
A Model and Architecture

for Situation Determination

Graham Thomson, Sotirios Terzis

and Paddy Nixon

Pervasive and Global Computing Group

University of Strathclyde

Glasgow, UK

Abstract

Automatically determining the situation of an
ad-hoc group of people and devices within a
smart environment is a significant challenge
in pervasive computing systems. Current ap-
proaches often rely on an environment expert
to correlate the situations that occur with
the available sensor data, while other machine
learning based approaches require long training
periods before the system can be used. Fur-
thermore, situations are commonly recognised
at a low-level of granularity, which limits the
scope of situation-aware applications. This pa-
per presents a novel approach to situation de-
termination that attempts to overcome these
issues by providing a reusable library of gen-
eral situation specifications that can be eas-
ily extended to create new specific situations,
and immediately deployed without the need
of an environment expert. A proposed archi-
tecture of an accompanying situation determi-
nation middleware is provided, as well as an
analysis of a prototype implementation.

1 Introduction

Automatically determining the situation of an
ad-hoc group of people and devices within a

Copyright c© 2006 Graham Thomson, Sotirios

Terzis, Paddy Nixon. Permission to copy is hereby

granted provided the original copyright notice is repro-

duced in copies made.

smart environment is a significant challenge in
pervasive computing systems. Situation identi-
fication provides essential context information
used by situation-aware applications to influ-
ence their operation, silently and automatically
adapting the computing machinery contained
within an environment to its inhabitants’ be-
haviours.

Current approaches to situation determina-
tion can be broadly categorised as either spec-
ification based, where the situations are de-
scribed by a specification of the events that
occur, and learning based, where sensor read-
ings are automatically correlated to a set of
situations. For specification-based approaches
such as [6, 8], an expert of the local environ-
ment is required to specify the correlation of
the available sensor data with the situations
that occur, often in an ad-hoc manner. As the
amount of available sensor data and number
of situations increases, it becomes increasingly
difficult for an expert to decipher and specify
correlations. With learning-based approaches
such as [21, 18] a training period must be con-
ducted, during which several examples of each
situation are collected and analysed, before the
system can be used. These factors impede swift
adaptation to the evolving set of situations that
will occur in an environment over time.

Situations are commonly recognised at a
coarse level of granularity, which limits the
scope of situation-aware applications. For ex-
ample, in [21, 18] only a general ‘meeting’ sit-
uation may be recognised, which prevents ap-
plications from tailoring their behaviour to the
many different types of meeting that a user may
attend. Furthermore, at this level of granular-
ity we are limited to determining whether or
not a person or device is involved in a situa-
tion. This prevents applications from tailoring
their behaviour to the role a person or device
is playing within a situation, such as whether
a user is a speaker or an audience member in a
presentation.

In this paper, we present a novel
specification-based approach to situation
determination that attempts to overcome
these issues. The essence of our approach is
that situations are viewed as a collection of
roles, where a role is a unit of recognition of
a situation based on the observable properties

of people and devices in the environment. The
properties are identified with common names
defined in a standard ontology.

A standard library of situation specifications
can then be provided. Situations from the li-
brary can be deployed immediately in an en-
vironment without the need for an environ-
ment expert. These situations enable various
levels of granularity, including ‘group meet-
ing’ and ‘PhD progress meeting’ in addition
to a ‘meeting’ situation, as well as recogni-
tion of the distinct role a person or device
is playing within the situation. New situa-
tions particular to an environment can be cre-
ated as simple variations of those in the li-
brary. We also provide the ability for users
to customise situation specifications to their
particular habits, such as a particular super-
visor only holds PhD progress meetings in his
office. Furthermore, the roles and situations
defined in the library can be re-used by applica-
tion developers to construct new situation spec-
ifications by assembling these high-level com-
ponents, rather than specifying new situation
specifications from scratch.

The structure of this paper is as follows: Sec-
tion 2 presents our approach to situation spec-
ification, Section 3 describes how specifications
are extended to incorporate uncertainty, Sec-
tion 4 proposes an architecture for situation de-
termination and a description and analysis of
a prototype implementation are given in Sec-
tion 5, Section 6 surveys related work and Sec-
tion 7 presents conclusions and future work.

2 Situation specifications

In our approach, the situation refers to the ac-
tivity a single person or a group of people are
conducting. A situation is characterised by the
properties of the people involved in the situa-
tion and the properties of the tools, or devices,
they are using.

A role is the basic building block of a situ-
ation specification, and describes a part of the
overall situation we wish to recognise. A role
contains a set of Boolean expressions based on
the observable properties of people and devices.
All of the expressions in the role hold when the
part of a situation it describes is occurring in

the environment. A full situation specification
can be built up by assembling a collection of
roles.

Location information is commonly regarded
as essential for describing situations [11]. A
location property is defined for people and de-
vices. Our approach requires that an under-
lying location infrastructure is available and
can provide the distance between two objects,
and the symbolic coordinates of the location of
an object. Example symbolic coordinates in-
clude ‘Room L10.01’ and ‘Ric’s desk’. Both
of these primitives are commonly supported by
location systems [7]. In addition to this, we
require location types of symbolic coordinates,
similar to those employed by Look et al. [17].
These types indicate the category or function
of the location. For example, symbolic coordi-
nate ‘Room L10.01’ may have types ‘Meeting
area’ and ‘Room’, while ‘Ric’s desk’ would have
the type ‘Desk area’.

Two properties are defined for roles them-
selves. These are a timestamp, that indicates
the time at which the role started to occur in
the environment, and cardinality, which indi-
cates how many occurrences of the role are hap-
pening simultaneously in the environment.

Expressions within a role may refer to the
properties of people and devices. They may
include the standard comparison operators, the
Boolean operators ¬, ∧, ∨, and ⇒, as well as
other type specific operators.

A situation specification is similar in struc-
ture to a role. Its expressions are based on
a collection of roles and may refer to their
timestamp and cardinality properties as well
as the properties of the people and devices they
specify, and also the current time. The expres-
sions may include the same set of operators as
a role. All of the expressions in the specifica-
tion hold when the situation is occurring in the
environment.

An example specification of a presentation
situation is given in Fig. 1. Three roles are de-
fined - speaker, audience member, and presen-
tation equipment. Each role lists the entities its
expressions refer to, where an entity is a person,
a device, or another role. The speaker role is
played by a person who is located in a speaker
area. The audience member role is played by
a person who is located in the audience area.

A computer is playing the presentation equip-
ment role when it is running presentation soft-
ware as the active application. A presentation
is occurring when a speaker, three or more au-
dience members, and one or more computers
that have presentation software active are in
the same room.

2.1 Specification inheritance

A situation can be expressed at different lev-
els of abstraction through specification inher-
itance. This provides a simple way to create
new specifications as refinements of another,
and to allow situation-aware applications to in-
terpret the same situation at the appropriate
level of abstraction.

Figure 2 provides an example of specification
inheritance. Three situations are described
at increasing levels of abstraction. These are
SmartLab group meeting, group meeting, and a
general meeting situation. A meeting is occur-
ring when two or more people are gathered in
the same meeting area. A group meeting is oc-
curring when three or more people are gathered
in the same meeting area and at least 70% of
them are members of the same group. A Smart-
Lab group meeting is occurring when a group
meeting is occurring for the group ‘SmartLab’.

When a specification inherits from another,
all of the expressions from both specifications
must hold when the role or situation is occur-
ring. For example, when a group meeting is
occurring, all of the expressions in the group
meeting specification and the meeting specifi-
cation will hold. Furthermore, the expressions
of the role or situation may refer to the enti-
ties from either specification. For example, the
SmartLab group meeting specification can refer
to the entities of the group meeting specifica-
tion.

2.2 Customisations

Existing situations can be refined to a partic-
ular environment or person using specification
customisation. Figure 3 provides an example of
this. A PhD meeting situation is defined that
occurs when a PhD student and one or more
of their supervisors are gathered in the same
meeting area. In addition, a customisation is

defined that states that a particular PhD su-
pervisor John only holds PhD meetings in his
office L10.01.

When a specification is customised, all of the
expressions from the role or situation specifica-
tion and the customisation specification must
hold when the role or situation is occurring.
For example, when the John PhD meeting cus-
tomisation has been defined and a PhD meet-
ing is occurring, all of the expressions in the
PhD meeting specification and the customisa-
tion specification will hold. Furthermore, the
expressions of the customisation may refer to
the entities from either specification. For ex-
ample, the John PhD meeting customisation
can refer to the entities of the PhD meeting
specification.

2.3 Specification resolution

The resolution of a situation reflects the level
of detail to which we can tell that a person
or a device is involved in that situation. For
example, at a low resolution we may only be
able to report whether a person or a device
is involved in a situation or not. At a higher
resolution we may be able to report which role
they are playing. In the presentation example
in Fig. 1, we can tell that in addition to being
an attendee of a presentation, either a person is
a speaker or an audience member. At a higher
resolution still, we may report that a person
or device is playing a more specific role, for
example, different types of audience member
may be defined.

The specification in Fig. 1 is of high resolu-
tion, in that it reports whether a person is a
speaker or an audience member. Let’s consider
the speaker role in more detail. A person is
playing the role of a speaker if they are located
within the speaker area. To detect this role, a
person’s location reported at room level resolu-
tion is not sufficient, we require the finer resolu-
tion of whether they are within the speaker area
of the room. Alternatively, a speaker could be
identified by detecting the fact that they have
been speaking for most of the time. However,
in this case we require high-level context infor-
mation inferred from basic audio data. In order
to deal more appropriately with either the lack
of high-resolution context information or high-

role: speaker
entities: p:Person
expressions:

p.location has type ‘Speaker area’

role: audience member
entities: p:Person
expressions:

p.location has type ‘Audience area’

role: presentation equipment
entities: c:Computer
expressions:

presentation software is active
application on c

situation: presentation
roles:

s:speaker
a:audience member
e:presentation equipment

expressions:
s.cardinality = 1
a.cardinality >= 3
e.cardinality >= 1
‘Room’ of s.p.location = ‘Room’ of a.p.location
‘Room’ of s.p.location = ‘Room’ of e.c.location

Figure 1: A presentation specification.

role: meeting attendee
entities: p:Person
expressions:

p.location has type ‘Meeting area’

situation: meeting
roles: m:meeting attendee
expressions:

m.cardinality >= 2
‘Meeting area’ of m.p.location =

‘Meeting area’ of m.p.location

role: group member attendee
inherits: meeting attendee
entities: g:Group
expressions: p is a member of g

situation: group meeting
inherits: meeting
roles:

gma:group member attendee
ma:meeting attendee

expressions:
gma.cardinality >= 3, ma.cardinality >= 0
gma.g = gma.g, gma.p.id != ma.p.id
gma.cardinality >= 0.7 *

(gma.cardinality + ma.cardinality)
‘Meeting area’ of gma.p.location =

‘Meeting area’ of ma.p.location

situation: SmartLab group meeting
inherits: group meeting
expressions: gma.g = ‘SmartLab’

Figure 2: Various meeting situations defined using specification inheritance.

role: PhD supervisor
inherits: meeting attendee
entities: phd:Person
expressions: p supervises phd

role: PhD student
inherits: meeting attendee
expressions: p is a PhD student

customisation: John PhD meeting
customises: PhD meeting
expressions:

sup.p.id = JOHN_ID ->
‘Room’ of sup.p.location = L10.01

situation: PhD meeting
inherits: meeting
roles:

stu:PhD student
sup:PhD supervisor

expressions:
stu.cardinality = 1
sup.cardinality >= 1
stu.p.id = sup.phd.id
‘Meeting area’ of stu.p.location =

‘Meeting area’ of sup.p.location

Figure 3: An example customisation of a PhD meeting specification.

level inference capability we allow alternative
situation specifications of varying resolution.

Example high and low resolution alterna-
tive presentation specifications are given in
Fig. 4. The high resolution presentation spec-
ification requires that ‘Speaker area’ and ‘Au-
dience area’ locations are available. The low
resolution specification requires only that room
level locations are available. When both ver-
sions of the presentation situation are detected,
the system will prompt the user for their prefer-
ence of which version is reported and remember
their decision for future use.

2.4 Overlapping situations

In the specifications we have looked at so far, all
have assumed that situations are independent.
It is desirable to make situations independent
so that ‘smaller’ situations can still be recog-
nised within ‘larger’ situations. For example, a
group of eight people may be recognised as be-
ing involved in a group meeting situation, while
at the same time, three of these people are in-
volved in a ‘working at a whiteboard’ situation.

However, there are cases where we may wish
to avoid situations overlapping. Given the
group meeting specification from Fig. 2 and the
PhD meeting specification from Fig. 3, when
a group meeting is occurring where the four
group members present consist of two sets of
a PhD student and one of their supervisors,
it is impossible to tell whether it is a single
group meeting that is occurring, or two PhD
meetings. This confusion has arisen because
the PhD meeting specification is incomplete.
What is actually meant is that a PhD meet-
ing is occurring when only a PhD student and
one or more of their supervisors are gathered
in a meeting area. To incorporate this into the
specification, a lack of another person can be
expressed as a ‘someone else’ role that has a
cardinality of 0. In other cases where overlap
should be avoided, situation specifications can
be differentiated through user customisation
of a specification with environment-specific de-
tails. In order to assist the user in this task we
require that the system is able to explain why
situations occurred, for example, which people
and devices where considered to be in which
roles.

3 Incorporating uncer-

tainty

So far, we have only considered specifying sit-
uations using properties and expressions that
have crisp Boolean values. In a pervasive en-
vironment, many properties shall be captured
using sensors, which may be limited in their
accuracy and reliability. This will affect the
level of confidence we can have that the value
of the property is correct, and whether a situ-
ation based on these properties is really occur-
ring. Even for properties that are not sensed,
factors such as the passing of time may alter
the confidence that their value is correct. To
effectively incorporate such properties into sit-
uation specifications, we must interpret their
level of confidence appropriately.

For properties such as these, an associated
confidence value is defined. This is a real num-
ber ranging from 0 to 1, indicating no confi-
dence to complete confidence that the value
is correct. The confidence of a property may
be fixed and known a-priori, for example it
may be specified in the manual of the sensing
equipment, or it may be estimated dynamically,
which may be based on other factors about the
property such as its freshness or source.

Fuzzy logic provides an appropriate frame-
work to incorporate and combine the confi-
dence values of properties in a situation spec-
ification. An alternative approach to incorpo-
rating uncertainty is to use probabilistic tech-
niques such as Bayesian networks [21, 18, 19].
In this work, we have chosen to employ fuzzy
logic over probabilistic techniques for the fol-
lowing practical reasons:

Ease of translation As we will demon-
strate later in this section, situation specifica-
tions can be easily translated into a set of fuzzy
rules. The resulting rule set is of equivalent
size to the specification - approximately one
rule per role and one antecedent per expression.
The process of translating a specification into
a Bayesian network is difficult as representing
ad-hoc groups of people and devices and the re-
lations between them cannot be accommodated
naturally by the fixed topology of a Bayesian
network. Our attempts to create a probabilistic
representation of situation specifications have
resulted in Bayesian networks whose topology

role: speaker
entities: p:Person
expressions:

p.location has type ‘Speaker area’

role: audience member
entities: p:Person
expressions:

p.location has type ‘Audience area’

role: presentation equipment
entities: c:Computer
expressions:

presentation software is active
application on c

role: presentation attendee
entities: p:Person
expressions:

p.location has type ‘Meeting area’

situation: presentation
roles:

s:speaker, a:audience member
e:presentation equipment

expressions:
s.cardinality = 1, a.cardinality >= 3
e.cardinality >= 1
‘Room’ of s.p.location =

‘Room’ of a.p.location
‘Room’ of s.p.location =

‘Room’ of e.c.location

situation: presentation
roles:

a:presentation attendee
e:presentation equipment

expressions:
a.cardinality >= 4
e.cardinality >= 1
‘Room’ of a.p.location =

‘Room’ of e.c.location

Figure 4: Alternative presentation specifications at high (top) and low (bottom) resolution.

must be restructured at runtime to incorporate
the varying number of people and device in the
environment, and in which the number of nodes
increases exponentially with the number of peo-
ple, devices, and properties.

Efficient reasoning Situation determina-
tion attempts to match descriptions of sev-
eral situations against the properties of an
arbitrary-sized group of people and devices.
This is an instance of the many pattern / many
object pattern match problem, for which the
Rete algorithm is a very efficient solution [12].
Rete-based fuzzy rule engines have mature tool
support and are freely available [3].

Improved scalability In a situation de-
termination system, the uncertainty associated
with several properties may share the same
source. For example, all objects within an en-
vironment may have their location determined
by the same location system. Let us assume
that a party situation is defined as twenty or
more people gathered in a specific room. Fur-
thermore, let us assume that the location of
each person is reported by the same location
system at a confidence of 0.9, which is the
maximum confidence supported by the system.
Treating the locations as independent, under
a probabilistic scheme the confidence value is
interpreted as a probability and these are com-
bined for each person’s location by multiplying
the probabilities together. Therefore, the max-

imum probability of a party situation occurring
is 0.920 ≈ 0.12. If the party was defined with
thirty or more people the maximum probabil-
ity would be ≈ 0.04. As the number of peo-
ple increases, the maximum probability we can
have in the situation occurring decreases, de-
spite the fact the uncertainty stems from a sin-
gle source. Under a fuzzy logic model, as shall
be demonstrated later in this section, the max-
imum confidence we could have that the party
situation is occurring would be the minimum
confidence of a person’s location, which would
be 0.9 independently of the number of people
at the party.

To illustrate how fuzzy logic can be incorpo-
rated, consider again the presentation example
in Fig. 1. A person is playing the role of a
speaker when their location contains the type
‘Speaker area’. This role can be represented
as a fuzzy if / then rule where the expression
forms the antecedent or predicate (if part) and
whether the role is occurring or not forms the
consequent (then part). The antecedent and
consequent are represented as fuzzy sets. These
fuzzy sets are defined by monotonic functions
that map the level of confidence to the degree
of membership in the fuzzy set, and take the
form µFS ← (c ∈ C) for the fuzzy set FS and
the confidence value c over the domain C[0, 1].
Each role and each expression a role contains
is represented by its own fuzzy set. For every

fuzzy set, the domain will be confidence and
the membership function will be µFS [c] ← c,
that is, the level of confidence is equivalent to
the degree of membership.

As all fuzzy sets are defined by monotonic
functions, simple monotonic reasoning can be
used. This has the advantage that a role’s ex-
pected confidence value can be estimated di-
rectly from the confidence of its expressions
without employing complex composition and
defuzzification methods [9].

If we take ec to be the confidence that per-
son p’s location contains the type ‘Speaker
area’ and rc to be the confidence that per-
son p is playing the speaker role, and have
the expression represented by the fuzzy set
‘within speaker area’ and the role presented by
the fuzzy set ‘occurring’, we can construct the
fuzzy rule:

if ec is within speaker area

then rc is occurring

Given this fuzzy rule and the confidence
value of ec, the confidence value of rc can be in-
ferred by using a method of implication known
as monotonic selection. Under this scheme,
µFS [c] is calculated for the antecedent and the
consequent has the confidence value that has
the equivalent degree of membership as µFS [c],
that is, cc ← µFSc

[µFSa
[ca]], where cc and ca

are the confidence values and FSc and FSa are
the fuzzy sets of the consequent and antecedent
respectively.

An example for the speaker role is shown in
Fig. 5. The confidence that person p’s location
contains the type ‘Speaker area’ is 0.9. The
results is µ[0.9] = 0.9. This ‘carries over’ to
the occurring fuzzy set and is translated to a
confidence value of 0.9.

More complex roles such as the presentation
role in Fig. 1 that have several expressions will
be represented by a fuzzy rule that has several
antecedents. Therefore, we must have a way to
combine multiple degree of membership values.
Antecedents may be combined using the fuzzy
intersection operator (∧) where the minimum
degree of membership is selected, or the fuzzy
union operator (∨) where the maximum de-
gree of membership is selected. The confidence
values of each of expressions in the presenta-
tion specification will be combined by fuzzy in-

situation: presentation
roles:

s:speaker
a:audience member
e:presentation equipment

expressions:
s.cardinality = 1, s.confidence >= 0.8
a.cardinality >= 3, a.confidence >= 0.8
e.cardinality >= 1
‘Room’ of s.p.location = ‘Room’ of a.p.location
‘Room’ of s.p.location = ‘Room’ of e.c.location

Figure 7: The presentation specification in-
cluding expressions concerning confidence.

tersection. Expressions that do involve uncer-
tainty, such as the cardinality expressions, are
treated as having a confidence value of 1 when
true and 0 when false. Figure 6 illustrates how
the confidence values of the presentation spec-
ification are combined.

Note that the meaning of ¬, ⇒ and role car-
dinality also changes when considering confi-
dence. The ¬ operator returns the comple-
ment of a confidence value, 1 − c. For a min-
imum confidence threshold t, a ⇒ b is inter-
preted as “if a has confidence ≥ t, then b”, and
role.cardinality ≥ X is interpreted as “role is
occurring X or more times simultaneously, each
with a confidence ≥ t”.

As an example, the presentation role shown
in Fig. 1 is restated in Fig. 7 including the nec-
essary additional expressions required to incor-
porate reasoning with confidence. For this ex-
ample, we can see that the only additional ex-
pressions required are those to specifying the
desired confidence threshold for the speaker
and audience member roles. All other mech-
anisms for incorporating uncertainty are han-
dled automatically and do not burden the spec-
ification author.

Taken together, the constructs described in
this and the previous sections provide a suffi-
ciently expressive language to define situation
specifications for ad-hoc groups of people and
devices. Complex situation specifications can
be simply assembled as a collection of roles.
Constraints can be placed on a role’s cardinal-
ity, making it easy to specify groups of people
and devices that are involved in a situation.
New situations can be easily created as a re-
finement of another using specification inheri-
tance. Existing situations can be customised to

1

1

within speaker area

0

1

1

occurring

confidenceconfidence

degree
of

membership

degree
of

membership

0.9

0.9 0.9

0.90

Figure 5: An example of determining the confidence value of a consequent fuzzy set using monotonic
selection.

0

1

1

occurring

confidence

degree

of
membership

0.8

0.8

1

1

` Room' of s.p.location = ` Room' of a.p.location

confidence

degree
of

membership

0.9

0.9

0

1

1

` Room' of s.p.location = ` Room' of e.c.location

confidence

degree
of

membership

0.8

0.8

0

s.cardinality = 1

a.cardinality >= 3

e.cardinality >= 1

1.0

1.0

1.0

min

0.8

Figure 6: An example of combining confidence values.

a specific environment or the habits of a partic-
ular person in a straightforward manner. High-
resolution situations can be supported that in
addition to identifying which situation a per-
son or device is involved in, identify which
role the person or device is playing within the
situation. Moreover, alternative specifications
can be described such that situation recogni-
tion can adapt to the information available in
the environment. Uncertainty associated with
sensed properties can incorporated naturally
into a situation specification, requiring only a
few additional expressions.

4 A situation determina-

tion architecture

A situation determination system has several
distinct characteristics that must be supported
by an architecture. It is an open system, as it
must incorporate a variety of people and het-
erogeneous devices, the number and identity
of which may not be known in advance and
will change over time. The data describing the
properties of people and devices, as well as new
and customised situation specifications, are in-
herently distributed. Recognition of situations
is a responsive process, as it must continually
monitor changes in the environment and report
the situations occurring. Situation-aware ap-
plications are often adaptive, tailoring their be-
haviour to the current situation. Both recogni-
tion of situations and adaptation of application
behaviour must be performed autonomously.
Given these characteristics, an agent-based ar-
chitecture is the most appropriate [15].

Our architecture is designed to support sit-
uation determination within a small physically
bounded space, such as a single room or the
rooms within a floor of a building. The archi-
tecture is illustrated in Fig. 8. The following
types of agents are defined:

An area server agent (ASA) An area
server agent performs situation determination
for all of the people and devices within a
bounded physical space, such a room. It runs
on a dedicated server. The ASA will have
knowledge of all library situation specifications,
as well as any additional specifications and cus-
tomisations particular to the space it governs.

ASAASA

PSAPSA

PSAPSA

PSAPSA

PSAPSA

DADA

DADA

DADA

DADA

DADA

SAASAA

SAASAA

SAASAA

Figure 8: An example deployment showing the
architecture of the situation determination sys-
tem. The rounded rectangle represents the
physical are the ASA governs.

A personal server agent (PSA) This
agent represents a person. Each person is as-
sumed to wear or carry a device that hosts this
agent. Typically this device would be a PDA or
a mobile phone. A PSA will have knowledge of
the person’s properties, as well as any situation
specifications and customisations particular to
the person.

A device agent (DA) This agent repre-
sents a device and has knowledge of the device’s
properties. For devices with sufficient capabil-
ity, the DA is hosted on the device itself. For
devices with limited resources, the DA will be
hosted on the area server or another appropri-
ate device, and act as a proxy. A general DA is
defined that provides facilities to communicate
with the agent infrastructure that are common
to all DAs. The code required to access prop-
erties of a device must often be customised to
a specific device or platform. Therefore, device
and platform specific DAs are defined that ex-
tend the general DA that can access the prop-
erties of the device. A DA does not carry any
additional specifications and customisations.

A situation-aware application agent
(SAA) This agent represents an application
that uses situation information to influence its
operation. It allows applications to communi-
cate with the ASA to request and receive notifi-
cations about occurring situations, which may
include additional specifications and customi-

sations that are particular to the application.
A SAA may run on any appropriate device.

Agents can discover and communicate with
each other via an agent platform substrate.
In our architecture, agents can connect to the
agent platform either through a wired or wire-
less network. The agent platform is advertised
on both networks using a well-known name
and is discovered through an ad-hoc network
discovery protocol. Within the agent plat-
form, agents may be discovered by their iden-
tity (white-page look up) or by the services
they provide (yellow-page look up).

Once connected to the agent platform, a PSA
discovers the ASA using yellow-pages lookup.
It will then carry out the following conversation
with the ASA: 1) the PSA sends a message to
the ASA identifying which type of agent it is, as
well as the description of any additional or cus-
tomised specifications it has, 2) upon receiving
this message, the ASA adds any new specifica-
tions to the active specification set, and then
analyses this set to discover which roles of that
agent type it requires to be informed of, and
sends these back in a reply to the PSA, 3)
the PSA analyses this set of roles to determine
which of them it can support, given the set of
properties it has available and their supported
level of resolution, 4) the PSA then monitors
the supported roles and sends a message to the
ASA when they hold or cease to hold. If the
set of roles required by the ASA changes, for
example in response to new or customised sit-
uations being introduced, the ASA sends the
PSA a message informing it of these changes
and the PSA filters these and updates its mon-
itoring appropriately.

Both a DA and SAA may connect to the
agent platform through either the wired or
wireless network depending on whether they
are hosted on a fixed or mobile device. In both
cases, the ASA is again discovered using yellow-
pages look up. When a DA discovers the ASA,
it will conduct a conversation similar to that
of the PSA, with the exception that it shall
not send any additional or customised specifi-
cations.

When a SAA discovers the ASA, it carries
out the following conversation: 1) the SAA
sends a message to the ASA informing it of
the situations it wants to be notified about, 2)

the ASA then monitors the situations of inter-
est and sends a message to the SAA when they
occur and when they cease to occur. If the sit-
uations that the SAA is interested in change,
the SAA sends a message to the ASA inform-
ing it of the changes and the ASA updates its
monitoring appropriately.

The ASA supports an ‘explain’ request that
may be issued by other agents in the system. In
response, the ASA sends a message containing
the specifications, customisations, and values
of properties of the situations that it believes
are currently occurring. The request may spec-
ify a filter on the situations for which an expla-
nation is required, such as only the situations a
particular person is involved in, or only the sit-
uations that are occurring in a particular room.
This information is not only useful for debug-
ging the system, but also helps to identify suit-
able properties that can be used to customise
and refine situation specifications to a particu-
lar environment.

The architecture’s star topology offers the
following advantages: a) redundant determina-
tion effort is eliminated as the situations for
all of the people and devices in the environ-
ment is performed once, b) all of the customised
specifications from each PSA can be combined
to give greater situation recognition accuracy,
c) the ASA is likely to be more powerful than
a PSA and so can perform the determination
more quickly, and d) it reduces the drain on
the battery power of each PSA’s mobile host.
Given that an ASA is hosted on powerful com-
puter and governs a small physical space, we
consider these advantages to outweigh the typ-
ical disadvantages of a centralised architecture,
where the ASA is a single point of failure and
may be a communication bottleneck. In cases
where the physical area is large, or when only
limited computing power is available, a hierar-
chical deployment of ASAs can be used. In this
deployment, the physical space is divided into
smaller sub-areas, each with its own ASA. The
situation determination process is then coordi-
nated between all ASAs. We recognise this as
an area of future work.

The architecture presented in this section
facilitates situation determination for a large
number of situations, people and devices, while
defining only a small number of agents with a

simple set of behaviours.

5 Prototype implementa-

tion and analysis

We have constructed a prototype implementa-
tion of our situation determination system and
an initial test application. We developed the
person and area server agents and the general
device and situation-aware application agents.
Two extended device agents were also devel-
oped, one for desktop or laptop computers run-
ning Windows, and one for Pocket PCs running
Windows Mobile. The person agent reported
location, identity, group membership, and oc-
cupation properties for a person. The device
agents were able to report which applications
were running on the device, the currently ac-
tive application, and the person using the de-
vice. Location information was self-reported by
the user. These properties were chosen as they
do not involve uncertainty which simplified the
development of the initial test implementation,
and formed an adequate basis for a sufficiently
interesting and complex set of situations.

The following situations were defined: check-
ing e-mail, surfing the web, reading, and cod-
ing which extended a general ‘using an appli-
cation’ specification, and group meeting, PhD
meeting, and demonstrators’ meeting which ex-
tended a general ‘meeting’ specification.

Recognition of situations is performed by the
ASA using the JESS rule engine [5]. Situation
specifications are translated offline into a set of
JESS rules. The ASA maintains a record of
all the situations that the people and devices
within its area are involved in. SAAs can then
be notified immediately of the situations they
request. Our implementation of the architec-
ture is based on the JADE agent framework [4].
JADE provides all of the standard agent func-
tionality required by our system.

As an initial test of the system, we devel-
oped an availability checker application. This
presents a list of the current situations for a
particular person who the user selected from a
drop-down list. The application was simple to
write, requiring only a single agent class and
GUI to be written. The agent itself was very
simple, it extended the SAA agent configuring

it such that a single, immediate update of all
the current situations was received. Each of
the situations listed above were identified ac-
curately by the availability checker.

The code footprint of the person agent and
the availability checker application is small and
can be accommodated comfortably on a mobile
device. The total size of a PSA is under 7KB,
and the availability checker application is under
6KB for both the agent and GUI. The average
size of the situation specifications used in this
analysis requires approximately 2KB of JESS
code.

To test the responsiveness of our system a
special PSA was created that received updates
of its own situations. The time was measured
from when the PSA sent a message to the ASA
with an update that changed the situation of
the PSA’s representative, until the PSA re-
ceived the message informing it of the change
to its situation. The PSA was hosted on a HP
Pocket PC h5500 with a 400 MHz Intel XS-
cale processor and 128 MB RAM. The ASA
was hosted on a desktop PC with a 1.8GHz
Intel Pentium 4 processor and 512 MB RAM.
The PSA and ASA were connected via a WEP
encrypted 802.11 wireless network. The results
are given in Fig. 9 and show that the round trip
situation update time increases proportionally
to the number of active situations and PSAs.

We also measured the average cumulative
CPU time for a single situation update on the
ASA over all nine situations with eight PSAs.
JESS, that updates the record of which situ-
ations are occurring, consumed 38.66% CPU
time, JADE, which sends, receives, and de-
codes agent messages, consumed 58.06% CPU
time, and the custom situation determination
code, that inserts updates into the JESS en-
gine, consumed 3.28% CPU time.

The complexity of a Rete-based rule engine
such as JESS is known to have the complexity
O(RFP) where R is the number of rules, F is
the number of facts in the knowledge base and
P is the average number of patterns per rule
LHS [12]. From this, we calculated the com-
plexity of an active situation set. Each per-
son and device is represented by a single fact.
Each role produces an activation and deactiva-
tion rule. The number of patterns in the rule
LHS will equal the number of expressions in

Scenario 1 Scenario 2 Scenario 3

A
v
e
ra

g
e
 t

im
e
 i
n
 m

s

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Figure 9: This figure shows the round trip sit-
uation update time between a single PSA and
ASA. In scenario 1, the active situation set of
the ASA contained only a single situation and
only one PSA sending updates. In scenario 2,
the active situation set contained all nine situ-
ations and eight PSA sending updates. In sce-
nario 3, the active situation set contained all
nine situations and sixty-four PSA sending up-
dates. The average round trip situation update
time is averaged over 100 situation changes.

the role. To keep track of cardinalities, an ad-
ditional bookkeeping fact is required for each
role, as well as an additional pattern in its LHS
of the activation and deactivation rules. If we
take R to be the number of roles, P to be the
number of people and devices, and E to be the
average number of expressions per role includ-
ing cardinality bookkeeping, the complexity is
O(2R(P + R)E), or O(2R2E + 2RPE) which
is quadratic on the number of roles.

As described in the previous section, this
complexity can be shared amongst several
ASAs in a hierarchical deployment. For exam-
ple, if the load on the host of an ASA whose
range is a floor of a building becomes too great,
an ASA can be assigned to each room of the
floor. For an area that experiences a sudden in-
flux of a large number of people, the ASA could
become a communication bottleneck. However,
in a typical office environment for which this
system has been designed, it is not expected
that such a large, sudden influx of people will
occur.

6 Related work

Several recent projects have shown success in
automatically identifying fine-grained activi-
ties of people. Philipose et al. presented an
approach where activities such as holding a
telephone handset and adjusting a thermostat
were recognised by tagging household objects
with radio frequency identification (RFID) tags
which were detected by a small RFID reader
worn on the wrist when in close proximity [20].
In [19], Patterson described a system that in-
ferred whether a person was travelling by bus,
by foot, or by car, based on a series of GPS co-
ordinates. Both of these approaches are based
on Bayesian networks and the problems in-
volved in using this representation to recognise
the situation of ad-hoc group of people and de-
vices have been described in Section 3. How-
ever, these projects are complementary to our
work and may be used to provide properties of
people and devices from which situations are
inferred.

In [13, 14], Henricksen et al. presented a
graphical context modelling framework that
could be used to specify context information

requirements for context-aware applications.
Dey et al. described a toolkit that supported
the acquisition of low-level context informa-
tion from sensor data that could be combined
via a set of ‘widgets’ to form higher-level con-
texts [10, 6]. In both of these approaches a per-
son’s activity is provided as an atomic piece of
context information rather than automatically
inferred from other context. Moreover, our ap-
proach focuses on the provision of a reusable
library of general high-level situation specifica-
tions that can be deployed and customised by
a non-expert, rather than the low-level context
requirements of a specific context-aware appli-
cation.

A strand of the GAIA project [21] enabled
recognition of low-resolution situations within
a specific ‘active space’ by training a Bayesian
network classifier on a fixed set of properties
of the space. In [18], Oliver et al. presented
a system that recognised low-resolution situa-
tions within a specific office environment. A
layered approach was used in which a hidden
Markov model (HMM) was trained on each cat-
egory of sensor within the environment, e.g.
audio sensors and video sensors, which then
formed the input to a higher-layer HMM that
recognised the situation. In both these cases,
the situations are tightly bound to the static
set of properties of the particular environment
and are therefore not transferable to other en-
vironments. Other smart space projects in-
clude Georgia Tech’s Aware Home [16], the
University of Colorado at Boulder’s Adaptive
House [1] and Microsoft’s EasyLiving [2]. Our
approach seeks to provide transferable situa-
tion specifications for an ad-hoc group of peo-
ple and devices, rather than those of a particu-
lar space, without requiring an explicit training
phase.

7 Conclusions and future

work

In this paper, we have presented a novel ap-
proach to situation determination based upon a
reusable library of situation specifications that
can be deployed immediately by non-expert
users. Situation specifications may be extended
and customised to recognise fine-granularity

situations of particular people and environ-
ments. We have also presented a supporting
agent-based architecture and an initial proto-
type implementation. Preliminary experimen-
tation and analysis demonstrated that our ap-
proach can accurately identify situations for
ad-hoc group of people and devices with suffi-
cient responsiveness for a large number of peo-
ple, devices, and situations.

An extended evaluation of the current ar-
chitecture which incorporates uncertainty and
fuzzy reasoning is currently underway. More-
over, a fuller application-based evaluation of
the system is planned, with the development of
a mode-manager application in which the mode
of operation of a device is automatically set to
that most appropriate for its current situation,
and a situation-enhanced file management ap-
plication that allows users to search for files
indexed by the situations in which they were
used. Furthermore, we intend to continue our
evaluation of the middleware onto a larger de-
ployment, covering an extended set of situa-
tions and types of device agent.

About the Authors

Graham Thomson is a PhD student in the De-
partment of Computer and Information Sci-
ences at the University of Strathclyde. He re-
ceived his BSc in Software Engineering from
the University of Strathclyde. Contact him at
the Univ. of Strathclyde, Dept. of Computer
and Information Science, Livingstone Tower,
26, Richmond Street, G1 1XH Glasgow, Scot-
land; Graham.Thomson@cis.strath.ac.uk.

Sotirios Terzis is a lecturer in the Depart-
ment of Computer and Information Sciences
at the University of Strathclyde. He received
his PhD in the Computer Science Depart-
ment at Trinity College Dublin. His research
interests include context-awareness and trust
management in pervasive computing systems.
He received his BSc and MSc with a special-
ization in distributed systems from the Uni-
versity of Crete. He is a member of the
ACM, the IEEE Computer Society, and the
British Computer Society. Contact him at the
Univ. of Strathclyde, Dept. of Computer and
Information Science, Livingstone Tower, 26,

Richmond Street, G1 1XH Glasgow, Scotland;
Sotirios.Terzis@cis.strath.ac.uk.

Paddy Nixon Paddy Nixon is the Profes-
sor of Distributed Systems and head of the
Systems Research Group (SRG) in the De-
partment of Computer Science in the Univer-
sity College Dublin Ireland. Contact him at
Paddy.Nixon@ucd.ie.

References

[1] The adaptive house. See:
http://www.cs.colorado.edu/m̃ozer/house/.

[2] Easy living. See:
http://research.microsoft.com/easyliving/.

[3] Fuzzyj toolkit. See:
http://www.iit.nrc.ca/IR public/fuzzy/
fuzzyJToolkit2.html.

[4] Jade - java agent development framework.
See: http://jade.tilab.com/.

[5] Jess, the rule engine for the java platform.
See: http://herzberg.ca.sandia.gov/jess/.

[6] Daniel Salber Anind K. Dey and Gre-
gory D. Abowd. A conceptual frame-
work and a toolkit for supporting the rapid
prototyping of context-aware applications.
HCI Journal, 16(2-4), 2001.

[7] Christian Becker and Frank Durr. On lo-
cation models for ubiquitous computing.
Personal Ubiquitous Comput., 9(1):20–31,
2005.

[8] H. Chen, T. Finin, and A. Joshi. A context
broker for building smart meeting rooms.
In Proceedings of the Knowledge Represen-
tation and Ontology for Autonomous Sys-
tems Symposium, 2004 AAAI Spring Sym-
posium. AAAI, March 2004.

[9] Earl Cox. The fuzzy systems handbook:
a practitioner’s guide to building, using,
and maintaining fuzzy systems. Academic
Press Professional, Inc., San Diego, CA,
USA, 1994.

[10] Anind K. Dey and Gregory D. Abowd.
Cybreminder: A context-aware system

for supporting reminders. In Proceed-
ings of the 2nd international symposium
on Handheld and Ubiquitous Computing,
pages 172–186. Springer-Verlag, 2000.

[11] Anind K. Dey and Gregory D. Abowd.
Towards a better understanding of con-
text and context-awareness. In Conference
on Human Factors in Computing Systems
(CHI 2000), The Hague, The Netherlands,
April 2000.

[12] Charles Forgy. Rete: A fast algorithm for
the many patterns/many objects match
problem. Artif. Intell., 19(1):17–37, 1982.

[13] Karen Henricksen and Jadwiga Indul-
ska. A software engineering framework
for context-aware pervasive computing. In
PerCom, pages 77–86. IEEE Computer
Society, 2004.

[14] Jadwiga Indulska, Karen Henricksen, Ted
McFadden, and Peter Mascaro. Towards
a common context model for virtual com-
munity applications. In 2nd International
Conference on Smart Homes and Health
Telematics (ICOST), 2004.

[15] Nicholas R. Jennings and Michael J.
Wooldridge. Applications of intelligent
agents. In Agent Technology: Founda-
tions, Applications, and Markets, pages
3–28. Springer-Verlag: Heidelberg, Ger-
many, 1998.

[16] Cory D. Kidd, Robert Orr, Gregory D.
Abowd, Christopher G. Atkeson, Irfan A.
Essa, Blair MacIntyre, Elizabeth D. My-
natt, Thad Starner, and Wendy New-
stetter. The aware home: A living
laboratory for ubiquitous computing re-
search. In CoBuild, volume 1670 of Lecture
Notes in Computer Science, pages 191–
198. Springer, 1999.

[17] Gary Look, Buddhika Kottahachchi,
Robert Laddaga, and Howard Shrobe.
A location representation for generating
descriptive walking directions. In IUI
’05: Proceedings of the 10th international
conference on Intelligent user interfaces,
pages 122–129, New York, NY, USA, 2005.
ACM Press.

[18] Nuria Oliver, Ashutosh Garg, and Eric
Horvitz. Layered representations for learn-
ing and inferring office activity from multi-
ple sensory channels. Comput. Vis. Image
Underst., 96(2):163–180, 2004.

[19] Donald J. Patterson, Lin Liao, Dieter Fox,
and Henry A. Kautz. Inferring high-
level behavior from low-level sensors. In
Anind K. Dey, Albrecht Schmidt, and
Joseph F. McCarthy, editors, Ubicomp,
volume 2864 of Lecture Notes in Computer
Science, pages 73–89. Springer, 2003.

[20] Matthai Philipose, Kenneth P. Fishkin,
Mike Perkowitz, Donald J. Patterson, Di-
eter Fox, Henry Kautz, and Dirk Hah-
nel. Inferring activities from interactions
with objects. IEEE Pervasive Computing,
3(4):50–57, 2004.

[21] A. Ranganathan, J. Al-Muhtadi, and
R. H. Campbell. Reasoning about uncer-
tain contexts in pervasive computing en-
vironments. IEEE Pervasive Computing,
3(2):62–70, 2004.

