
ar
X

iv
:0

80
1.

39
24

v1
 [

cs
.C

R
]

 2
5

Ja
n

20
08

Increased security through open source ∗

Jaap-Henk Hoepman, Bart Jacobs
Security of Systems (SoS) group

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
{jhh,bart}@cs.ru.nl

August 23, 2021

1 Introduction

The last few years have shown a worldwide rise in the attention for, and
actual use of, open source software (OSS), most notably of the operating
system Linux and various applications running on top of it. Various major
companies and governments are adopting OSS. As a result, there are many
publications concerning its advantages and disadvantages. The ongoing dis-
cussions cover a wide range of topics, such as Windows versus Linux, cost
issues, intellectual property rights, development methods, etc. Here we wish
to focus on security issues surrounding OSS. It has become a reasonably
well-established conviction within the computer security community that
publishing designs and protocols contributes to the security of systems built
on them. But should one go all the way and publish source code as well?
That is the fundamental question that we wish to address in this paper.

The following analogies may help to introduce the issues and controver-
sies surrounding the open source debate.

• Would you, while travelling far from home, take medicines of an un-
known brand given to you by a self-proclaimed “doctor”, without doc-
umentation, and hence without (independent) assurance about the
nature and proper working of the ingredients?

• Who would you trust most? A locksmith who keeps the working of
his locks secret, so that thieves cannot exploit this knowledge? Or a
locksmith who publishes the workings of his locks, so that everyone (in-
cluding thieves) can judge how good/bad they are (so you exclusively
rely on the complexity of the keys for protection)?

∗Id: oss-acm.tex,v 1.16 2005/04/26 17:44:29 jhh Exp

1

http://arxiv.org/abs/0801.3924v1

In the remainder of this paper we will discuss the impact of open source
on both the security and transparency of a software system. We focus on the
more technical aspects of this issue (and refer to Glass [4] for a discussion
of the economical perspective of open source), combining and extending
arguments developed over the years [12]. We stress that our discussion of
the problem only applies to software for general purpose computing systems.
For embedded systems, where the software usually cannot easily be patched
or upgraded, different considerations may apply.

1.1 Security through obscurity: design vs. implementation

Through the centuries, secrecy was the predominant methodology surround-
ing the design of any secure system. Security of military communication sys-
tems, for example, was mostly based on the fact that only few people knew
how it worked, and not on any inherently secure method of communication.
Ciphers in those days were very insecure.

In 1883, Auguste Kerckhoffs [5] extensively argued that any secure mil-
itary system ”... must not require secrecy and can be stolen by the enemy
without causing trouble”. In the academic security community Kerckhoffs’
Principle is widely supported: in the design of a system, security through

obscurity is considered bad practice, for many reasons similar to the ones we
will discuss later on. This point is starting to get across to industry as well,
witnessed by the fact that, for instance, the security of the third genera-
tion of cellular telephone networks (UMTS) is based on open and published
standards.

In Kerckhoffs’ days there was hardly any difference between the design of
a system and its actual implementation. These days, however, the difference
is huge: system designs are already very complex, and their implementation
is hard to get completely right. The question then arises whether Kerckhoffs’
Principle applies only to the design of a system, or also to its implementation.
In other words, should secure systems also be open source, or not?

There is no agreement on the answer to this question even in the aca-
demic community [1]. According to us, the answer is: ”absolutely!”. In the
remainder of this paper we will argue why.

1.2 Security, risk and exposure

When discussing whether open source makes systems more secure, we have
to be precise about what we mean by that. In fact, for the purpose of
this discussion we need to distinguish between the security of a system, the
exposure of that system, and the risk associated with using that system. We
define these terms next.

The ultimate decisive factor that determines whether a system is “secure
enough” is the risk associated with using that system. This risk is defined as

2

a combination of the likelihood of a successful attack on a system together
with the damage to the assets resulting from it.

The exposure of a system completely ignores the damage that is incurred
by a successful attack, and is defined as just the likelihood of a successful
attack. This depends on several factors, like the number and severity of vul-
nerabilities in the system, but also whether these vulnerabilities are known
to attackers, how hard it is to exploit such a vulnerability, and whether the
system is a high-profile target or not.

Finally, we consider the security of a system to be an objective measure
of the number of its vulnerabilities and their severity (i.e., the privileges
obtained by exploiting the vulnerability).

To summarise, exposure combines security with the likelihood of attack,
and risk combines exposure with the damage sustained by the attack. We
note that in other papers on this and similar topics, security has been used
to mean either security proper, exposure or risk as defined above. With
these definitions in place, we see that opening the source clearly does not
change the security of a system (simply because it doesn’t introduce new
bugs), while the exposure is likely to increase in the short term (because it
makes the existing bugs more visible). The question is what happens to the
security and the exposure of an open source system in the long run.

1.3 Open vs. closed source

The increased attention paid to open source in the media and by society at
large has made open source an almost catch-all phrase. Here, we use it in
its original, rather specific, meaning. Open source software is software for
which the corresponding source (and all relevant documentation) is available
for inspection, use, modification and redistribution by the user1. We do
not distinguish between any kind of development methodology (e.g., the
Cathedral or the Bazaar[10]). Neither do we care about the pricing model
(freeware, shareware, etc.). We do assume however that users (in principle)
are allowed and able to rebuild the system from the (modified) sources, and
that they have access to the proper tools to do so.

In some cases, allowing the user to redistribute the modified sources
(in full, or through patches) is also necessary (e.g., Free Software and the
GNU Public License2). Most of our arguments also hold for source available

software, where the license does not allow redistribution of the (modified)
source.

1See http://www.opensource.org/.
2http://www.gnu.org/copyleft/gpl.html

3

http://www.opensource.org/
http://www.gnu.org/copyleft/gpl.html

2 Open source necessary for security

We believe that using open source software is a necessary requirement to
build systems that are more secure. Our main argument is that opening the
source allows independent assessment of the exposure of a system and the
risk associated with using the system, makes patching bugs easier and more
likely, and forces software developers to spend more effort on the quality of
their code. The remainder of this paper is devoted to arguing our case in
detail.

We will first review arguments in favour of keeping the source closed,
and then discuss reasons why open source does (in the long run) increase
security. As noted in the introduction, there is a distinction between making
the design of a system public and also making its implementation public. We
focus on the latter case, but note that most (but not all) of these arguments
also apply to the question whether the design should be open or not.

2.1 Keep the source closed: arguments against open source

First of all, keeping the source closed prevents the attacker from having
easy access to information that may be helpful to successfully launch an
attack [2]. Opening the source gives the attacker a wealth of information to
search for vulnerabilities and/or bugs, like potential buffer overflows, and
thus increases the exposure of the system.

Also, there is a huge difference between openness of the design and open-
ness of the source. Openness of the design may reveal logical errors in the
security in the worst case. With proper review, these errors can and usu-
ally are found. For source code, this is not, or at least not completely, the
case. In the foreseeable future, source code will continue to contain bugs,
no matter how hard we look, test or verify.

Moreover, opening the source gives unfair advantage to the attacker.
The attacker needs to find but one vulnerability to successfully attack the
system. The defender needs to patch all vulnerabilities to protect himself
completely. This is considered an uneven battle.

Fourth, there is no direct guarantee that the binary object code running
in the computer corresponds to the source code that has been evaluated [11].
People unable or unwilling to compile from source must rely on a trusted
third party to vouch for this3.

Also, making the source public does not guarantee that any qualified
person will actually look at the source and evaluate (let alone improve) it.
There are many open source projects that, after a brief flurry of activity, are
only marginally maintained and quickly sink into oblivion. The attackers,
on the other hand, most surely will scrutinise the source.

3Or could use tools like systrace to confine untrusted object code, and to enforce a
security policy nevertheless [9].

4

In bazaar style open source projects, back-doors may be sneaked into
the source by hackers posing as trustful contributors. That this is not an
idle threat became clear in November 2003, when Linux kernel developers
discovered a back-door in a harmlessly looking error-checking feature added
to a system call4.

Finally, and more generally, the quality of a piece of software (and
patches to it) depend on the skills of the programmers working on it [8].
For many open source projects there is no a priori selection of program-
mers based on their skill. Usually any help is appreciated, and there is only
rudimentary quality control.

2.2 Closed is not so closed: arguments against closed source

Let us first review the arguments put forward against open source in the
previous section. The last two arguments against open source are actually
aimed at the development methodology instead. The systems developed
in that manner would also be more insecure if they were closed source. We
assume a minimal standard of proper coding practices, project management,
change control and quality control. In fact, one of our main points is that by
opening up the source, software projects cannot get away with poor project
management and poor quality control so easily.

Now turning to the first argument against closed source, we note that
keeping the source closed for a long time appears to be hard [7]. Last year,
source code for certain types of voting machines manufactured by Diebold
were distributed on the Internet, and subsequent research on that source
code revealed horrible programming errors and security vulnerabilities [6].
Recently even parts of the source to Microsoft Windows NT became public.
Within days the first exploit based on this source code was published. The
Diebold case also revealed how bad coding standards of current closed source
systems can be, and how they lead to awfully insecure systems.

Even if the source remains closed, vulnerabilities of such closed source
systems will eventually be found and become known to a larger public after
a while. Vulnerabilities in existing closed source software are announced
on a daily basis. In fact, tools like debuggers and disassemblers allow at-
tackers to find vulnerabilities in applications without access to the source
relatively quickly. Moreover, not all vulnerabilities that are discovered will
be published. Their discoverers may keep them secret to avoid patches for
them, allowing use of the vulnerability to exploit systems for a prolonged
period of time. We see that while the perceived exposure of a closed source
system may appear to be low, the actual exposure eventually becomes much
higher (approaching the exposure that would exist initially if the system
were completely open source).

4http://www.securityfocus.com/news/7388.

5

http://www.securityfocus.com/news/7388

Even worse, only the producer of closed source software can release
patches for any vulnerabilities that are found. Many of those patches are
released weeks or months after the vulnerability is discovered, if at all. The
latter case occurs for instance with legacy software for which the company
producing it no longer exists (or refuses to give support for it after a while,
e.g., Microsoft Windows NT Server 4.0 or Netscape Calendar). The conse-
quence is that systems stay exposed longer, increasing the risk of using that
system.

We see that keeping the source closed actually hurts the defender much
more than the attacker: while a determined attacker can still discover weak-
nesses easily, the defender is prevented from patching them.

Finally, closed source software severely limits the user of such software
to evaluate its security for or by himself. The situation improves if at least
the design of the system is open. If the system is evaluated by an inde-
pendent party according to some generally accepted methodology (like the
Common Criteria), this gives the user another basis for trusting the security
of the software. However such evaluations are rare (because they are expen-
sive), and usually limited to certain restricted usage scenarios or parameter
settings that may not correspond to the actual operating environment of a
particular user. Moreover, such evaluations apply only to a specific version
of the software: new versions need to be reevaluated.

2.3 The way forward: arguments supporting open source

We see that the arguments against ”security through obscurity” generally
apply to the implementation of a system as well. It is a widely held design
principle that the security of a system should only depend on the secrecy
of the (user-specific) keys, on the ground that all other information of the
system is shared by many other people and therefore will become public as
a matter of course.

Moreover, open source enables users to evaluate the security by them-
selves, or to hire a party of their choice to evaluate the security for them.
Open source even enables several different and independent teams of peo-
ple to evaluate the security of the system, removing the dependence on a
single party to decide in favour or against a certain system. All this does
not decrease the security or exposure of the system. However, it does help
to asses the real exposure of the system, closing the gap between perceived
and actual exposure.

Open source enables users to find bugs, and to patch these bugs them-
selves. There is also a potential network effect: if users submit their patches
to a central repository, all other users can update their system to include
this patch, increasing their security too. Given that different users are likely
to find different bugs, many bugs are potentially removed. This leads to
more and faster patches, and hence more secure code (this corresponds to

6

”Linus’s Law”: ”Given enough eyeballs, bugs are shallow” [10]). Evidence
suggests that patches for open source software are released almost twice as
fast as for closed source software, thus halving the vulnerability period [12].

If a user is unable to patch a bug himself, open source at least enables
him to communicate about bugs with developers more efficiently (because
both can use the same frame of reference — i.e., the source code — for
communication [10]).

Also, open source software enables users to add extra security measures.
Several tools exist to enhance the security of existing systems, provided the
source is available [3]. These tools do not rely on static checking of the code.
Instead, they add generic runtime checks to the code to detect e.g., buffer
overflows or stack frame corruptions. Moreover, open source software allows
the user to limit the complexity of the system (and thereby increasing its
security) by removing unneeded parts.

Finally, and importantly, open source forces developer communities to
be more careful, and to use the best possible tools to secure their systems.
It also forces them to use clean coding styles (”sloppy” code is untrustwor-
thy), and to put more effort into quality control. Otherwise, companies and
individual programmers alike will loose respect and credibility. As a side ef-
fect, this will stimulate research and development in new, improved tools for
software development, testing and evaluation and perhaps even verification.

3 Conclusions

We conclude that opening the source of existing systems will at first increase
their exposure, due to the fact that more information about vulnerabilities
becomes available to attackers. However, this exposure (and the associated
risk of using the system) can now be determined publicly. With closed
source systems the perceived exposure may appear to be low, while the
actual exposure (due to increased knowledge of the attackers) may be much
higher.

Moreover, because the source is open, all interested parties can assess the
exposure of a system, hunt for bugs and issue patches for them, or otherwise
increase the security of the system. Security fixes will quickly be available,
so that the period of increased exposure is short.

In the long run, openness of the source will increase its security. Sloppy
code is visible to everyone, and questions even the overall quality of it.
Any available tools to validate the source will be used more often by the
producers. If not, the users will do it themselves, afterwards. New, much
more advanced, tools will be developed to improve the security of software
even further. Open source allows users to make a much more informed
choice about the security of a system, based on their own or on independent
judgement.

7

It is our conviction that all these benefits outweigh the disadvantages of
a short period of increased exposure.

References

[1] Ross Anderson. Security in open versus closed systems — the dance of
Boltzmann, Coase and Moore. In Conference on Open Source Software

Economics, Toulouse (France), June 20–21 2002.

[2] Kenneth Brown. Opening the open source debate. Technical report,
Alexis de Tocqueville Institution, June 2002.

[3] Crispin Cowan. Software security for open-source systems. IEEE J.

Security & Privacy, 1(1):38–45, 2003.

[4] Robert L. Glass. A look at the economics of open source. Comm. ACM,
47(2):25–27, February 2004.

[5] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences

militaires, IX, 1983. pp. 5–38, Jan. 1883, and pp. 161–191, Feb. 1883.

[6] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. Analysis
of an electronic voting system. In IEEE Security & Privacy, Berke-
ley/Oakland, CA, USA, May 9–12 2004. IEEE.

[7] Rebecca T. Mercuri and Peter G. Neumann. Inside Risks: Security by
obscurity. Comm. ACM, 46(11):160, December 2003.

[8] Peter G. Neumann. Inside Risks: Information system security redux.
Comm. ACM, 46(10):136, October 2003.

[9] Niels Provos. Improving host security with system call policies. In 12th

USENIX Sec. Symp., Washington D.C., USA, August 2003. USENIX.

[10] Eric S. Raymond. The cathedral and the bazaar, 2000.

[11] Ken Thompson. Reflections on trusting trust. Comm. ACM, 27(8):761–
763, August 1984.

[12] Brian Witten, Carl Landwehr, and Michael Caloyannides. Does open
source improve system security? IEEE Software, pages 57–61, Septem-
ber – October 2001.

8

	Introduction
	Security through obscurity: design vs. implementation
	Security, risk and exposure
	Open vs. closed source

	Open source necessary for security
	Keep the source closed: arguments against open source
	Closed is not so closed: arguments against closed source
	The way forward: arguments supporting open source

	Conclusions

