Ensuring behavioural equivalence in test-driven porting

Mark Hennessy
Computer Science Dept.
National University of Ireland
Maynooth, Co. Kildare, Ireland

<markh@cs.nuim.ie>

Abstract

In this paper we present a test-driven approach
to porting code from one object-oriented lan-
guage to another. We derive an order for
the porting of the code, along with a test-
ing strategy to verify the behaviour of the
ported system at intra and inter-class level.
We utilise the recently defined methodology
for porting C++ applications, eXtreme port-
ing, as a framework for porting. This de-
fines a systematic routine based upon port-
ing and unit-testing classes in turn. We aug-
ment this approach by using Object Relation
Diagrams to define an order for porting that
minimises class stubbing. Since our strategy
is class-oriented and test-driven, we can en-
sure the structural equivalence of the ported
system, along with the limited behavioural
equivalence of each class. In order to extend
this to integration-level equivalence, we exploit
aspect-oriented programming to generate UML
sequence diagrams, and we present a technique
to compare such automatically-generated dia-
grams for equivalence. We demonstrate and
evaluate our approach using a case study that
involves porting an application from C++ to
Java.

1 Introduction

Porting is defined as the meaning-preserving
transformation from one programming lan-
guage to another. When programming lan-
guage features become obsolete or another pro-
gramming paradigm becomes widely used then
it is often desirable to port useful programs
and systems to a new programming language.

James F. Power
Computer Science Dept.
National University of Ireland
Maynooth, Co. Kildare, Ireland

<jpower@cs.nuim.ie>

Some examples of this include the original lex-
ical analyser generator for C, lex, which has
been ported to many other programming lan-
guages including Java, Python and Perl. An-
other example is the unit testing tool for Java,
JUnit [2], which has been ported to C++ as Cp-
pUnit.

The porting of code does not automatically
guarantee that the ported system will work ex-
actly as the original. FErrors may enter the
ported code through a lack of comprehension
of the features of the system to be ported,
through subtle differences between the pro-
gramming languages or through errors commit-
ted by the programmer. The ported system
must be tested rigorously to ensure that errors
have not entered the ported code.

In this paper we describe the porting of the
C++ analysis tool, keystone [6], from C++ to
Java using a testing strategy that ensured the
correctness of the ported code. Our work ex-
tends the eXtreme Porting approach outlined
by Varma et al. for porting C/C++ applications
[30]. This process operates by porting one class
at a time and then unit testing to ensure cor-
rectness.

When porting from one object-oriented lan-
guage to another, we discovered that it is not
altogether obvious as to what order the individ-
ual classes should be ported such that the use
of stubs when unit testing the ported classes
is kept to a minimum. In this paper we de-
fine an order for the porting of classes from
one object-oriented language to another using
an Object Relation Diagram (ORD). Previous
work on ORDs used them to define an order
for inter-class testing, and we extend this to
test-driven porting.

One feature of the keystone system is that it

Accepted for the CASCQAN 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

has a well-defined separation between its front-
end, which parses C++, and its back-end which
performs semantic analysis and outputs a sum-
mary of the program. We exploited this separa-
tion by using a record-and-replay testing har-
ness, a technique commonly used in problem
domains that share a well defined border be-
tween front-end and back-end, such as migra-
tion in back-end web services or the transfor-
mation of the underlying code of a GUI system.

Since the keystone system can be used as an
API as well as a stand-alone tool, its output is
merely a summary of the semantic information
it collects. Thus we took the view that black-
box testing would not provide satisfactory as-
surance that the ported version of keystone was
working correctly. In order to verify the inter-
nal behaviour of the ported system we conduct
white-box tests on crucial elements. The white-
box tests are implemented using Aspect Ori-
ented Programming (AOP). We exploit AOP
by weaving similar aspects through both sys-
tems that have the effect of dynamically gen-
erating a UML sequence diagram for each test
case. A comparison of sequence diagrams us-
ing Hirschberg’s algorithm [11] on a case-by-
case basis then provides assurance that the be-
haviour is identical in each case.

The remainder of this paper is structured as
follows. In Section 2 we review the background
and related work for the concepts presented
in this paper. In Section 3 we describe our
method for producing an order for our porting.
Section 4 describes our testing methodology for
both black-box and white-box testing. Our ap-
proach for generating sequence diagrams on the
fly is outlined. The results presented in Sec-
tion 5 outline the effectiveness of the testing
strategy. A comparison of the performances
between the two systems are also provided. Fi-
nally, Section 6 concludes the paper.

2 Background

In this section we briefly review the main con-
cepts underlying porting and particularly in
testing the ported system. We present an
overview of the testing techniques that were
used during our work and we discuss our strat-
egy for generating sequence diagrams to aid in

the testing process.

2.1 The keystone system

The system that we wish to port is keystone,
a parser and static analysis tool for ISO C++
programs [6]. The system can be used either
as a black-box tool, producing a summary of
an ISO Ct++ program, or as an API that can
provide access to the ISO C++ program being
processed, allowing the programmer to conduct
their own analysis.

The keystone system is written entirely in
ISO C++ and consists of 40 classes and roughly
23,000 lines of code with many inter-class
dependencies and inheritance hierarchies. The
front-end of keystone consists of a tightly
coupled lexical analyser and backtracking
bottom-up parser. The back-end of keystone
consists of a set of semantic routines called
by the parser to maintain a symbol table, and
to represent the scope and type information
contained in the input program.

As we plan to implement our own front-end
in Java based on a separate experimental Gen-
eralised LR parser, our goal was to port the key-
stone back-end only. By decoupling the front-
end and back-end, we can maintain the original
front-end of the ported system, thus ensuring
that the original test cases can be used with the
ported version of the system. This approach
is often found in web-based or GUI-based sys-
tems, which are typically designed to decouple
front-end and back-ends to maximise portabil-

ity.

2.2 Test-driven Porting

The area of porting is concerned with a
meaning-preserving transformation from one
software architecture to another. This transfor-
mation can encompass formal techniques such
as tree transformations from an AST or less
formal techniques such as partial generation
of code from CASE tools and manual porting
from source code. While some automation of
the porting process is possible, this is highly
dependent on the source and target languages
being used. Any part of the process that is sub-
ject to manual intervention must also be sub-

Accepted for the CASC@N 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

ject to extensive testing to ensure correctness.

Testing is the most crucial phase in the devel-
opment of any software system. Recent stud-
ies have shown that up to 60% of a project’s
life-cycle can be taken up by testing concerns
[21]. eXtreme Programming espouses a phi-
losophy of rapid development along with well
designed test-cases for unit testing under the
motto “Test early and test often” [1]. This phi-
losophy is supported in practice by tools for
testing such as JUnit for Java [2]. The goal of
early testing is to have unit tests written before
any code. This ensures that the design of the
system can be tested as soon as the class code
is implemented.

Recent work by Varma et al. defines a
methodology for porting C/C++ applications
called eXtreme Porting [30]. The main tenet
of this methodology is based around a rigorous
testing regime that involves unit testing of ev-
ery ported class followed by integration testing
of related clusters within the system. Finally
an acceptance test must be passed before the
system can be considered successfully ported.
However this porting method does not contain
an explicit procedure for the order of porting
the classes.

When two or more classes that have an in-
teraction with each other are implemented, it is
desirable to test their interaction through inte-
gration testing. Where a class interacts with
another, as yet, unimplemented class, then
class stubs need to be used to simulate the
functionality of the unimplemented class [20].
Stubs usually implement a subset of the class
functionality but may have to replicate the
complete class functionality in extreme cases.
Thus, where possible, the use of stubs should
be kept to a minimum due to the costs involved
in their construction.

The unit tests and integration tests aim to
ensure that each class has been tested but they
may not always guarantee that the overall sys-
tem is free of bugs. System tests must be con-
ducted on the software system as a whole to
verify that the design and requirements have
been implemented correctly according to the
specification. System tests are most commonly
divided into black-box and white-box tests [23].
Black-box, or specification-based testing, seeks
to test a program without any reference to the

internal structure of the program. A test-case
is executed through the system and the out-
put is compared to an expected output de-
rived from an oracle. White-box testing, or
structural-testing, is concerned not only with
the output of a given test-case but also ensuring
that correct areas of code have been executed
during the testing.

2.3 Porting Strategy

The porting strategy described in the remain-
der of this paper is based on our experiences
of porting the back-end of the keystone system,
written in C++, to a functionally-equivalent ver-
sion written in Java, which we refer to as jKey-
stone. An important facet of the porting pro-
cess was that it was test-based and test-driven
in order to ensure the correctness of the ported
system.

The overall structure of the porting process
was as follows:

Step 1 The keystone front- and back-end were
decoupled. Fortunately, there is a clear
distinction between these keystone phases,
and the classes in the back-end are easily
identified.

Step 2 The back-end keystone classes were
then ported to Java. This consisted of
three steps:

Step 2a Dependencies on external li-
braries were identified. keystone has
relatively few library dependencies,
mostly classes in the C++ Standard
Template Library, and it was not dif-
ficult to identify classes with similar
functionality in the Java class library.

Step 2b The jKeystone class hierarchy
was generated. The class hierarchy of
keystone was reverse engineered using
an in-house tool, and the correspond-
ing class hierarchy of jKeystone was
generated. This was then edited by
hand to ensure that parameter and
attribute types were correctly repre-
sented. No method-body code was
ported automatically in this step.

Accepted for the CASC@N 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

Step 2c Each class in turn was then
ported and unit-tested, in the vein of
the eXtreme Porting approach.

Step 3 keystone’s front-end was modified so
that when run over a test case, it gener-
ated a Java test harness for that test case.
These were then used to perform black-box
system tests on jKeystone.

Step 4 Aspect Oriented Programming was
used to weave similar tracing aspects
across both keystone and jKeystone. For
each test case, the aspected version of key-
stone and jKeystone produced a sequence
diagram, containing the objects and in-
teractions involved in processing that test
case. These were then compared to verify
the behaviour of jKeystone.

Steps 1, 2a and 2b are mostly routine, par-
ticularly when porting from relatively similar
languages such as C++ and Java. While Step 2c
is based on the approach outlined by Varma et
al. [30], they do not address the important is-
sue of what order the classes should be ported
in; our solution to this is described in Section
3. The system testing using a test harness is
similar to that used in GUI testing, but we ex-
tend this to apply to white-box testing using
sequence diagrams. Both kinds of system test-
ing are described in Section 4.

3 ORD-based porting

In this section we outline our algorithm for
ORD based porting of a system. Our method
for deriving the port order is outlined along
with an example.

Since C++ is a relatively difficult language to
parse and analyse, there is a relative scarcity of
automated tools that support porting. When
moving from C++ to Java, the class and method
signatures can be generated automatically, but
the overwhelming majority of the code must be
ported by hand. To ensure that any bugs that
inadvertently entered the system during port-
ing were caught and eliminated, the principles
of eXtreme programming “test often and test
early”, were applied.

3.1 Object Relation Diagrams

The eXtreme Porting strategy does not con-
tain an explicit procedure for the order of port-
ing the C++ classes. It is desirable to port the
classes from C++ to Java in an order that the
number of class stubs needed during testing is
kept to a minimum. A key insight in this paper
is that the porting of classes from one object-
oriented language to another bears a similarity
to that of defining an order for inter-class test-
ing.

There are many examples of work in the
area of defining an order for testing object-
oriented systems that make use of a type of
graph known as an Object Relation Diagram
(ORD) [15, 28, 5, 22]. The ORD can be loosely
compared to a UML class diagram as it fea-
tures classes as nodes and the relationship be-
tween classes as edges. The three edges typ-
ically represented within an ORD are Associ-
ations, Composition and Inheritance. Associ-
ations themselves can be further decomposed
into simple aggregations, dependencies and as-
sociations.

Once the ORD has been constructed, it is
possible to assign costs to the edges and nodes,
and use these to define a testing order, so that
the class with the smallest number of depen-
dencies can be tested first. To this end, it is
usual to define an ORD cost model that deter-
mines the order in which classes can be tested
so as to minimise the need for class stubs. We
observe that the same problem exists in port-
ing, specifically in regard to the order in which
to port the classes within the system. By port-
ing the classes according to a costed ORD, we
can dramatically reduce the amount of class
stubs needed during the unit testing phase.

Malloy et al. have enhanced the basic ORD
cost assignment by developing a parameterised
cost model [16]. Such a cost model allows the
ORD to be configured and changed easily, so
that it can be fine tuned for a specific applica-
tion. With the parameterised cost model, each
type of edge within the ORD is given a specific
weight and all the edges between two classes
are merged and their weights are summed. The
ORD is divided into strongly connected com-
ponents (SCC) and the edge with the smallest
weight is removed. This process is repeated un-

Accepted for the CASCQOIN 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

til all the SCCs contain only 1 node. Finally
the ORD is reverse topologically sorted to give
an inter-class test order.

Milanova et al. have extended the idea of
the ORD further by developing the ExtORD
which is an ORD created at the precision of
the statement level [22]. Multiple edges of each
kind of dependence between the class nodes are
utilised to give this precision. The level of pre-
cision in this strategy is unnecessary for our
porting strategy but this approach is useful in
identifying coverage of statements that trigger
inter-class dependencies.

3.2 A cost model for porting

We have devised an algorithm to cost an ORD
specifically for the purpose of porting. Our al-
gorithm is outlined in Figure 1.

The algorithm works by applying the cost
model to all root classes of inheritance groups
initially, as outlined in Step 1 of Figure 1. Root
classes are identified as those that have an in-
coming inheritance edge but no outgoing inher-
itance edge. The weight calculation, described
in Step 3 of Figure 1, then calculates the weight
of the current node. It adds the current weight
of the node to the sum of all the incoming
Composition and all outgoing Association and
Inheritance weights. The sum function then
recursively calculates the cost of every direct
child node from the current node if an incom-
ing Inheritance edge exists. Finally, Step 2 of
the algorithm calculates the cost of all of the
remaining edges within the ORD.

In order to demonstrate the operation of the
cost assignment algorithm shown in Figure 1,
we apply it to the ORD shown in Figure 2(a).
This ORD was originally presented by Briand
et al. [5]; we use it here to facilitate compari-
son of our approach with theirs. The ORD in
Figure 2(a) has 8 classes, labelled A through
G, with inheritance, association and aggrega-
tion edges labelled I, As and Ag respectively.
In this example there are 3 inheritance edges,
demonstrating both single and multiple inher-
itance, 3 aggregation edges and 11 association
edges.

By following the algorithm outlined in Figure
1 we can cost our ORD as follows:

o We select a weighting for each of the edge

Initialisation: Build the ORD labelling edges
as Inheritance, Association and Aggrega-
tion.

Assign weights to each of the edges accord-
ing to our cost model.

Then propagate weights to the nodes by
performing Steps 1 and 2 below.

Step 1: Identify the root nodes of Inheritance
hierarchies by choosing each node with
with one or more incoming Inheritance
edge and no outgoing Inheritance edges.
Perform Step 3 for each Node identified.

Step 2: Identify the Nodes that have no in-
coming or outgoing inheritance hierar-
chies.

Perform Step 8 for each Node identified.

Step 3: Calculate the weight for the current
node as follows:

Step 3a: The weight is calculated as the
current weight added to the sum
of the incoming Aggregations, the
sum of the outgoing Associations, the
sum of the outgoing Inheritances and
the value of any weight parameters
passed.

Step 3b: For each child of the current
Node, identified as an incoming In-
heritance edge of the current Node,
perform Step 3a passing the child
Node and weight of the current Node
as parameters.

Figure 1: The algorithm to determine the port-
ing order for classes. When run over an ORD
this algorithm assigns a weight to each class,
and the class with the lowest weight is ported

first.

types of I = 5, As = 35 and Ag = 60.
These weights are based on Malloy et al.
and adjusted heuristically, noting that the
algorithm we use automatically assigns a
relatively high priority to inheritance.

e Following Step 1, the root classes in the in-
heritance hierarchy are A, B and H; by ap-
plying step 3a we assign a weight to these

Accepted for the CASCGN 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

classes based on their edges.

e We then perform Step 3b, propagating
these weightings down the inheritance hi-
erarchy in a depth-first manner, assigning
weights to nodes D and G.

e Finally we apply Step 2 to those classes
not so far covered, and assign weights to
classes C, E and F.

The final values assigned to each class are
given in Figure 2(b). This defines a test-
ing/porting order where we start with the
smallest weight and work upwards. In this ex-
ample, just two classes, C' and D need to be
stubbed, and only the first three classes to be
ported have direct dependencies on these stubs.

3.3 Porting keystone classes

Applying our algorithm to the ORD for key-
stone we can derive a porting order that in-
volves the creation of only three stubs for unit
testing during the porting. The keystone ORD
can be seen in Figure 3. In this ORD, the
classes are numbered in the order that they
were ported. The three stubs that are needed
are the classes numbered 13, 14 and 37 respec-
tively. The next section describes our system
testing strategy for the newly ported system.

4 System Testing

The use of the ORD in our porting strategy en-
sures that as we port, the architecture of key-
stone is preserved. However it is also essential
that the behaviour of the original system re-
mains identical in the ported version. The unit
tests provide some guarantee, but further test-
ing is necessary to ensure that the system as
a whole behaves as expected. In this section
we describe the testing of the ported jKeystone
system using back-box and white-box tests.

4.1 The System Test Suites

To test the system in order to ensure that jKey-
stone was a correct port of keystone, two sepa-
rate test suites are used:

GCC The popular, open source GNU com-
piler collection gcc includes a C++ com-
piler that implements ISO Ct++ along with

A
35
el '
l," As As |
C A
(As
L65
NN
I I AS l
/ |
| ||
/ As || Ag| E G
J q) L8
I —¥ 130 LLO
il
f - [<
|I 95 "u,AS lag / As
| As VI
IlII F
\ I N 35 II I
'\\ As A \
\ \ As f

(a) An ORD with eight classes.

Class | Weight | Stubs
1 A 35 C
2 F 35 D
3 B 70 C,D
4 H 95 None
5 G 110 None
6 E 130 None
7 D 140 None
8 C 165 None

(b) The porting order for the
ORD

Figure 2: An example of using an ORD to
define porting order. Here, the edges have
been weighted using the values I=5, As=35 and
Ag=60. The table shows the order in which the
classes would be ported and the stubs on which
they depend.

a large test-suite for all of the various lan-
guages accepted by the compiler. The C++
specific test-suite in the g++.dg test-suite
distributed with gcc version 4.0.0 contains
roughly 1,800 C++ programs and contains
both positive and negative test-cases.

This is an implementation-based test-suite,

Accepted for the CASC@N 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

128 -

AgL

Figure 3: The Object Relation Diagram for keystone. In this diagram the nodes represent classes
and the edges represent inheritance (I), association (As) and aggregation (Ag) relationships between
the classes. The number at each node indicates the porting order, with 1 indicating the first class to

be ported.

in that it was assembled to test all of the
features of the compiler and it has been
augmented many times with new test-
cases as new features have been added or
as bugs have been discovered.

DDJ The other approach to creating a test-
suite is to generate test-cases directly from
a specification that cover all aspects of
the language. The DDJ test-suite, is a
specification-based test-suite that has been
developed to test compliance of different
parsers to the ISO standard [7, 17]. This
suite consists of 440 individual test-case
and each test-case has been derived di-
rectly from a clause within the ISO stan-
dard [13].

While some research has been done on au-
tomatic generation of test suites for grammar-
based software, this has been shown to be less
effective for a language with complex semantics
such as C++ [18]. Our own work on test-suite
reduction demonstrated convincingly that ad-
equate testing of grammar-based software re-
quired a comprehensive test suite with good

coverage of both front- end back-ends [9, 10],
such as is provided by the test suites selected
here.

The negative test-cases in the gce suite were
not used for our system tests, reducing the total
size of the test-suite to 1321 test cases. Neg-
ative test cases are those that are not valid
Ct++ programs, and are designed to ensure that
the error handling of gec is robust and correct.
However, the use of the record and playback
approach described below meant that a nega-
tive test case would not trigger the generation
of driver code for jKeystone, and hence could
not be used to determine the correctness of the
ported code. This was not of concern in this
project, but may be an issue for different kinds
of application.

4.2 Record and playback

As outlined in Section 3, only the keystone
back-end was ported. Thus, in order to com-
plete the system tests for the ported system it
was necessary to emulate the operation of the
keystone front-end, a parser generated by the
tool btyacc. The parser front-end is respon-

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

sible for parsing the input file and hence the
calling of the corresponding semantic actions
in the back-end.

To facilitate this emulation, a record and
playback feature for the operation of the C++
front-end was implemented. This feature is
used heavily in testing other systems such as
GUIs [21] and network firewalls [12] and op-
erates by recording the correct operation of a
test-case in a manner that can then be used au-
tomatically at some point in the future, with-
out any human input.

Record and playback was achieved by in-
strumenting the keystone parser front-end to
generate Java code as it parsed its C++ input.
Since the keystone parser was generated using
the parser generator btyacc it was contained
in a monolithic file. While this usually causes
problems for modular development, in this case
it proved an advantage, facilitating the instru-
mentation process. The generated Java code
produced from the instrumentation acts as a
driver for the test-case, calling the back-end
routines in jKeystone.

Figure 4 presents an overview of the system
testing process. The input test case, a C++ pro-
gram from one of the test suites, is depicted
on the left of the figure. When used as input
to keystone this generates the normal test re-
sults, which are stored for comparison later. It
also causes the instrumented keystone front-end
to generate Java driver code that is specific to
that test case. This front end is then run with
the ported jKeystone, causing jKeystone to out-
put a result that should correspond to the re-
sult produced by keystone. After this black-box
test, aspects are woven through both systems
to generate two sequence diagrams specific to
the test case, and these are then compared as
a white-box test. This process is described in
more detail below.

4.3 Black box testing

Black box testing is a method of testing
whereby only the input and output by the sub-
ject under test are analysed. The black box
testing of the ported system was achieved quite
readily using the test-suites described above.
We choose to use two outputs from keystone’s
static analysis as the test-case result criteria.

The first of these is a summary of the tokens
passed to the parser by the lexical analysis
phase. keystone overcomes some of the ambi-
guity of ISO C++ by using a system known as
token decoration, which, among other things,
generates context-sensitive identifiers. Since
the correct assignment of context is crucial to
the parse, the output of the lexical analysis
phase was used as test output. Since this out-
put can be generated using a command-line
switch in keystone, this still technically consti-
tutes a black-box test.

The second output used as a criterion in the
black-box tests is the main output of keystone,
which consists of a detailed summary of the
symbol table information, including a summary
of all of the scopes and their members. This in-
formation is solely dependent on how the pro-
gram is parsed and the output constitutes a rel-
atively detailed summary of the input test-case.
If the output of a test-case is identical for both
criteria during black box testing then the test-
case is considered to have passed. If the output
is not identical, then the white box testing al-
lows the location of the difference in execution
traces to be readily identified for bug-fixing.

4.4 Dynamic Sequence Diagrams

Since keystone is also used as an API, it is
important that the internal behaviour of the
ported system correspond to the original. This
cannot be readily verified by the end-to-end
style of testing used in the black-box tests.
White box testing involves the examination of
the internals of the system under test.
Modern object-oriented features such as in-
heritance, polymorphism and dynamic binding
mean that the effort in comprehending and re-
verse engineering a system from source code
alone is high. Furthermore without access to
an object’s runtime type, it can become im-
possible to predict the flow of control through
a system. The use of a UML sequence diagram
can greatly aid in the comprehension of the be-
haviour of an object-oriented system [29].
Sequence diagrams are typically used in the
design stage of a system, and depict the objects
and interactions involved in a particular sce-
nario of usage. However, given a system imple-
mentation, it is also possible to reverse engineer

Accepted for the CASC@N 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

jKeystone

|
! i ! l
I ! : I
l o~ | ~ ‘
\ | i — !
\ < Java . | | !
| 1 driver code | E 1 ,
[for this | Back End X | . \
\ 1. test case _' !
! 1N ! !
| A g \ L |
! K !
| ! ! Aspect] |
‘ Profile | ORD- Pﬁ D : : . w
: and based| 4\ 5 | | Instrumentation :
| generate porting > | : Aspects !
: : : AspectC :
| N ' E |
I B | I
C++ 1 ; | : - !
Test | = ! !
Case ——-— " | - | |
! = . l
I ! 1
, I ! 1
I ! : 1
! keystone X i !
e L. L e w
PORTING BLACK-BOX WHITE-BOX TESTING
TESTING

Figure 4: An overview of the porting process. The lower half of the diagram represents the original
keystone system in C++, and the upper half represents the ported jKeystone system in Java. The
right part of the diagram shows the use of AOP to generate sequence diagrams, which are then

compared using the LCS algorithm.

sequence diagrams. These diagrams can be re-
verse engineered either statically [24] through
an analysis of the program source or dynami-
cally from program execution traces [19, 4] or
more recently by utilising aspect-oriented pro-
gramming [3].

4.5 Using Aspects to generate se-
quence diagrams

Upon completion of a black box test, each test-
case was investigated further to ensure that the
corresponding sequence diagrams for keystone
and jKeystone were equivalent. To achieve this,
it is necessary to generate a dynamic sequence
diagram from both systems for each test case.
This entailed instrumenting object creations as
well as method calls and returns in both sys-
tems. As such, it is an instance of one of the
canonical application areas for aspect oriented
programming.

Through the use of AOP, it is possible to
weave an aspect through a program that cap-
tures a trace of its execution. Following the
standard AOP approach, a set of pointcuts are

defined to trace method calls and returns, as
well as constructor invocations. The advice ex-
ecuted at each of these pointcuts printed a rele-
vant message to a logging file, maintaining the
sequence of the method calls along with the
current level of nesting.

Another feature of AOP is the use of intro-
ductions, which allow the aspect to make static
changes to a class, such as introducing an ex-
tra attribute. This was used to assign a unique
numeric identifier to each object being profiled,
so that it could be explicitly identified. By us-
ing the same introduction in the C++ and Java
versions of the aspect, we ensured that objects
were being created in the same order, at the
same point in the program, and could thus as-
sign a specific owner-object to each method
call.

In general, one advantage of AOP is that the
aspect can be coded separately from the main
system, and added and withdrawn as necessary.
In the context of porting, AOP offers the possi-
bility that the aspect can be written once, and
then woven into both the original and ported
system. As well as economy of effort, this also

Accepted for the CASC@N 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

Actions 1 function_definition 1() 1
ContextManager 1 movelntoFunctionScope()2
NameDeclaration 6 getType() 3

(a) A sample of the execution data logged for a
method call.

| ContextManager | ‘NameDcclaratiun |

|
|
|
|
|
|
movelatoFunctionScopel] |

getTypel)

1 1 6

(b) A UML sequence diagram derived from pro-
gram trace.

Figure 5: An example of the execution data
and corresponding UML sequence diagram for
a method call. For each call we record the
owning class and object identifier, the function
name and parameters, and the nesting level of
the call.

helps ensure that the behaviour of the result-
ing code is identical in each case, and any dif-
ferences result from differences in behaviour of
the systems themselves.

In practice, it was not possible to share
identical aspects between both systems. The
original keystone system was profiled using as-
pects woven by AspectC [27], which has al-
most reached maturity as a project since the
preview release of version 1.0 of the program.
The ported jKeystone system was profiled us-
ing aspects woven by AspectJ [14], a mature
project that provides a compiler to weave as-
pects across Java source code. While the no-
tation used by each aspect compiler is slightly
different, the use of aspects did facilitate en-
suring that the woven code performed similar
actions in each case.

4.6 Comparison of Sequence Dia-
grams

The traces recorded by the aspect woven across
keystone and jKeystone recorded the method
currently executing, the owner-object and its
unique identifier, and the current nesting level
of the method. Figure 5(a) illustrates how our
aspect captures the structure of a sequence di-
agram and Figure 5(b) shows its representa-
tion as a UML sequence diagram. Representing
both traces textually allows them to be com-
pared side by side to identify points at which
program execution or object construction dif-
fer. However, as Table 1 illustrates, the size
of the diagrams involved ensures that manual
comparison of the diagrams is infeasible for
each test-case. A method for automating the
different diagrams for each trace is desirable.
An overly simplistic approach would be to use
a utility tool such as diff and report on any
differences. However there are a number of im-
portant factors that mitigate against this ap-
proach.

The first of these is that the convention for
the evaluation of arguments differs between
Java and Ct++. According to the Java language
specification [8], the arguments must be eval-
uated from left to right. This is not strictly
the case in C++ which does not explicitly spec-
ify an order. However as a legacy carried over
from C compilers, and especially on x86 archi-
tectures, arguments are evaluated from right
to left [13]. This small detail does not obvi-
ously affect the external behaviour of the sys-
tems but can change the generated sequence
diagram if argument evaluatiob causes further
method calls.

The second factor that must be accounted
for is a potential difference in method names
across both systems. Method names may not
remain the same across both systems, e.g. the
method name clone could not be ported to Java
due a clash with the clone method belonging to
java.lang.0Object. A rudimentary compari-
son of two diagrams containing the same exe-
cution but with different method names would
flag this as a difference. Another factor is a
slight difference in coding idioms between C++
and Java. In the C++ version of keystone, an it-
eration over a list data structure results in two

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

calls, one a pointer to the begining of the list,
another to the end. The Java version makes
just one call via the new for-each loop present
in Java version 1.5.

The final factor relates to the tools used for
the tracing itself. AspectC is only moving to-
wards maturity as a project and thus is inca-
pable of parsing all C++ constructs fully. To
overcome this is it possible to supply empty
methods via macro definitions to AspectC to
allow it to bypass difficult constructs. Thus
for a very small percentage of the traces, the
dummy code supplied to AspectC will cause its
output to vary from that of AspectJ.

The issues outlined above mean that a com-
parison of the diagrams involves more than a
simple use of diff. We have devised an au-
tomated approach to comparing the diagrams
via a 5-step process. This approach involves:

1. The first step involves post-processing the
Java version of the sequence diagram to fix
the issue with the arguments being evalu-
ated in opposite order to the C++ version.

2. The percentage similarity of the dia-
grams is calculated through the use of
Hirschberg’s algorithm for identifying the
longest common subsequence (LCS) [11].

3. The inverse of the longest common sub-
sequence is calculated from the output of
Step 2.

4. The output from Step 3 is compared to all
known differences that can occur through
different method names or through a lim-
itation of AspectC.

5. If there are any remaining elements in the
inverse that cannot be accounted for then
the test-case had failed the white-box test
and a bug fix must take place.

Hirschberg’s LCS algorithm compares two
sequences of characters and computes the
longest common subsequence of (not necessar-
ily contiguous) characters that they have in
common. Using a full line of the sequence dia-
gram as seen in Figure 5(a) for the characters,
applying the LCS algorithm to a list of method
calls, and taking the inverse of the LCS with
the jKeystone sequence diagram, yields those

| IObjects created“ Methods executed‘

jKeystone [keystone||jKeystone || keystone
Min 3 3 8 8
1st Qu. 15 15 638 640
Median 23 23 1087 1091
3rd Qu. 34 34 1792 1800
Mean 31.50 31.50 2152 2152
Max 1150 1150 || 216141 216350

Table 1: A summary of sequence diagram size
for the 1761 test-cases. The results are par-
tittoned into objects created and methods ex-
ecuted during the running of the test-cases.
As well as the minimum and mazimum en-
countered, the first, second and third quartiles
alongside the mean are also given.

method calls in jKeystone that did not occur
in the original keystone. These are evaluated,
a patch is applied, and the process is iterated
until the sequences are identical.

5 Results

In this section we outline the results of our test-
driven porting strategy. We present a summary
of the sequence diagram size and the overhead
involved in their generation. We also present
a classification of the types of bugs we have
discovered through our testing.

5.1 Sequence diagrams

In order to demonstrate the scale of the activity
involved in generating sequence diagrams, Ta-
ble 1 gives a statistical summary of the UML
sequence diagrams generated by both keystone
and jKeystone. The results are partitioned
according to the number of distinct objects
present and the number of method calls in a se-
quence diagram. Within each partition, we fur-
ther sub-divide the results between jKeystone
and keystone. The first row in Table 1 gives
the minimum number of objects created and
methods executed in any single sequence dia-
gram. We present the same results for the first,
second and third quartile. The average number
of objects created and methods called is given
in the fifth row while the maximum values are
provided in the sixth row.

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

T
Non-Fix
Fixed «eee

% Match

0. 2‘00 4“30 6:30 8‘00 10‘00 12‘00 14100 16‘00

Figure 6: An example of comparing sequence
diagrams across all of the test-cases. The test
cases are listed along the x-axis, and y-axis rep-
resents the percentage match between the se-
quence diagrams generated from jKeystone and
keystone. The lower and upper lines plot the
percentage match for each test case before and
after the fix for method argument evaluation is

applied.

As well as demonstrating the infeasibility
of manually comparing the sequence diagrams,
the descriptive statistics in Table 1 provide a
broad indication that the two systems are per-
forming similarly. Object creation is a crucial
operation of any object-oriented system and as
can be seen from the average column, the num-
ber of object creations in both systems is iden-
tical across the 1761 test-cases. Furthermore
the number of method calls is, on average, the
same across both systems. However this num-
ber can fluctuate between test-cases, as out-
lined in Section 4.6 above, and further analysis
on a case-by-case basis is crucial to ensuring
correctness.

A more precise quantification of the discrep-
ancies between keystone and jKeystone is given
by applying the LCS algorithm and examin-
ing the differences. These differences in the se-
quence diagram contents, exposed by the LCS
algorithm and expressed as a percentage of the
size of the keystone sequence diagram, served
as a metric of progress of the white-box test-
ing. That is, the LCS algorithm was used not
only to isolating bugs during testing and to en-
sure ultimate 100% identity between generated

1800

System Timings
05

T T
Aspect jKeystone -
JKeystone
Aspect keystone
keystone

03 |

Time (s)

01

0 i i i i i i L L
0 200 400 600 800 1000 1200 1400 1600

Test-Case

Figure 7: The timing results for each test case.
keystone and the aspected version of keystone
are the two bottom plots whilst jKeystone and
the aspected jKeystone form the top two re-
spectively. Test-cases with timings greater than
500ms have been removed for clarity.

1800

sequence diagrams, but also as a measure of the
rate of progress of the white-box testing phase.

An example of using the LCS to quantify
similarity between keystone and jKeystone at an
early stage of white-box testing is given in Fig-
ure 6. This figure plots the percentage similar-
ity between the two sequence diagrams before
and after the fix for the method argument or-
dering is applied. The lower line plotted in Fig-
ure 6 shows the jKeystone sequence diagrams
for approximately 1700 of test-cases exhibiting
similarity of over 90% with keystone before any
fix is applied. The upper line plotted in Figure
6 shows this increasing to over 97% for most
of the test-cases once the fix is applied. Ul-
timately bringing this figure to 100% for all
test cases allows us to determine with certainty
when the white-box testing phase is complete.

5.2 Instrumentation overhead

In order for a testing strategy to be used it
must be practicable; in particular, it must not
impose an unreasonable burden on the tester.
While the strategy of using UML sequence di-
agrams is based on an existing test suite, it is
possible that the overhead of generating the di-
agrams would impose a significant overhead on
the testing process. One immediate advantage
of using AOP is that we can turn sequence di-
agram generation on or off very easily.

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

To examine the overhead, we tracked the
timing of generating sequence diagrams for
both keystone and jKeystone, and the results
are summarised in Figure 7. The timings
were performed on a Dell Optiplex GX280
PC, with a 3.06Ghz Intel processor, 1Gb DDR
RAM running the Fedora Core 4 distribution
of GNU/Linux.

The graph in Figure 7 shows four sets of tim-
ings, one each for keystone with and without
sequence diagram generation, and one each for
jKeystone with and without sequence diagram
generation. Each point on the graph represents
a single test case, and the test-cases have been
arranged in increasing order of size along the
horizontal axis.

The first point to note in Figure 7 is the C++
/ Java divide in the timings. The C++ based
keystone gives an almost constant 10 millisec-
onds for almost 1400 of the test-cases whereas
the aspected keystone takes twice the time to
generate the sequence diagrams. The timings
for jKeystone range between 300 and 400 mil-
liseconds for approximately the first 1400 test-
cases. When sequence diagram generation is
turned on, the timings rise by approximately
50% across the test-cases.

This divide between the systems is not unex-
pected. Many of the test cases are quite small,
and the overhead of JVM startup imposes a sig-
nificant penalty on jKeystone. It is positive to
note, however, that the aspects do not place an
unfeasible bound on the time taken to analyse
a given test-case in either keystone or jKeystone.

5.3 Bug classification

Table 2 gives a breakdown of the bugs that
were discovered using the sequence diagrams
during the system tests. In total 30 unique
bugs were discovered during the system testing
phase. The bugs are classified according to the
IEEE classification for software anomalies [25],
the number of each instance of anomaly and the
specific occurrence of the anomaly within jKey-
stone. The table is partitioned along the follow-
ing lines: bugs due to misunderstanding of the
original code and bugs introduced during port-
ing. Rows 1-3 highlight the bugs introduced
through misunderstandings whilst 4-10 are the
bugs inadvertently entered during porting.

Anomaly [Freq. [Actual Occurrence

IV310 3 Assertions incorrect

IV315 4 Code ported incorrectly
IV316 9 Guard clause inadequate
IV321 1 Guard clause too strong
IV317 3 Wrong variable checked
IV321.4 2 Scope of statement incorrect
IV341 3 Object initialised incorrectly
IV342 2 Accessed incorrect data
IV342.1 1 Return type hard-coded
IV342.4 2 Data accessed out of bounds

Table 2: A classification of the bugs identified
during out system tests. The IFEEE anomaly
index is given along with the frequency of the
bug and the actual manifestation of the bug.

The bugs featured in 1-3 of Table 2 are the
result of a shortfall in the comprehension of
specific areas of keystone. The largest num-
ber of bugs within this category are from IV
316: “missing condition test”. This is due
to the fact that a pointer can be dynamically
cast within an if statement in C++. This cast
check was missing initially from the Java ver-
sion. The bugs featured in 4-10 of Table 2 are
bugs that entered jKeystone through human er-
ror. These bugs are spread over a number of
anomaly classifications and can be considered
to be “one-oft” bugs. That is, the discovery
of a bug did not unearth a plethora of similar
bugs. Thus the use of the dynamic UML se-
quence diagrams was essential in isolating the
difference in method calls across the two sys-
tems and discovering the approximate location
of the bug within jKeystone.

6 Conclusion and Future
Work

In this paper we have tested the practical use
of porting a medium sized C++ system to Java
through the use of an Object Relation Dia-
gram. The construction of an ORD via the
algorithm outlined in Section 3.2 within the
eXtreme Porting strategy allows the porting to
take place in a manner that minimises the need
for stubs during unit testing.

In addition to ensuring that the structure

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

of the original system remains preserved un-
der porting, it is possible to create a sequence
diagram for the purposes of comparison. Thus,
a crucial phase of our testing is the ability to
compare the two reverse engineered sequence
diagrams side-by-side to prove that the be-
haviour is preserved across both systems. It is
worth noting that more complex approaches for
comparing sequence diagrams exist (e.g. recon-
ciliation [26]) and could be used with our ap-
proach, but for our purposes the quick discov-
ery of differences in the sequence diagrams were
used to locate, isolate and fix anomalies within
the ported code.

At present, the use of record and playback
restricts us to using positive test-cases. In our
future work, we plan to investigate the possi-
ble contribution of negative test-cases to en-
sure correctness. The comparison of objects
within the sequence diagrams was at a coarse
level in our study and although this worked for
us, other approaches may need a finer level of
granularity. Finally we also plan to use a gen-
eralised LR parser that is under development
as the parser front-end for jKeystone.

7 Biography

Mark Hennessy is a PhD. candidate in
the Department of Computer Science at NUI
Maynooth. His principal research focus is on
the test-driven development of grammar-based
software, with an emphasis on ISO C++.

Dr. James F. Power is a lecturer in
the Department of Computer Science at NUI
Maynooth. His research interests include pro-
gram comprehension, reverse engineering and
software visualisation.

References

[1] K. Beck. Eztreme Programming Ex-
plained. Addison-Wesley, 2000.

[2] K. Beck and E. Gamma. Test infected:
Programmers love writing tests. Java Re-
port, 3(7):37-50, July 1998.

[3] L. Briand, Y. Labiche, and J. Leduc. Trac-
ing distributed systems executions using

[11]

Aspectd. In 21st International Confer-
ence on Software Maintenance, pages 81—
90, Budapest, September 2005.

L. Briand, Y. Labiche, and Y. Miao. To-
wards the reverse engineering of UML se-
quence diagrams. In 10th Working Confer-
ence on Reverse Engineering, pages 5766,

Victoria, BC, Canada, November 2003.

L. Briand, Y. Labiche, and Y. Wang. Re-
visiting strategies for ordering class inte-
gration testing in the presence of depen-
dency cycles. In 12th International Sym-
posium on Software Reliability Engineer-
ing, pages 287296, Hong Kong, Novem-
ber 2001.

T. H. Gibbs, B. A. Malloy, and J. F.
Power. Decorating tokens to facilitate
recognition of ambiguous language con-

structs. Software: Practice and Ezrperi-
ence, 33(1):19-39, January 2003.

T. H. Gibbs, B. A. Malloy, and J. F.
Power. Progression toward conformance
of C++ language compilers. Dr. Dobbs
Journal, 28(11):54-60, September 2003.

J. Gosling, B. Joy, G. Steele, and
G. Bracha. The Java Language Specifi-
cation. Addison-Wesley, 2005. Third Edi-

tion.

M. Hennessy and J. F. Power. An analysis
of rule coverage as a criterion in generat-
ing minimal test suites for grammar-based
software. In 20th International Confer-
ence on Automated Software Engineering,
pages 104-113, Long Beach, CA, USA,
November 2005.

M. Hennessy and J. F. Power. Genera-
tion strategies for test-suites of grammar-
based software. Technical Report NUIM-
CS-TR~2005-02, Department of Computer
Science, National Univesity of Ireland,
Maynooth, April 13 2005.

D. S. Hirschberg. Algorithms for the
longest common subsequence problem. J.
ACM, 24(4):664-675, 1977.

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

[12]

[13]

[16]

[17]

[20]

D. Hoffman and K. Yoo. Blowtorch: a
framework for firewall test automation.
In 20th International Conference on Au-
tomated Software Engineering, pages 96—
103, Long Beach, CA, USA, November
2005.

ISO/IEC JTC 1. International Standard:
Programming Languages - C++. Num-
ber 14882:1998(E) in ASC X3. American
National Standards Institute, first edition,
September 1998.

G. Kiczales, E. Hilsdale, J. Hugunin,
M. Kersten, J. Palm, and W. Griswold.
Getting started with AspectJ. Communi-
cations of the ACM, 44(10):59-65, Octo-
ber 2001.

D. Kung, J. Gao, P. Hsia, Y. Toyoshima,
and C. Chen. A test strategy for object-
oriented systems. In Computer Software
and Applications Conference, pages 239 —
244, Dallas TX., August 1995.

B. A. Malloy, P. J. Clarke, and E. L.
Lloyd. A parameterized cost model to or-
der classes for class-based testing of C++
applications. In 14th International Sym-
posium on Software Reliability Engineer-
ing, pages 353-364, Denver, CO., Novem-
ber 2003.

B. A. Malloy, S. A. Linde, E. B. Duffy,
and J. F. Power. Testing C++ compilers
for ISO language conformance. Dr. Dobbs
Journal, 27(6):71-78, June 2002.

B. A. Malloy and J. F. Power. An inter-
pretation of Purdom’s algorithm for au-
tomatic generation of test cases. In Ist
Annual International Conference on Com-

puter and Information Science, Orlando,
FL., October 2001.

B. A. Malloy and J. F. Power. Exploit-
ing UML dynamic object modeling for
the visualization of C++ programs. In
ACM Symposium on Software Visualisa-
tion, pages 105 — 114, St. Louis, MO, USA,
May 2005.

R. C. Martin. Agile Software Develop-
ment. Prentice Hall, 2003.

[21]

[26]

A. Memon. GUI testing: Pitfalls and pro-
cess. IEEE Computer, 35(8):87-88, Au-
gust 2002.

A. Milanova, A. Rountev, and B. Ry-
der. Constructing precise object relation
diagrams. In International Conference
on Software Maintenance, pages 586-595,
Montreal, Canada, September 2002.

M. Roper. Software Testing. McGraw-Hill,
1994.

A. Rountev and B. H. Connell. Object
naming analysis for reverse-engineered
sequence diagrams. In 27th Interna-
tional Conference on Software Engineer-
ing, pages 254-263, St. Louis, MO, USA,
May 2005.

Software Engineering Standards Commit-
tee of the IEEE. I[FEEE Standard Clas-
sification for Software Anomolies. TEEE
Standards Board, 1993.

G. Spanoudakis and H. Kim. Supporting
the reconciliation of models of object be-
haviour. Software and Systems Modeling,
3(4):273-293, December 2004.

O. Spinczyk, D. Lohmann, and M. Urban.
AspectC++: an AOP extension for C++.
Software Developer’s Journal, pages 68—
76, May 2005.

K.-C. Tai and F. Daniels. Test order for
inter-class integration testing of object-
oriented software. In Computer Software

and Applications Conference, pages 602—
607, Washington, DC, USA, August 1997.

The Object Management Group. The
Unified Modelling Language Version 1.5
OMG. Formal/2003-03-01.

P. Varma, A. Anand, D. P. Pazel, and
B. R. Tibbitts. Nextgen extreme port-
ing: structured by automation. In ACM
Symposium on Applied Computing, pages
1511-1517, Santa Fe, New Mexico, March
2005.

Accepted for the CASCON 2006: Dublin Symposium
Dublin, Ireland, October 17, 2006

