.0%

Total 3750 3750
Avg.

0.2% 0.2% 0.1% 0.5%

An excerpt of character-level results using a prior analysis of transcribed strings [MacKenzie and Soukoreff

2002b]. The bottom row is for the whole table, not just for the excerpt shown here.

Table II. Character-Level Results Using the Current Analysis

Character Entered Intended Correct Insertion Substitution Omission Sum

‘r’ 14 7 5 0.0% 28.5% 0.0% 28.6%

‘f’ 80 46 41 0.0% 10.9% 2.5% 13.4%

‘j’ 15 11 10 6.7% 9.1% 0.0% 15.8%

‘e’ 360 344 330 1.4% 4.0% 0.0% 5.4%

Total 4479 4446.83 3808.17
Avg.

0.7% 14.4% 0.8% 15.9%

An excerpt of character-level results using the current analysis. The bottom row is for the whole table, not

just for the excerpt shown here.

of tables that list error rates for uncorrected insertions, substitutions, and
omissions. Space precludes a full table here, so Table I shows the letters with
the three highest error rates and the letter “e” for comparison.

Note the relatively few total uncorrected errors examinable by this analysis
(0.5%). In fact, only 8 of the 37 characters (a–z, 0–9, space) in the full table have
nonzero error rates. Perhaps subjects were careful to correct errors, or perhaps
they did not make many errors to begin with. With this analysis, there is no
way to know.

A much bigger table results from analyses of input streams. The table has a
row for each letter and a column for each count and character-level measure.
This table, which is automatically generated by StreamAnalyzer (Figure 40),
reports that “e” was intended 344 times, entered 360 times, correct 330 times,
and unrecognized 8 times. The chance of getting another character when in-
tending an “e” was 4.0%. There were no omissions of “e” and 5 insertions of “e”,
or 1.4% of all entered “e”s. These are the types of results available from our
character-level analysis of input streams.

Table II is an excerpt from the full table, containing only a subset of the full
table’s rows and columns. It shows the letters with the three highest error rates
and the letter “e” for comparison. The results in Table II differ substantially
from those in Table I because of the inclusion of corrected errors. Overall, an
attempt to make a letter had a 14.4% chance of being a substitution, not just a
0.2% chance, as reported in Table I. This rate is high because the test subjects
were first-time users of the technique under investigation.

6.2 Confusion Matrices

The error rate tables tell us which characters are prone to different types of
substitution errors. But they do not tell us what these substitution errors are.
For this, we use a confusion matrix [Grudin 1984; MacKenzie and Soukoreff

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 485

2002b]. This is similar, but not identical to, the confusion matrices used in
handwriting recognition. Those confusion matrices indicate where a gesture
recognizer has trouble differentiating between written characters. By contrast,
the confusion matrices we refer to show where the user has intended some letter
but produced another. This may indeed be due to a poor recognizer, or may be
due to user confusion, forgetting how to make a letter, or guessing incorrectly.
For example, in Graffiti, “k” and “x” are mirror images. Although the Graffiti
recognizer has no trouble distinguishing between them, novices often mistake
one for the other [MacKenzie and Zhang 1997].

In the confusion matrix, the x-axis is the intended character and the y-axis is
the produced character. For a character, “total attempts” is the sum of its matrix
column and “total entries” (excluding insertions) is the sum of its matrix row.

Values along the diagonal (where the intended and produced characters
match) represent correct entries and dwarf the values off the diagonal. We
therefore omit values along the diagonal so that the substitution errors are
more visible in Figure 41.

Figure 41(a) has a maximum value of just 1 off of its diagonal. Figure 41(b)
has a maximum value of 18 for alphabetic substitutions (u, l) and 32 for non-
recognition substitutions (m, ø).

One unexpected finding from Figure 41(b) that is not available in Fig-
ure 41(a) is the high number of “l”s produced when trying for “u”s, since (u, l)
= 18. In EdgeWrite, if subjects lift their stylus prematurely while trying for a
“u”, an “l” can result, and apparently this happened.

Another unexpected finding was the high nonrecognition rate for “n”, since
(n, ø) = 28. The reason for this appears to be that in making the diagonal portion
of “n”, subjects sometimes caught the bottom-left corner of the input area acci-
dentally, which resulted in a nonrecognition since that corner sequence, which
EdgeWrite uses to recognize strokes, is not defined. A subsequent redesign of
the corner regions changed them from rectangles to triangles and remedied this
problem [Wobbrock et al. 2003].

Another interesting character-level finding was the high substitution rate of
“i” for “l”, since (l , i) = 16. This tells us that when subjects were trying to produce
an “l”, they often thought of a lowercase “l” shape, which is a line straight down.
Such a stroke is an “i” in EdgeWrite, whereas an “l” is a capital “L” stroke down
and then across.

Yet another finding of interest was the confusion of “f” for “t”, since (t, f) =
15. The strokes for “t” and “f” are mirror images of each other. Apparently,
this was confusing to subjects when they intended to write a “t”. However, the
reverse was not the case, since (f , t) = 1, meaning that when trying for “f”,
subjects were not confusing it with the shape of “t”. Incorporating linguistic
information in the form of letter digraph probabilities, for example, might be
one way to remedy this confusion by allowing the “f” stroke to enter “t” if the
previous character indicates that “t” is much more likely than “f”.

These results have influenced the redesign of EdgeWrite and its accom-
panying instructional material. Without a rich character-level analysis, the
aforementioned insights (and others) would have been forfeit and fine-grain
improvements would have been more difficult to make.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

486 • J. O. Wobbrock and B. A. Myers

Fig. 41. (a) Confusion matrices from the previous analysis of P and T and (b) from the current

analysis of P , T , and IS for the same empirical data. These matrices are automatically produced

by the StreamAnalyzer program. The large discrepancies in the two graphs are due to corrected

substitutions, since these appear in IS, but not in T . The high values against the back wall in (b)

are nonrecognition substitutions, which are also not captured in (a).

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 487

7. FUTURE WORK

Future work includes adding algorithmic extensions to further relax or remove
the assumptions used to resolve ambiguity in the input stream. Such extensions
may involve clustering or data mining to assess errors in a complementary way.
A wider review of data from other text entry experiments would help inform
this.

Although this work helps designers understand which character-level er-
rors happen, it offers little help in determining why they happen, since this
determination is method-dependent. For stroke-based methods, a graphical
error report coupling stroke traces with the errors they produced could fa-
cilitate iteration and redesign. The algorithms presented here would still
be required, however, to show the designer where to look. Method-specific
extensions could also be made to the input stream, such as augmenting
input streams with mode setting actions (e.g., the capitalization up-stroke
in Graffiti, the SHIFT key on keyboards, or the multiple key presses in
Multitap).

Yet another avenue for future work is to enable TextTest and Stream-
Analyzer to produce results in real-time during a text entry study. As they
stand, these tools support the running of a text entry study first and then
later analysis of the log files. Analyzing the logs during a study would
provide immediate feedback to the experimenter, which could be useful in
motivating subjects or for practicing until a certain level of proficiency is
reached.

8. CONCLUSION

The unconstrained text entry evaluation paradigm has changed the way rigor-
ous text entry experiments can be conducted. However, with the advent of this
paradigm comes a major challenge in capturing character-level errors, partic-
ularly in the input stream, where such errors are most prevalent. Although
they were artificial and often frustrating for users, former constrained text en-
try evaluation paradigms made assessing character-level errors trivial, making
the use of the new unconstrained paradigm a tradeoff, rather than an outright
win, over older, more artificial paradigms.

We have presented a technique and tools for the analysis of character-level
errors in the input stream that is independent of the character-level text entry
method under investigation. We have shown the value of performing character-
level error analyses on input streams, rather than just on transcribed strings.
Despite the inherent ambiguity in input streams, we are able to extract error
information using four testable assumptions. Our taxonomy of ten input stream
error types provides a means of describing character-level errors in a well de-
fined fashion at a fine-grained level. The current measures, the algorithms that
automate them, and the software that implements them can aid designers and
evaluators of text entry methods by providing more character-level error data.
In short, we have brought the unconstrained experimental paradigm one step
closer to having the comprehensive description of text entry behavior eagerly
sought by text entry researchers.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

488 • J. O. Wobbrock and B. A. Myers

ACKNOWLEDGMENTS

The authors thank R.W. Soukoreff for comments on earlier drafts and I.S.
MacKenzie for permission to include MSD-MATRIX and ALIGN.

REFERENCES

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. The MIT

Press. Cambridge, MA.

DAMERAU, F. 1964. A technique for computer detection and correction of spelling errors. Commun.
ACM 7, 171–176.

EVREINOVA, T., EVREINOV, G., AND RAISAMO, R. 2004. Four-Key text entry for physically challenged

people. Adjunct Proceedings of the 8th ERCIM Workshop on User Interfaces for All (UI4ALL’04).
Vienna, Austria (June 28–29).

GENTNER, D. R., GRUDIN, J. T., LAROCHELLE, S., NORMAN, D. A., AND RUMELHART, D. E. 1984. A glossary

of terms including a classification of typing errors. In Cognitive Aspects of Skilled Typewriting,

W. E. Cooper Ed. Springer Verlag, 39–43.

GONG, J. AND TARASEWICH, P. 2005. Alphabetically constrained keypad designs for text entry on

mobile devices. In Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI). Portland, OR (Apr. 2–7). 211–220.

GRUDIN, J. T. 1984. Error patterns in skilled and novice transcription typing. In Cognitive Aspects
of Skilled Typewriting, W. E. Cooper Ed. Springer Verlag, 121–143.

GSM WORLD. 2004. The Netsize Guide. http://www.gsmworld.com.

INGMARSSON, M., DINKA, D., AND ZHAI, S. 2004. TNT—A numeric keypad-based text input method.

In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). Vienna,

Austria (Apr. 24–29). 639–646.

ISOKOSKI, P. AND KAKI, M. 2002. Comparison of two touchpad-based methods for numeric entry. In

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). Minneapolis,

MN (Apr. 20–25). 25–32.

JEFFRIES, R., MILLER, J. R., WHARTON, C., AND UYEDA, K. M. 1991. User interface evaluation in the

real world: A comparison of four techniques. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI). New Orleans, LA (Apr. 27–May 2). 119–124.

KARAT, C.-M., HALVERSON, C., HORN, D., AND KARAT, J. 1999. Patterns of entry and correction in

large vocabulary continuous speech recognition systems. In Proceedings of the ACM Conference
on Human Factors in Computing Systems. Pittsburgh, PA (May 15–20). 568–575.

KARP, R. M., MILLER, R. E., AND ROSENBERG, A. L. 1972. Rapid identification of repeated patterns

in strings, trees and arrays. In Proceedings of the ACM Symposium on Theory of Computing.

Denver, CO (May 1–3). 125–136.

KÖLTRINGER, T. AND GRECHENIG, T. 2004. Comparing the immediate usability of Graffiti 2 and

virtual keyboard. Extended Abstracts of the ACM Conference on Human Factors in Computing
Systems (CHI). Vienna, Austria (Apr. 24–29). 1175–1178.

LANDRAUD, A. M., AVRIL, J.-F., AND CHRETIENNE, P. 1989. An algorithm for finding a common struc-

ture shared by a family of strings. IEEE Trans. Pattern Anal. Mach. Intell. 11, 8, 890–895.

LEVENSHTEIN, V. I. 1965. Binary codes capable of correcting deletions, insertions, and reversals.

Doklady Akademii Nauk SSSR 163, 4, 845–848.

LEWIS, J. R. 1999. Input rates and user preference for three small-screen input methods: Stan-

dard keyboard, predictive keyboard, and handwriting. In Proceedings of the Human Factors and
Ergonomics Society 43rd Annual Meeting. Houston, TX (Sept. 27–Oct. 1). Santa Monica, CA.

425–428.

LEWIS, J. R., LALOMIA, M. J., AND KENNEDY, P. J. 1999. Evaluation of typing key layouts for sty-

lus input. In Proceedings of the Human Factors and Ergonomics Society 43rd Annual Meeting.

Houston, TX (Sept. 27–Oct. 1). Santa Monica, CA. 420–424.

MACKENZIE, I. S. AND ZHANG, S. X. 1997. The immediate usability of Graffiti. In Proceedings of the
Graphics Interface Conference. Kelowna, BC (May 21–23). Toronto, ON. 129–137.

MACKENZIE, I. S. AND ZHANG, S. X. 1999. The design and evaluation of a high-performance soft

keyboard. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI).
Pittsburgh, PA (May 15–20). 25–31.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

Analyzing the Input Stream for Character-Level Errors • 489

MACKENZIE, I. S., ZHANG, S. X., AND SOUKOREFF, R. W. 1999. Text entry using soft keyboards. J.
Behav. Inf. Technol. 18, 4, 235–244.

MACKENZIE, I. S. AND SOUKOREFF, R. W. 2002a. Text entry for mobile computing: Models and

methods, theory and practice. Human-Comput. Interact. 17, 2, 147–198.

MACKENZIE, I. S. AND SOUKOREFF, R. W. 2002b. A character-level error analysis technique for

evaluating text entry methods. In Proceedings of the 2nd Nordic Conference on Human-Computer
Interaction (NordiCHI). Århus, Denmark (Oct. 19–23). 243–246.

MACKENZIE, I. S. AND SOUKOREFF, R. W. 2003. Phrase sets for evaluating text entry techniques.

Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI). Ft.

Lauderdale, FL (Apr. 5–10). 754–755.

MATIAS, E., MACKENZIE, I. S., AND BUXTON, W. 1996. One-Handed touch-typing on a QWERTY

keyboard. Human-Comput. Interact. 11, 1, 1–27.

MORGAN, H. L. 1970. Spelling correction in systems programs. Commun. ACM 13, 2, 90–94.

PALM, INC. 1995. The Graffiti Alphabet. http://www.palm.com/us/products/input/Palm Graffiti.pdf

RODRIGUEZ, N. J., BORGES, J. A., AND ACOSTA, N. 2005. A study of text and numeric input modalities

on PDAs. In Proceedings of the 11th International Conference on Human-Computer Interaction
(HCI Int’l). Las Vegas, NV (July 22–27).

SANKOFF, D. AND KRUSKAL, J. B. 1983. Time Warps, String Edits and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading, MA.

SEARS, A. AND ZHA, Y. 2003. Data entry for mobile devices using soft keyboards: Understanding

the effects of keyboard size and user tasks. Int. J. Human-Comput. Interact. 16, 2, 163–184.

SOUKOREFF, R. W. AND MACKENZIE, I. S. 2001. Measuring errors in text entry tasks: An application

of the Levenshtein string distance statistic. In Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems (CHI). Seattle, WA (Mar. 31–Apr. 5). 319–320.

SOUKOREFF, R. W. AND MACKENZIE, I. S. 2003. Metrics for text entry research: An evaluation of

MSD and KSPC, and a new unified error metric. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI). Ft. Lauderdale, FL (Apr. 5–10). 113–120.

SOUKOREFF, R. W. AND MACKENZIE, I. S. 2004. Recent developments in text-entry error rate mea-

surement. In Extended Abstracts of the ACM Conference on Human Factors in Computing Systems
(CHI). Vienna, Austria (Apr. 24–29). 1425–1428.

VENOLIA, D. AND NEIBERG, F. 1994. T-Cube: A fast, self-disclosing pen-based alphabet. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems (CHI ’94). Boston, MA

(Apr. 24–28). 265–270.

WAGNER, R. A. AND FISCHER, M. J. 1974. The string-to-string correction problem. J. ACM 21, 1,

168–173.

WATERMAN, M. S. 1984. General methods of sequence comparison. Bull. Math. Biol. 46, 4, 473–

500.

WOBBROCK, J. O., MYERS, B. A., AND KEMBEL, J. A. 2003. EdgeWrite: A stylus-based text entry

method designed for high accuracy and stability of motion. In Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST). Vancouver, BC (Nov. 2–5). 61–70.

WOBBROCK, J. O., MYERS, B. A., AND AUNG, H. H. 2004. Writing with a joystick: A comparison of date

stamp, selection keyboard, and EdgeWrite. In Proceedings of the Graphics Interface Conference.

London, ON (May 17–19). 1–8.

WOBBROCK, J. O., MYERS, B. A., AND CHAU, D. H. 2006. In-stroke word completion. In Proceedings of
the ACM Symposium on User Interface Software and Technology (UIST). Montreux, Switzerland

(Oct. 15–18). 333–336.

ZHAI, S. AND KRISTENSSON, P. 2003. Shorthand writing on stylus keyboard. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI). Ft. Lauderdale, FL (Apr. 5–10).

97–104.

ZHAI, S., KRISTENSSON, P., AND SMITH, B. A. 2005. In search of effective text input interfaces for off

the desktop computing. Interact. Comput. 17, 3, 229–250.

Received January 2005; revised December 2005; accepted April 2006

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4, December 2006.

