
Guidance through Active Concerns
Barthélémy Dagenais

*

School of Computer Science
McGill University

Montreal, QC, Canada

barthelemy.dagenais@mail.mcgill.ca

Harold Ossher
IBM T. J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10590

ossher@us.ibm.com

ABSTRACT

Producing usable documentation has always been a tedious task,
and even communicating important knowledge about a system
among collaborators is difficult. This paper describes an ap-
proach to creating documentation in the form of guides, which
encapsulate passive information about important tasks along with
active steps to be followed. The approach is concern-based, and
introduces active steps into traditionally passive concerns. A de-
veloper can begin by creating a concern that identifies elements of
importance in the context of a task, which, we believe, is easier
and more natural than trying to formulate a process up front. S/he
can then easily create a guide to the task based on this concern,
and export it. Other developers can follow the guide, and, as they
do so, their results are recorded as examples for future reference.
As an early step towards validation, we created a guide for the
complex task of creating an Eclipse editor.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques;

D.2.6 [Software Engineering]: Programming Environments;

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement;

General Terms

Documentation, Design, Experimentation, Human Factors.

Keywords

User guidance, Separation of concerns, concern modeling, aspect-
oriented software development

1. INTRODUCTION
Producing usable documentation has always been a tedious task
and something developers have limited success with. Consider the
following not-so-fictional scenario.

Being the brightest developer on your team, your boss asks you to
explore the possibility of leveraging the new CoolGizmoUltra
feature in Eclipse [4] in order to build multiple instances of Su-

perHotWidgets. That would be a wonderful assignment if it were
not for the fine print in your contract that you did not read: you’ll
need to document your findings in order to teach your colleagues
and future users how to create Widgets from Gizmos.

You open the CoolGizmoUltra feature in Eclipse, and begin your
journey. As you look at the scarce documentation, you find that
you need to make your project depend on a subset of the plug-ins
offered by this feature and to create an extension from a particular
extension point. Examining the extension point schema reveals
that you have to implement the CoolGizmo java interface. After
some reading, you find some Javadoc that gives an example of
how to code the class required by the extension.

As you continue your journey, you want to build a GUI for your
example Widget, but do not quite remember how to create a fully-
functional TreeTable. You open your web browser and navigate to
an SWT web tutorial to refresh your memory. After some work,
you’re ready to test and run your prototype. Unfortunately, even if
you followed all the documentation you found, the application
fails at runtime, throwing a UndocumentedAnnoyingException.

Taking a deep breath and clearing your mind, you load the sup-
plied implementation example into your Eclipse development
environment and launch the debugger. At some point in the exe-
cution (after following 1000 steps and an anger management
problem), you realize that the registerYourGizmo() method is
called and that the UndocumentedAnnoyingException would be
thrown some time later if you forgot to code the call . You make a
mental note of this and continue your exploration of the example,
wary of other little undocumented quirks like this.

After working an entire day on this task, you try to assemble all
your notes and newly-acquired knowledge in some form of read-
able and understandable documentation for your colleagues. You
begin to struggle to make a usable process, or recipe. Which step
should you start with? How do you emphasize the important and
useful parts of the design? Where should you put references to
important information? They might be useful for some developers,
but you cannot separate two steps with a page full of references!
As time goes on, you also find yourself constantly switching be-
tween your IDE and your guide, crossing your fingers that you did
not forget something important in the process. Worse, two days
later, just before submitting the documentation, you realize that
the CoolGizmoUltra feature, in active development, just changed
and you need to update the guide.

Such situations often arise. This one might be seen as fictional
only because developers are often confronted with even more
complex scenarios! Even with our powerful development tools
and environments, such as Eclipse, developers are not well
equipped to explore complex systems or—the focus of this pa-
per—to communicate their newly-acquired knowledge to their

*
This research was performed during an internship at the IBM T. J. Watson Re-

search Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

colleagues and users. Moreover, current tools do not adequately
leverage the information foraged by developers to actively support
future users in using, modifying or extending their software arti-
facts. In this paper, we present a toolset, tightly integrated with
the Eclipse platform, that addresses these problems.

2. RELATED WORK
There are currently existing tools that focus on helping developers
to create usable documentation for users. One of these tools is the
cheat sheet mechanism [3] in Eclipse. A cheat sheet is a form of
tutorial that teaches the user how to interact with the user interface
in order to accomplish a certain task. For example, there is a cheat
sheet explaining how to use the Eclipse environment to check out
a project from CVS. Cheat sheets can also include actions, such as
a hyperlink that opens a dialog or launches a wizard. The main
problem with cheat sheets is that they are cumbersome to create:
you must write an XML file describing the tutorial and a java
class for each action.

DocWizards [2] is another tool that teaches and guides the user in
his interaction with the Eclipse user interface. Its main advantage
over cheat sheets is the way a tutorial is created: DocWizards
records your interactions with the UI, enabling other users to later
replay the scenario to accomplish a similar task. It also allows
some editing and generalization after capture.

Those two tools are best suited to teaching and helping to perform
UI interactions, but could be extended to guide the user in modi-
fying software artifacts, with some important limitations. Fur-
thermore, these tools are what we call process oriented since the
author needs to think in terms of process when using them: the
steps the user has to perform as opposed to the artifacts that are
important in the software.

Finally, there are tools such as ConcernMapper [8][1] and JetEye
[5] that help developers in their exploration. While the former is
focused on gathering and organizing Java elements such as meth-
ods and fields, the latter mainly deals with web elements such as
hyperlinks and images. Those tools only deal with one kind of
artifacts offer limited communication capability and do not pro-
vide any support for defining processes or guides.

3. SOLUTION

3.1 An active concern approach
We see the problems of exploring a system, communicating the
findings and creating a process or a guide from these results as
highly related. Furthermore, we strongly believe that information
contained in the findings can be leveraged to provide interactive
support to a user following a guide created from those findings.

In section 2, we presented some existing tools that were mainly
process oriented or that focused only on helping developers to
explore complex systems. We argue that it is quicker and easier to
create usable documentation when thinking in terms of related
artifacts rather than process. In other words, it is more natural for
a developer to point out the important artifacts in a system than to
think about the steps required to modify it.

Concerns [9] seem to correctly capture the intent of this approach,
where a developer assembles elements of different types that are
of interest in a particular context. More explicitly, we see the ex-
ploration findings as the basis for a process or a guide. The addi-
tion of actions to concerns, moving from sets of elements to

guides, is a key contribution of this work. We also use concerns to
record and relate the elements produced when following guides.

3.2 The toolset
Our toolset is tightly integrated with Eclipse, especially the Java
Development Toolkit. It supports the user in exploring a system,
creating a guide to use/modify/extend the system, and following a
guide.

The toolset is composed of four views and an editor, partially
shown in Figure 1. The Concern Explorer view is used to repre-
sent the different concerns present in a user workspace. A user can
create different types of concerns in this view and interact with
them by adding, removing or restructuring references to elements.
From this view, a user can activate a concern to indicate that s/he
intends to work primarily in the associated area of interest. S/he
can still manipulate other concerns, but some operations are re-
stricted to the active concern.

The Relationship view shows the relationships between the active
concern and other concerns. For example, if the user is currently
following a guide, this view will show the existence of a relation-
ship between the guide and the result being produced. The user
can navigate among concerns to by double-clicking on a concern.
This activates the new concern and refreshes the relationship view
to present the new relationships.

The References view shows information about the elements con-
tained in a concern. The user can link this view with other views
or simply drop or paste a concern into it to see its content.

The Guide Editor is a form-based editor used to create a guide. It
allows the user to create steps from important artifacts, and to add
related references to each step. The user can also add comments
on each step or reference. Table 1 shows the supported references
and steps. New types of references or steps can easily be added by
creating an extension and providing a simple adapter.

The Guide Result view is displayed when a user wants to follow a
guide in order to prodcuce a result, usually an extension or modi-
fication of the system. This view contains every step the user has
to perform with a description and references for each step. It
launches appropriate interactive support tools for each step.

3.3 Original scenario revisited

3.3.1 Exploring
Let’s now revisit the scenario presented in the introduction, but
this time we generously give to our bright developer an exclusive
and unlimited license to our toolset.

When the developer receives his assignment, he creates in the
Concern Explorer a new concern that he calls “New Gizmos”. He
begins by looking at the Eclipse Help Documentation. As he reads
it, he copies and pastes the relevant links into his concerns. As he
discovers the dependencies, he adds references to the required
plug-ins and extension point.

Then he navigates the source code and drags and drops important
classes and interfaces that he will need to use or extend in the
concern. He also adds some comments to the references in order
to clarify their role.

When he finds a suitable web tutorial, he copies and pastes the
link into his concern. The reference title is retrieved from the hy-
perlink and the developer adds some comments to explain how
this tutorial can be useful.

During the debugging of the implementation example, the devel-
oper drags and drops the important method into his concern. He
also reorders the reference to put the newly-added method just
after the interface reference.

When the developer has finished, he exports his concern and
sends it to his colleagues. They will then be able to quickly under-
stand the CoolGizmoUltra feature and will be somehow guided by
the order of the references and their comments. Figure 1 shows a
quick overview of his findings in the References view.

3.3.2 Creating a guide
Some time later, the valorous developer wants to start document-
ing his findings in a way that will help his colleagues and other
users creating widgets from gizmos. He starts by opening his
“New Gizmos” concern. From now on, he mainly has to decide
whether a reference represents a step to follow or something that
will help a user in performing a step.

He begins by creating a new guide in the Concern Explorer that
he names “Creating a Widget”. The Guide Editor is opened. Then,
he selects the plug-in dependency reference from his first concern
and promotes it to a hot reference by selecting the corresponding
option in the context menu. A hot reference refers to an artifact on
which a developer will work when following a step of the guide.
The guide editor then asks the developer if he wants to create a
step from that reference. The developer agrees and a new step,
“Add this plug-in dependency”, is created in the guide. He moves
on and does the same for the classes, the interfaces and the exten-
sion point present in his first concern. Each reference creates an
appropriate step such as “Create an extension from extension
point X”, “Extend class Y” and “Implement interface Z”.

When the developer encounters references (such as a web page, a
JUnit test or an Eclipse help page) that might be helpful to other
users but that do not represent a step, he simply drags and drops
or copies and pastes those references into the Step References
section of the appropriate step in the Guide Editor. For each step
and reference, the developer can enter some comments in the de-
scription text box.

If the developer finds other elements that are important but were
not part of his original concern, he can simply select them in
Eclipse (e.g., in the Package Explorer) and promote them to hot

references to create steps. He can also drag and drop (or copy and
paste) any other elements into the Step References section.

Alternatively, the user can create a step by pressing the “New”
button in the Guide editor. Every step that can be created from
selecting a hot reference can also be created this way; sometimes
it is quicker to use one of the available wizards to create such
steps. Moreover, some steps cannot be created from hot refer-
ences. For example, the “Create a new Plug-in Project” step can
only be created using the “New” button: it does not make sense to
select a particular plug-in project and create this kind of step from
it.

Once the guide is finished, the developer can export it, like his
first concern, and distribute it to his colleagues. The resulting
guide is shown in Figure 1.

3.3.3 Following a guide
A user is now ready to create a widget from the gizmos. He im-
ports the guide and any accompanying examples.

In the Concern Explorer, the user right-clicks on the guide and
selects the context menu option “Create result”. He decides to
name his result, “SuperWidget”. This action creates, as its name
implies, a result and opens the Guide Result view.

In this view, the user can see all the steps that he needs to per-
form, with their descriptions. When he selects a step, he can also
see the associated references with their comments. Double-
clicking on a reference will open it in the Eclipse environment
(e.g.,:a Java class in the Java editor) or in a web browser.

For each step, the user has three choices: he can skip the step, he
can perform the step, or he can select the output for the step. Let’s
take the example of the step “Extend class XYZ”. If the user
chooses to perform this step by double-clicking on it, a “New
class” wizard is launched, initialized with the step information:
the dialog title is the step title, the dialog description is the step
description and the class XYZ is added to the “Superclass” field.
On the other hand, it is perfectly plausible that the user has al-
ready created a class that extends XYZ in another project. He can
then select this class as the output for this step.

As the user progresses, the output of each step is recorded. This
allows future users to get relevant examples for each step. For
example, when a user performs the step “Extend class XYZ” in
future, he will be able to see in the Guide Result view that this
step was performed when creating “SuperWidget,” and that a
particular class was created as a result. By double-clicking on the
example, the class will open in a Java editor.

Reference type Step type Behavior

- Create a java project New Java Project Wizard

- Create a plug-in project New Plug-in Project Wizard

- Generic step By hand

Class or interface Extend/Implement class/interface New Class Wizard

Method Call method By hand

Plug-in Add plug-in import Add plug-in import in plug-in manifest

Extension point Create extension Create extension in plug-in manifest

Resources/Other java elements Generic hot reference step By hand

Eclipse help page / Web pages Generic hot reference step By hand

Table 1. Supported References and Steps

4. DISCUSSION
In the last section, we demonstrated how a developer could use
our toolset to explore a system and create usable documentation
that actively guides other users in using, modifying or extending
software artifacts. This toolset is greatly inspired by concerns and
therefore allows the user to easily select important and related
elements according to a particular focus.

4.1 Seamless integration with Eclipse
Our toolset is tightly integrated with Eclipse: in fact, some people
who assisted with our demos could not differentiate functions
contributed by our toolset from those provided by Eclipse..

The integration with the development environment is essential to
bring concerns to a new level, i.e., active concerns. It is by infer-
ring the kind of support that the user will need for a step involving
a particular type of reference and selecting the appropriate mecha-
nism in the environment that concerns can be truly active. This
interaction also works the other way: the existing support mecha-
nisms are enhanced by the information contained in a concern.
For example, the new class wizard was initialized with the refer-
ence information.

Another benefit of this integration is that the user, as the guide
author or as the guide follower, does not constantly have to switch
between the documentation and his development environment.
Even the references that help him understand new concepts or the
task at hand are mostly integrated with his environment.

4.2 Unobtrusive
Developers have access to a phenomenal variety of tools, but only
use a few, for numerous reasons (e.g., the limited size of short

term memory). Any new tool is in direct competition with hun-
dreds of other tools and must provide great value in order to be
considered. This barrier of entry can be lowered by presenting
high usability and having a low learning curve.

We argue that our toolset fulfills these requirements by introduc-
ing only a few new concepts and leveraging existing tools and
techniques, such as drag and drop, copy and paste and existing
dialogs and wizards, with which the user is already familiar. There
are also different ways of achieving the same goal to suits the
different tastes and habits of developers. For example, it is possi-
ble to create a step through a wizard or simply by selecting, drop-
ping or pasting an element. So, even if a user has forgotten how to
create a step or add a reference, it will be easy to deduce how to
do it.

The toolset does not impose any process or way of thinking or
working. It is resilient to errors and changes, in that it allows the
user to easily reorganize references and concerns. The user is free
to start with general concerns and can promote them to a guide if
it suits his needs. Of course, he can also start right away with
building a guide.

Another interesting feature is the automatic updating of results
when a guide is changed. If the user adds, modifies or deletes
steps in a guide, the results are modified accordingly when they
are loaded: new steps are added and deleted steps in the guide are
moved to the end of the step list in the results (they might contain
important contributions so they are not automatically deleted).
This enables the guide author to modify the guide without break-
ing existing results or examples.

Because this toolset is unobtrusive, it silently helps the developer
in structuring his thoughts. At the end of this structuring task, the

Figure 1. A quick glance at the various views and editors

toolset not only allows him to produce a structured guide, but it
also provides interactive support and a basis for further software
development activities.

4.3 Agile Documentation
Agile practitioners often stress the fact that documentation should
be kept to a minimum in a project [1]. Indeed, good and useful
documentation is time-consuming to write, hard to maintain and
usually does not provide great added value to the most important
artifact: the working software.

Practices such as pair-programming and test-driven development
(or softer practices derived from these) tend to produce clearer
code and comprehensive test suits that are self-documenting. It is
often argued that clear code and working examples, including
tests, are often the best documentation a developer can get. For
example, a study on the relevance of different types of documen-
tation resulted in eight recommendations, the first four of them
being related to source code examples [7]. Moreover, those are
the first artifacts that get updated, so they always reflect the most
current state of the working software. Our toolset enables devel-
opers to identify these important elements easily, quantify their
relevance by ordering them, provide some comments about them,
and communicate the resulting concern.

For example, JUnit test references for each step can easily be re-
corded. The number of tests in the system can be daunting, and
organization helps the developer to focus on the relevant ones.
The tests will likely be updated as the software evolves, but since
the concern contains only references, navigation will lead to the
latest version. Updating concerns and guides in the face of struc-
tural changes to the software remains an area for future work.

Documentation is often required for people external to the agile
team and is also essential for distributed teams such as in open
source projects. For example, a developer can be in charge of
some part of the architecture and as soon as it is usable, he might
want other contributors to start building on it. Again, documenta-
tion must be light, because the system is constantly evolving and
it is better to spend most of the developers’ time writing tests and
features than updating the documentation.

As a guide is being used by developers, relevant implementation
examples are recorded and automatically contribute to the docu-
mentation. Hence, this is really in the spirit of agile documenta-
tion: documentation that is as near as possible to the source code,
light, quick to create, and cheap (mostly free) to maintain.

5. CONCLUSION AND FUTURE WORK
To quote Scott Ambler on agile documentation, “Software devel-
opers have the knowledge, technical writer have the skill” [1].
Since most developers can’t afford to have their own technical
writers producing the documentation in parallel with their work,
they must often rely only on their knowledge.

Our toolset leverages that knowledge and makes it easy to create
usable, integrated and interactive documentation. This is mainly
done by taking advantage of concerns, since they conceptually
represent the situation at hand.

Concerns are usually passive in the sense that they are representa-
tions that do not add any behavior to their environment (though
valuable activities can be performed on or using them, such as
relationships discovery or user interface filtering [6]. With our

tool, we bring concerns to a new level by incorporating active
steps that guide developers in their tasks.

As an early step towards validation, we created a guide for a com-
plex task: creating a text editor in Eclipse. One of the authors had
already written a complete tutorial on the matter using Microsoft
Word and could easily compare the effectiveness of both ap-
proaches. The biggest advantages of our toolset were the natural
way of adding references for each step and the ease with which an
implementation example was created from the guide. In this case,
the example was the Java editor in the Eclipse SDK examples
bundle, and it also allowed the author to validate the guide.

We intend to perform usability tests in future to validate and im-
prove the toolset. We also want to investigate the possibility of
creating external documentation such as XML, HTML or Micro-
soft Word documents from guides, for uses who prefer to read
traditional documentation. Finally, we also want to explore the
integration with repository or versioning systems. This integration
could enable guide authors and users to deal more effectively with
changes to concerns, guides and the underlying software.

6. ACKNOWLEDGMENTS
We would like to thank Steve Abrams for several insightful dis-
cussions.

7. REFERENCES
[1] Ambler, S.W., “Agile Documentation: Strategies for Agile

Software Development.” http://www.agilemodeling.com/
essays/agileDocumentation.htm

[2] Bergman, L., Castelli V., Lau T., Oblinger D. “DocWizards:
a system for authoring follow-me documentation wizards.” In
Proceedings of the 18th annual ACM symposium on User in-

terface software and technology, pages 191-200, 2005.

[3] “Building cheat sheets in Eclipse V3.2.” http://www-
128.ibm.com/developerworks/library/os-ecl-cheatsheets/

[4] Eclipse. http://www.eclipse.org/

[5] Jeteye. http://www.jeteye.com/

[6] Kersten, M. and Murphy G. C. Mylar: a degree-of-interest
model for IDEs. In Proceedings of the 4th Conference on As-

pect-Oriented Software Development, pages 159-168, 2005.

[7] Nykaza, J., Messinger R., Boehme, F. Norman C. L., Mace
M., Gordon M. “What programmers really want: results of a
needs assessment for SDK documentation.” In Proceedings

of the 20th annual international conference on Computer

documentation. Pages 133-141, 2002.

[8] Robillard, M. and Weigand-Warr, F. ConcernMapper: Sim-
ple View-Based Separation of Scattered Concerns. In Pro-

ceedings of the Eclipse Technology Exchange at OOPSLA,
2005.

[9] Tarr, P., Ossher, H., Harrison, W. and Sutton, Jr., S. M., “N
degrees of separation: Multi-dimensional separation of con-
cerns.” In Proceedings of the 21st International Conference

on Software Engineering (ICSE '99), 107–119, IEEE, May
1999.

