
Computer Analysis of User interfaces Based
on Repetition in Transcripts of User Sessions

ANTONlO C. SIOCHI

Christopher Newport College

and

ROGER W. EHRICH

Virginia Tech

It is generally acknowledged that the production of quality user interfaces requires a thorough

understanding of the user and that this involves evaluating the interface by observing the user

working with the system, or by performing human factors experiments. Such methods tradition-

ally involve the use of videotape, protocol analysis, critical incident analysis, etc. These methods
require time consuming analyses and may be invasive. In addition, the data obtained through

such methods represent a relatively small portion of the use of a system. An alternative

approach is to record all user input and system output (i.e., log the user session), Such
transcripts can be collected automatically and noninvasively over a long period of time. Unfortu-

nately this produces voluminous amounts of data. There is therefore a need for tools and

techniques that allow an evaluator to identify potential performance and usability problems

from such data. It is hypothesized that repetition of user actions is an important indicator of

potential user interface problems.

This research reports on the use of the repetition indicator as a means of studying user session

transcripts in the evaluation of user interfaces. The paper discusses the interactive tool con-

structed, the results of an extensive application of the technique in the evaluation of a large

image-processing system, and extensions and refinements to the technique. Evidence suggests

that the hypothesis is justified and that such a technique is convincingly useful.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques–

user interfaces; H. 5.2 [Information Interfaces and Presentation]: User Interfaces —
evaluation /methodology

General Terms: Human Factors, Measurement

Additional Key Words and Phrases: Maximal repeating patterns, repeated usage patterns,

transcript analysis, usability, user interface evaluation, user interface management systems

This research was partially supported with funds obtained from grants by the IBM Corporation,

Software Productivity Consortium and the Virginia Center for Innovative Technology. We also
acknowledge the support of the Dialogue Management Project and the Contel Technology Center
for funding current research on this topic.
Authors’ addresses: A. Siochi, Department of Physics and Computer Science, Christopher
Newport College, Newport News, VA, 23606, email: siochi@pcs.cnc. edu; l.%,W. Ehrich, Depart-
ment of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106, email:

ehrich@tcsl. cs.vt. edu.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
@ 1991 ACM 1046-8188/91/1000-0309 $01.50

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991, Pages 309-335.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F119311.119312&domain=pdf&date_stamp=1991-10-01

310 . A. C. Siochi and R. W. Ehrich

1. INTRODUCTION

Recently, support has been growing for the process of iterative refinement

and rapid prototyping—a development process in which user feedback is an

essential element [5, 11, 13, 25, 26, 27]. If one accepts the arguments in favor

of such a methodology, then one is faced with the task of empirical evaluation

and the problem of locating interface weaknesses as quickly and inexpen-

sively as possible. Apart from informal observation, most evaluation involves

either formal experiments or field research.

Formal experiments utilize controls such as benchmark tasks in order to

ensure statistically significant results. Videotape is normally used to record

the experiment for subsequent analysis. This step is often tedious and

time-consuming, taking up to a day or more for a one hour experimental

session [171. Apart from this problem, a more serious drawback is the lack of

a natural work context imposed by the benchmark tasks: “ . . . the deliberate

restricting of focus has the effect of making an a priori value judgment

that these operations are at the heart of usability for the system” [25]. Hence

the alternate technique of field research involves visits to the users’ place of

work, where evaluators interview users as they work. Unfortunately, this

technique examines only a thin slice of the user’s daily experience with the

system. Eason [71 also points out that “It is very easy to overlook usability

problems in subjective evaluations. ”

Formal experimental techniques tend to provide very exact results, but

about narrow and specific areas. However, there are few formal procedures for

identifying those interface aspects that require experimental investigation. In

addition, experiments are typically expensive to conduct, and they can take a

long time. Field research techniques can provide results in less time and with

less money than formal experiments; however, the results can not be vali-

dated in the strict experimental sense. Both the formal experimental tech-

niques and field research techniques are invasive as well, although in

different ways: the experimental techniques pluck users out of their natural

environments, whereas the field techniques insert the researcher into that

environment.

The contribution of this research is a new, relatively low-cost evaluation

technique for helping the developer locate interface problems. It is based

upon the detection of repeated user actions in computer-collected transcripts

of user sessions. The algorithm and tools developed to detect this repetition

can rapidly identify sections of transcript associated with potential interface

problems. Because of this capability, there is no need to review all the raw

data. This results in faster analyses and makes feasible the analysis of data

collected over extended periods of time.

2. TRANSCRIPT ANALYSIS

One empirical technique that preserves portions of the natural work context

and is not invasive is transcript analysis. All user input and system output is

captured in real-time to a file which is analyzed later. This file, or transcript,
ACM Transactions on Information Systems, Vol 9, No. 4, October 1991.

Computer Analysis of User Interfaces . 311

serves the same role as a videotape of the terminal screen. Both are records

of the interactions performed in a user session.

Transcript analysis has several advantages. First, the data represent the

user’s interaction with the system under actual working conditions, rather

than on contrived laboratory exercises. Second, since the data are stored in

on-line files, they are accessible to algorithmic analysis and data reduction

techniques. Such analytic tools can relieve the evaluator of the tedium

associated with analysis, thereby encouraging the use of evaluation. Third,

because data collection is automatic, there is no need for an observer or

experimenter to be present. This absolutely eliminates any interference due

to an observer, and means that data can be collected in situ, rather than at a

laboratory, and collected from many users at the same time. Fourth, analytic

tools also enable rapid analysis, thus providing quick feedback to designers

or immediate debriefing of subjects. The analytic tools also make possible

analyses involving vast quantities of data, which would never have been

considered with videotape.

Transcript analysis also has some intrinsic limitations. First, since the

data represent actual work contexts and not any predefined tasks, it is

difficult to infer from the transcripts what a user was trying to do. This is

especially true when only user input is present in the transcript. However, it

is also possible to conduct short, focused interviews with users to discuss

portions of the transcript identified by analysis.

Second, users tend to use a subset of a software application rather than the

entire system, with the result that transcripts do not provide data for the

entire system. It is important to realize, however, that it is also useful to

know which parts of a system are not used.

Similarly, some users exercising system features experience no identifiable

problems while others experience difficulties with the same features. Thus it

is important to collect data from as wide and diverse a set of target users as

possible.

Third, some version of the system must be implemented and installed in

order for transcripts to be collected. Thus design changes suggested by the

transcript analysis can only be applied to the next version of the system. This

limitation does suggest that transcript analysis may not be appropriate for

early evaluation of systems. However, once some version of the system or its

prototype is implemented this technique is readily applicable.

Finally, although neither videotape nor transcripts capture user intent,

transcripts capture less information than videotape. For example, transcripts

do not capture the physical work environment or visual information related

to the user tasks. The question, however, is whether logging user sessions

can capture enough data to be useful. In addition, it is essential that the

analysis be automated in some fashion, since merely recording user input

replaces hours of videotape with megabytes of files.

This problem can be seen in the approach of Neal and Simons [18]. They set

up one computer to intercept, record, and time-stamp each keystroke. Each
keystroke was then passed to the other computer which ran the application

system, so that no modifications to the application system were required.

Analysis was performed by “replaying” the keystroke file, that is, the file

ACM Transactions on Information Systems, Vol 9, No. 4, October 1991.

312 . A, C. SIochl and R. W Ehrich

was used like a videotape. Unlike videotape, the observer was able to

annotate the logfile directly with observations (e. g., critical incidents) or

comments. The system also provided some analysis help in the form of

frequency of occurrence of critical incidents, the time between such incidents,

or an incident and the next user keystroke, frequency of use of commands or

function keys, time spent in help, total session time, and number of help

requests. Neal and Simons found their methodology to be “ . very effective

for objective evaluation and comparison of software including the user inter-

face design and software documentation. ” However, this still involves man-

ual review of the entire transcript.

There are several examples of automating the analysis. Each involves

reduction to summary data. Cohill and Ehrich [61 describe a set of programs

and routines developed to collect keystrokes and state information, and

compress the raw data. The variables they measured were time spent in help,

number of times help was invoked, and frequency of command use. They

inserted calls to the transcript recording routines at strategic points in the

code of the system they were investigating, then using their tools, reduced

the resulting data to a form suitable for immediate input to SAS [201. They

found the tools they developed to be “extremely convenient,” and report that

it was better to collect as much data as needed, and reduce that data, rather

than skimp on data collection despite the large amounts of data involved.

Good [101 analyzed existing keystroke data collected at numerous sites,

representing the use of five different text editors. The results were used in

the design of a new text editor. Transition frequencies between keystrokes

were used to aid in the layout of keys, for example, the inverted-T layout of

the cursor keys. The new command set was based upon command usage

frequencies. The new editor itself was instrumented to log commands, and

usage data were collected to determine the judiciousness of design decisions

taken and to provide feedback for the next design iteration.

Hanson et al. [121 collected command usage data on UNIX ‘M and applied

elegant statistical analysis techniques to the data. They determined a core

set of commands by studying command frequencies. They also constructed a
command transition matrix from the data. From this matrix and by applying

multivariate grouping techniques, they were able to determine the degree to

which a command is used together with many other commands. Treating this

same matrix as a contingency matrix enabled them to determine the statisti-

cal sequential dependencies among commands. They prescribed some restruc-

turing of the UNIX interface based upon these results.
One problem shared by these techniques is data collection. The collec-

tion methods involved ad hoc interface modification or external keystroke

collection hardware. Ideally, transcript analysis should be supported by a

User Interface Management System (UIMS) [8, 13, 191. This would eliminate

the need for interface modifications to collect user input and provide inte-

grated support for an evaluator’s data collection, management and analysis

activities. At least two UIMSS have supported transcript collection [8, 191. In

‘“UNIX is a trademark of Bell Laboratories,

ACM Transactions on Information Systems, Vol 9, No 4, October 1991

Computer Analysls of User Interfaces . 313

particular, Olsen and Halversen [191 provided metrics such as performance

time, mouse motion, command frequency, command pair frequency, number

of physical and logical input events, and visual and physical device swap-

ping. The interface profile used by their UIMS to generate the interface was

also used by the metrics computation and report generation program to

produce a list of commands ranked from worst to best for each metric.

The examples presented above all involve reduction of data to summary

results, such as command usage frequencies, command or keystroke transi

tion frequencies, or time spent in a certain state. Such measures are conve-

nient but do not completely reflect the kind of information a person can detect

by reading transcripts. For example, when one reads transcripts, one notices

patterns of user commands such as repeated sequences of a command inter-

spersed with error messages, or a group of commands that occurs at more

than one place in the transcript. The human evaluator is naturally drawn

toward these patterns or repeated sequences of commands.

One could search for specific patterns of user actions, sutih as a sequence of

three help commands, but this assumes that such patterns are the only

important indicators of interface problems. On the other hand, making no

assumptions at all requires reading entire transcripts. The technique de-

scribed in this paper attempts to locate problems by detecting repetition

rather than searching for specific patterns. While other evaluation methods

may be used to test small interfaces, in very large interfaces it is extremely

difficult to test the interface or even make good hypotheses upon which to

base limited tests. What is usually done is to ask users to take notes and

comment on problems they encounter. It has been our experience that this

does not work too well—users seldom respond to requests for problems, Our

method generates reasonable hypotheses from massive user transcript data

files.

3. MAXIMAL REPEATING PATTERNS (MRPs)

A user session transcript is the complete record of user input actions and

system responses generated as a result of using the system, User input

actions are extracted from this transcript and represent the time-ordered

sequence of user inputs. In a. command line interface this extract consists of

lines of command strings. Other interface styles, such as direct manipulation

[211, will have different types of user actions. Such actions, however, can be
represented in some textual fashion [23] and thus should yield to the tech-

niques described here. For example, mouse clicks could be recorded as screen
coordinates, as selections of screen objects or as menu selections depending

upon the grain of analysis desired. Since the MRP algorithm examines only

user inputs, representing graphical output (a more difficult problem) is not

strictly necessary to test this evaluation technique. It is therefore sufficient

to examine only command line interfaces as a preliminary investigation.

3.1 Repeating Patterns: The Repetition Hypothesis

This paper hypothesizes that repeated sequences of user actions can indicate

problems with the user interface. The Rationality Principle [4] is assumed,

that is, users carry out a sequence of tasks to achieve some goal. Users

ACM Transactions on Information Systems, VO1 9, No 4, October 1991.

314 Q A. C Siochi and R. W Ehrich

accomplish tasks by manipulating the computer’s input devices and monitor-

ing its output devices in a manner dictated by the user interface. Commands

and data are entered and the resulting output is observed. If the results are

satisfactory then the task was accomplished. If the results are not satisfac-

tory, or if an error occurs, users must respond since the task was not

accomplished. Transcripts of user sessions are records of this flow of input,

resulting output and input in response, Therefore, it can be reasonably

assumed that such transcripts reflect sequences of tasks users carry out.

Furthermore, inasmuch as these sequences of actions are made possible, and

are partly governed by the interface, the quality of the user’s interaction with

the system is also reflected by those transcripts.

Over a sufficiently long period of time, a user is likely to repeat those tasks

which are useful or which support that user’s computational needs, Other-

wise those tasks were not useful or the user has constantly changing needs.

Since these tasks are accomplished by issuing commands, then over that

period of time it is reasonable to expect repetition of command sequences in a

user transcript. Moreover, when users have problems using the system, they

are also likely to repeat sequences of commands in the attempts to accom-

plish their task. Consider the following typical transcript of a UNIX session:

% cat garam.masala
garam masala. No such file or directory
% cat garram masala
garram. masala: No such file or directory
% cat garamasala
garamasala No such file or directory
% Is
README spices/
% Is cpises
cpises: No such file or directory
% Is spices
GARLIC chillies cloves cumin tumeric
basil cinnamon coriander garam, masala
% cat garam masala
garam masala No such file or directory
% cd spices
% cat garam. masala

cinnamon, cloves, and other good stuff
%

In this example, the user is trying to print the contents of the garam masala

file. The user attempts this task three times, each time receiving an error
message, Finally, the user decides to list the contents of the current directory

believing that the error is a misspelled filename. The listing reveals instead

that the error was the issuing of the cat command in the wrong directory. As

a result, the user searches for the correct directory by repeating the Is

command.
Another example is that of frequent similar dialogues with the help

system. A command sequence such as

A > TYPE B: INPUT*.TXT
ERROR. BAD FILENAME

ACM ‘hansactlons on Information Systems, Vol 9, No, 4, October 1991

Computer Analysis of User Interfaces . 315

A > HELP TYPE
/* help information for the type command is printed * /
A > TYPE B:\ INPUT*.TXT
ERROR: BAD FILENAME
A> HELP TYPE

might indicate a problem with the help entry for the TYPE command.

Thus we see that repetition of command sequences can be expected both

in the routine, error-free user sessions and in the sessions where users

have problems. Repeated action sequences may therefore mean any of the

following:

(a) commands are at too low a level for the tasks,

(b) the user is circumventing an application malfunction,

(c) a user is searching for a way to do something, or

(d) some malfunction is causing loss of state information which must be
regenerated

Case (a) would be indicated by repetition in error-free sequences. By detect-

ing such frequently repeating actions and providing macros for them, it may

be possible to reduce performance times and errors. Cases (b), (c), and (d)

involve errors, clearly situations which an evaluator wants to see. In the

UNIX transcript above, the repetition indicated a loss of state information

(the current working directory) on the part of the user. The Results section

lists examples of these cases.

3.2 The String Model of Transcripts

The problem of detecting repeating sequences of command strings in the

extract is equivalent to detecting repeating sequences of characters in a

string where each character in the string represents a command. The com-

plete string then represents the entire extract and a task would be repre-

sented by some substring, Only substrings of length at least two will be

considered,

Detecting repeating substrings presents some difficulties. Consider the

string “abcabc.” ‘I’he repeating substrings are “abc,” “ah,” and “be.” Which
repeating substrings should be reported? Recalling that each character in the

string really represents some user action, the question is really “which

substring or pattern is behaviorally interesting?”
Because “ah” and “be” are substrings of the repeating substring “abc,” it

is more efficient to report just the substring “abc,” since any substring of a

repeating substring must also re~eat. Apart from the computational expense

of finding and reporting all repeating substrings, there is the expense of

analyzing the prodigious volume of data that would be produced.

Consider further the string “abababab.” Is the user performing 4 sets of
“ah,” or 3 sets of “aba” or “bab,” or 2 sets of “abab,” etc. ? This question

cannot be answered on the basis of syntax alone, but requires knowledge of

the semantics of “a” and “b.” By reporting only longest repeating substrings,

“ababab” in this case, it is possible for the analyst to study substrings as

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

316 . A. C. Siochi and R. W Ehrich

required and not be inundated with data. This research introduces a modifi-

cation of these longest repeating substrings: maximal repeating patterns. For

a formal definition, see Siochi [22],

3.3 Definkion

A repeating pattern is a substring which occurs at more than one position in

a string. A maximal repeating pattern, MRP, is a repeating pattern that is as

long as possible, or is an independently occurring substring of a longer

pattern. For example, in the string “abcdyabcdxabce,” the substrings “ah,”

“abc, “ “abed,” “be,” “ bed,” and “cd” are repeating patterns, whereas only

“abed” and “abc” are maximal repeating patterns. “abed” is an MRP be-

cause it is not a substring of any repeating pattern, that is, it is of maximal

length. “abc” is an MRP even though it is a substring of “abed” because

“abc” also appears independently of “abed” (after “ x“). This special case is

an attempt to preserve “context. ” For example, “abc” occurs in two contexts,

“abed” and “abce. ” It may be important to know that in one case “abc”

precedes “d” while in another it precedes “e. ” MRPs may also overlap, as in

“abcabcabc,” where “abcabc” is the MRP (one instance occurs at the first

position and the other instance at the fourth position).

3.4 Algorithm

The detection of MRPs and the positions at which they occur can be a very

expensive task since the problem is not pattern search, but pattern detection

(i.e., patterns are not known beforehand). A brute-force algorithm would

exhibit an 0(n3) time complexity, which for large n could discourage inter-

face evaluators from using the method.

Siochi [22] has developed an order 0(rz2) algorithm based upon position

trees [2, 241 to detect all the MRPs in a transcript, as well as report the

positions at which they occur. Other algorithms exist which find longest

repeated substrings (e. g., see Blumer et al. [3], Karp et al. [15] and Weiner

[24]); however these do not detect the independently occurring patterns.

The MRP detection algorithm makes use of position trees [2, 20], which are

trees whose leaves correspond exactly to each position in a string and whose

arcs are labelled with characters of the string (see Figure 1). Each position in

a string is uniquely identified by a substring—the shortest sub string which

occurs at that position and nowhere else. The path from the root to a leaf

corresponds to this identifying substring. As a result, any proper prefix of
this path is a repeating substring and occurs at the positions represented by

the leaves in the subtree whose root is the terminal node in that path. For

example, in Figure 1 the substring “be” occurs at positions 1 and 4.

The algorithm starts with a longest repeating substring, since such a

substring is an MRP by definition, and eliminates leaves from the position

tree whose positions fall within that longest repeating substring. Referring

again to Figure 1, the algorithm would start at the node labelled a. The
prefix “abc” occurs at positions O and 3 and therefore any substrings occur-

ring at positions 1, 2, 4, and 5 cannot be MRPs. The algorithm thus deletes

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991

Computer Analysis of Llser Interfaces . 317

S = abcabcxab$
(position) 012345$7$9

I = { abca, bca, ca, abcx, bcx, CX,x, ab$, b$, $ }

c

x

II3
Fig 1. Position tree for the string S = “abcabcxab’”,

those leaves. This procedure is repeated for the next longest repeating

substring, until no more leaves can be eliminated. The longest prefixes of the

paths to the remaining leaves are the MRPs and the remaining leaves are

the positions at which they occur.

4. TOOLS

4.1 The Normalizer

The normalizer translates raw transcripts into a standard form that the MRP

tool uses, thereby keeping the MRP tool independent of the formats which

data logging routines might use. As a result, transcripts of any system can be

analyzed without changing the MRP tool, provided a normalizer can be
written for that system’s transcripts.

The normalizer consists of a couple of short AWK programs and a C-shell

script. AWK [1] is a pattern scanning and processing language available on

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

318 . A C. Siochi and R W. Ehrich

Raw Transcript Extracted Input Lines

1) Welcome to GIPSY 3: SYSTEM DIR
2) 7: SYSTEM PURGE
3) G: SYSTEM DIR
4) MAP. SIF;l
5) TOTAL OF 1 FILES
6)

Extracted Commands (Normalized)

7) G: SYSTEM PURGE
8) G: QUIT
9) YOU THINK OF SOMETHING BETTER

Fig. 2 The normalizer converts raw transcripts to a standard form

most UNIX systems, while C-shell is a UNIX command line interpreter. An

AWK program is a sequence of pattern-action pairs. The AWK interpreter

reads a line of the input file and executes the actions for each pattern

matched by the input line.

Figure 2 shows the transformations carried out by the AWK programs. The

first AWK program extracts user input lines from the raw transcript, includ-

ing line numbers. The second AWK program then extracts the command

portions which form the input for the MRP tool.

A more powerful means of building a normalizer would be to use LEX and

YACC [14, 16], a pair of compiler writing tools available on UNIX systems.

These tools transform a grammar describing the raw transcript file into a

normalizer.

4.2 The MRP Tool

Capabilities. The MRP tool produces a list of MRPs from a normalized

transcript. An evaluator can then

—scan this list,

—select MRPs from this list based on a few criteria (e, g, the length of an

MRP),

—examine the MRPs at various levels of detail,

— obtain summary information about the transcript (e. g., number of MRPs

found, frequency of occurrence of commands), and

— save any of this information to a file.

as well as perform operating system commands (in this case, UNIX) from

within the tool. There is also a limited form of macro capability, which when

combined with the C-shell allows a set of MRP tool operations to be per-

formed automatically on several different normalized transcripts.

The tool does not produce metrics-style numbers indicating the usability of

an interface; such metrics are an open research issue. It is important to

realize that the MRP tool is not a “data summarizer, ” but an identifier of

potentially interesting episodes in the transcript. The tool is valuable in two

ACM Transactions on Information Systems, Vol 9, No. 4, October 1991

Computer Analysis of User Interfaces . 319

MRP List Raw Transcri pt

i~llt+ abq >a
result is ffoo

>b

ok
>C

fine

>$
Positions at which + >a

instances of MRP result is goo
“a&” occur _ >b

what?

>C

ok
>d

>X

b sa

no result

>b

error
>C

Fig. 3, Relationship of MRP list to the raw transcript file.

ways: an evaluator does not have to read the entire transcript to find

repeating patterns and the tool may uncover patterns the evaluator might

miss. It remains the evaluator’s job to determine the significance of individ-

ual MRPs.

General operation. The MRP tool uses three types of input files:

.raw transcript data file containing both user input and system output,

.inp derived from raw file; contains only user input lines from the

raw files, and

.cmd derived from inp file; contains only the command part of the

input line.

The MRP tool uses the .cmd file to scan for MRPs, while keeping track of

where instances of an MRP occur in both the .inp and raw files (i. e., the line

numbers in these files at which the instances occur). The relationship among

these files is shown in Figure 2.

As a result of the scan, the tool produces a list of MRPs found in the
transcript (see Figure 3). By definition, each of these MRPs has at least two

instances that occur at distinct positions in the transcript file. An inter-
face evaluator analyzes the transcript by examining MRPs in the list and

ACM Transactions on Information Systems, Vol, 9, No, 4, October 1991.

320 . A, C. SIochi and R W. Ehrich

selecting those that are “interesting. ” For example, an evaluator might

notice that a certain MRP has a large number of instances or that an MRP is

a sequence of repetitions of the same command. For each MRP that is

“interesting,” the evaluator may examine the instances of that MRP by

viewing the complete input lines which make up the instance and, if more

detail is needed, by examining the output lines associated with those input

lines. Any information discovered can be copied to another file.

In addition, the evaluator can select MRPs from the list based upon criteria

such as length of an MRP. A new list is created containing all MRPs which

satisfy the selection criteria. This “filter” list can be refined by further

applications of selection criteria.

A command occurrence table is generated as a by-product of the MRP

detection operation. The evaluator uses a separate program to compute

statistics such as usage frequency, number of sessions represented by the

transcript and maximum, average, and minimum number of commands

executed per session.

5. TESTING MRP USEFULNESS

The usefulness of MRPs in interface evaluation was studied by analyzing the

interface of GIPSY, a large and complex system in regular use at the Spatial

Data Analysis Laboratory at Virginia Tech. GIPSY was selected as the

testbed because of this fact and because its users were known to complain

about it being hard to use. Thus if MRP analysis did not reveal any problems

with the interface, it was unlikely that MRP analysis would prove useful in

interface evaluation. If MRPs did point to problems with the interface, that

would indicate the method was promising, and that further research should

be undertaken.

5.1 GIPSY

GIPSY is an image processing system designed to run on the VAX ‘M series

of computers [91. At present, it supports over three hundred and fifty image
processing algorithms, ranging from the classical to the most advanced. It is

in use at numerous sites throughout the United States. Its interface is a

highly modal command line interpreter which supports execution of local

operating system commands from within GIPSY.

5.2 Procedure

GIPSY was modified to record all user keystrokes and system output on a

user session basis. All keyboard and screen activity was recorded since it was

not known precisely what information would prove useful. The data were

collected over three months.

The evaluation procedure is illustrated in Figure 4. First, the collection

period transcripts of each user were concatenated in chronological order,

producing a single raw transcript representing all the sessions of that single

‘“VAX is a trademark of Digital Equipment Corporation.

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991

Computer Analysls of User Interfaces . 321

SYSTEM

Normalized Transcripts

Vw

Concatenate
session files NORMALIZER MRP Tool

?,L
Interviews

complete command lines,
pointers to raw transcript sections,

:>

MRP information (e.g., number of MRPs found),
command counts

Arrows indicate data flow

Fig. 4. MRP analysis tools and the evaluation process

user. This reduced the number of files to be analyzed and allowed a single

analysis across all sessions of that user. After the raw transcripts were

translated into a standard format, MRPs were extracted. The MRP list was

scanned by the evaluator, and where necessary, complete command lines
corresponding to the MRPs were reviewed and the corresponding raw tran-

script sections examined. Two GIPSY users were interviewed subsequently.

This step was essentially a debriefing structured by the MRP analysis

results. The findings were then summarized.

6. RESULTS

The transcripts of 17 users totalling 300,000 lines of raw transcripts were

normalized, yielding 17,086 command lines. From these command lines,

3,523 MRPs were detected, resulting in the discovery of 12 problem classes in

ACM Transactions on Information Systems, Vol 9, No. 4, October 1991

322 . A, C. SIochi and R. W. Ehrich

Table 1, Problem Classes Detected Using MRPs

PREVIOUSLY
lzNnuTN

PROBLEM CLASS PREVIOUSLY
KNov “

Consecutive Invc
GE%’
User 1
Poor Feedback
SYSTEM Response 1une 1
Error Messages ves 1

PROBLEM CLASS
‘11A .-. ./,,,.

ocations Parser

Y Response Time yes EZPLOT
Macros PRTPF

yes LWPIC
--- -l..–– I

EXPL yes

CR.unfiles

Table 11, Some Information from MRP Analysis of Seventeen Transcripts

USER NUMBER NUMBER ~ LENGTH OF TYPE ONE MRPS PER
OF LINES OF MRPS LONGEST MRP MRP COMMAND

MRP PRESENT? PRESENT? LINE

Uo 1 118 26 8 0 1 .22
U02 85 13 17 1 0 .15
U03 2728 520 26 1 0 .19

U04 76 10 9 0 1 .13
U05 50 13 4 1 0 .26
U06 223 34 6 1 1 .15
U07 220 41 6 1 0 .19
U08 4778 951 29 1 1 .20
U09 66 9 7 1 0 .14
Ulo 234 44 6 1 0 .19
Ull 2867 681 21 1 1 .24
U12 22 3 6 0 .14
U13 121 14 26 : 0 .12
U14 1079 268 25 1 1 .25
U15 2248 476 19 1 1 .21
U16 1262 220 37 1 1 .17
U17 909 200 17 1 0 ,22
Totals 17086 3523 269 14 8 average =.2 1

Average number of MRPs per user= 207 82% of users had type one MRP
Average length of longest MRP = 16 47% of users had type two MRP

GIPSY, four of which were previously known (see Tables I and VI). Analysis

based solely on MRP lists revealed several interesting and specific problems
with GIPSY, yet left several questions. Interviews validated certain deduc-

tions made in the first analysis and answered questions of that stage.

The next section describes the first four problems listed in Table I and the

succeeding section deals with the remainder.

6.1 MRP List Analysis

MRPs were analyzed over an eight-hour period, the bulk of which was spent
studying the MRP lists, each of which took a few seconds on average to

generate. Table II gives, for each user, the number of MRPs detected, the

ACM Transactions on Information Systems, Vol 9, No 4, October 1991

Computer Analysis of User Interfaces . 323

O) DSPLY
1) DSPLY
2) DSPLY
3) DSPLY
4) DSPLY
5) DSPLY
6) DSPLY

at: 656 657 658 1137
1138 1139 1565 1574...

Total number of positions = 8.

Fig. 5. An instance of a type one MRP:
consecutive invocations of the same com-
mand.

Table III. Commands Found in ~pe One MRPs (Definitions from [9])

BINSIF Convert binary data to Standard Image File (SIF) format
U-lRSIF Convert a character file to a SIF file
DSPLY Display an image in the SIF format
EXPL Explain GIPSY commands
INVIMG Invert the gray levels of an image,
MHIST Computes histogram of an integer image

a

Switch command input from terminal to RUN file

SBIMG Extract a subimage
SIFCHR Convert a SIF image into a character file
SYSTEM Run local system command

length of the longest MRP, and whether or not two types of MRPs were

found.

Consecutive invocations. Given the large number of detected MRPs, only

those which violated expected usage patterns of commands in general were

pursued. For example, type one MRPs are those consisting of consecutive

invocations of the same command (see Figure 5). Ten of the 350 GIPSY

commands produced this type of MRP (see Table HI), Type one MRPs may

indicate that a user needs to perform the same command on several objects,

that a user is searching for a way to do something or that the user is

“fine-tuning” a single object. For example, a user may have a list of files that

need to be converted from one format to another, a user may be repeating the

same command with different arguments to discover the proper syntax or a

user may be debugging a macro. In the first case, a possible remedy could be

to allow an arbitrary number of arguments for each such command. The

second case would suggest a review of the syntax of that command, while the

last case requires a closer study of the nature of the “fine-tuning.” The fact

that 82% of the sample users exhibit this MRP type suggest that this

indicates a problem inherent in the interface design, rather than a collection

of user idiosyncrasies.

GIPSY response time. Type two MRPs consist of consecutive lines where

no commands were entered (see Figure 6). These indicate anomalous use of

ACM Transactions on Information Systems, Vol. 9, No 4, October 1991.

324 * A. C. Siochi and R. W. Ehnch

Fig. 6. An instance of a type two MRP: empty

command lines.

o)

1)

2)
3)
4)
5)
6)

at: 511 667 668 669
670 671 672 673...

Total number of positions = 21.

Table IV. Sample MRPs

A B c D-
235 times: 36 times: 26 times: 19 times:
CHRSIFA > B BINSIF A > A CHRSIF A > B SOBEL A > B
EXSIF B DSPLY A PLTSIF B > C DSPLY B
DSPLY B PRINT C

13 times: 29 t!mes:

TRSLD A > B STCP
PLTSYM B > C STCP

I

the command line terminator, which for GIPSY is the carriage return. This

MRP type may be due to factors such as poor keyboard design, defective

keyboards or long response times. However, the high proportion of users who

exhibit this MRP and the long experience designers have with keyboards

suggest that GIPSY response time is the more likely cause.

User macros. Table IV shows six sample MRPs. The notation “X A > B“

means the user invoked command “ X“ using file “A” as input and file “B”

as output. Notice that most of these MRPs use the output of one command as

input to a subsequent command. Such MRPs suggest the development of

specific macros and even identify the parameters and local variables of the

macro, in addition to the sequence of commands that make up its body.

MRP “A” in this table indicates that a user tends to modify (using EXSIF)

a file that was just converted with CHRSIF. The DSPLY command is used to

verify the modifications. Because this MRP occurs frequently, a macro which

combines these commands may be desirable.

Poor feedback. MRPs “A” through “E” are indicative of loss of state

information, These show the user confirming the effects of an image manipu-
lation command. They indicate the strong need for feedback in the interface

(a previously known problem). Instead of typing an output command each

time (e. g., DSPLY), the image manipulation commands could have an option

to redisplay the image after processing it.

6.2 Structured Interview

After studying the MRP lists, it became clear that some MRPs could

be explained only by asking users what they had been doing at the time.

Two of the seventeen users, U17 and U14, were selected to be interviewed

ACM TransactIons on Information Systems, Vol 9, No 4, October 1991.

Computer Analysis of User Interfaces . 325

approximately one year after the data were collected. Both users were GIPSY

experts and did GIPSY development work. The basis for the selection was

availability, since most of the users could no longer be contacted (e. g.,

students in the image processing class).

In each interview, the user was presented the list of MRPs detected in that

user’s transcript and asked to remember what he had been doing or trying to

do. When viewing MRPs alone, neither user could remember what he had

been doing, but when the MRP tool was used to show the complete command

lines corresponding to the MRPs, they were able to remember some tasks.

When shown sections of raw transcript corresponding to the MRPs, both

users remembered almost all tasks. This is a remarkable result, considering

that one year had elapsed since the data were collected.

SYSTEM response time. One MRP which required clarification by inter-

view was “F” (see Table IV). MRP “F” is highly unusual because it shows

that in several sessions users did not invoke any GIPSY commands, that is,

users would run GIPSY then quit immediately. A reasonable inference is

that the user forgot to do something before invoking GIPSY. However,

GIPSY provides a command (SYSTEM) which allows users to access the

operating system from within GIPSY. It was thus curious why users would

quit GIPSY when they could have used the SYSTEM command. Probing

both users on this point revealed that they perceived the response time for

the SYSTEM command to be excessive and had developed a decision rule to

the effect that, for some commands, it is faster to leave GIIPSY, invoke the

operating system commands and then return to GIPSY, rather than to use

the GIPSY SYSTEM command.

Error messages and the parser. MRP “F” prompted bo~h users to make

further specific comments about the interface. For example, both users said

that another reason for not using the SYSTEM command was that the error

messages it returns are not as clear as those returned by the operating

system. U14 started to recall several other problems with the SYSTEM

command, one of which involved the GIPSY parser interpreting a SYSTEM

command as a GIPSY command.

EZPLOT. Table V lists three anomalous MRPs. MRP “G” shows the user

alternating between two commands, EDGEX2 and EZPLOT, but with the

curious characteristic that each command was a single session. When ques-

tioned, U17 stated that he used many batch files. Furthermore, he stated

that EZPLOT did not have good support for multiple plots. This MRP shows

compensatory behavior—the use of batch files to perform multiple plots.

PRTPF. In MRP “H,” %P is a command that allows the user to repeat a

previous command. In this case the raw transcript indicated that U14 was
using PRTPF to test for the length of a file. U14 confirmed this inference and

stated that the command that provides information about property files did

not show how long a file was.

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

326 . A. C, Siochi and R. W, Ehnch

Table V. Anomalous MRPs

G H I

STOP RUN REORDE.f3RUN RUN OVERRUN

PRTPF $
STOP % P RUN OVERRUN
EZPLOT %P $
STOP 0/0 P RUN OVERRUN

70P $
STOP YOP RUN OVERRUN
EZPLOT %P $
STOP %P RUN OVERRUN

%P $
STOP 0/0P RUN OVERRUN
EZPLOT $
STOP RUN OVERRUN

$
STOP
EZPLOT
STOP

L WPIC. Another interesting MRP from U14 was

ARITHM A > B
EXSIF B

LWPIC B>C

which indicates inadequate application functionality. This MRP occurs eight

times in U14’S transcript. U14 is apparently modifying file A before printing

it out. Debriefing U14 confirmed this: U14 stated that LWPIC could not print

low-contrast image files, so U14 first had to increase an image file’s contrast

using ARITHM and EXSIF.

Note that although this MRP did identify a macro, in this case the macro

constituted compensatory behavior—the real problem was LWPIC. This re-

sult shows that MRPs identify repeating usage patterns, but not the reasons

for the repetition. Examination of the contexts in which the MRP occurs is

required to deduce those reasons.

EXPL. U14 was also asked about the type 1 MRP where EXPL was the

repeated command. This was considered an anomaly as U14 was an expert

user. U14 replied that other users would ask him questions about GIPSY and

he used EXPL to help him answer those questions. This is an interesting

result because it confirms an observed tendency of naive users to ask other

users questions rather than use the help system. Thus this MRP indicates a

need for further investigation of the help system, in particular the entries for

which U14 was consulted. Note that although it was previously known that

help entries were poorly written, MRPs identified specific help entries to

study

ACM Transactions on Information Systems, Vol 9, No. 4, October 1991.

Computer Analysis of User Interfaces . 327

Table VI. Previously Known GIPSY Problems

DETECTED USING MRPS NOT DETECTED

help enties are not written well d determine which
command to use

error messages not meaningful to user command names are poorly abbreviated
GIPSY response time can be slow command guesser often guesses wrong

command
poor feedback of image manipulation slow input methods
commands

Runfiles. Another problem both users complained about as a result of

reviewing the MRPs and transcripts was that runfiles, (i.e., GIPSY macros)

caused GIPSY to terminate when the runfile terminated. U]. 7 explained that

MRP “I” was an attempt to fix this problem by alternately modifying then

running the runfile. U17 did not succeed in his attempts. This problem is an

example of users trying to circumvent an application malfunction.

6.3 Known GIPSY Problems

An informal evaluation of GIPSY was performed prior to MRP analysis. This

involved using GIPSY, reviewing manuals, and talking with users and the

GIPSY site manager. The problem classes discovered are listed in Table VI.

Although only four of the previously known problems were detected, MRP

analysis discovered eight unknown problems. This can be explained in part

because the newly discovered problems are very specific, dealing with partic-

ular commands such as LWPIC. Such problems are usually discovered only

after prolonged use, hence would not be found during a relatively brief

evaluation of the system. GIPS Y users were notorious for their lack of

response to requests from developers for comments and problems encountered.

Therefore specific problems were not likely to be known to the developers.

6.4 Problems With the Technique

It k interesting to note that relatively few GIPSY problems were detected.

There are two reasons for this result. First, GIPSY users tended to use

relatively few commands, ranging from four to sixty commands out of 350

available. Because there were no usage data for unused commands it was not

possible to detect errors associated with those commands. (However, the fact

that only a few commands are ever used can lead to a redesign of the

command set.) Second, a large number of MRPs were detected. This forced

the evaluator eventually to examine only those MRPs which occurred more

than the average number of times.

Since the number of detected MRPs reach into the hundreds for almost half

of the transcript files (see Table II), the problem of tedium is resurrected.

Figure 7, however, shows that the relationship between number of command
lines in a transcript and number of detected MRPs is linear. This means that

part of the reason why numerous MRPs were detected is because there was so
much information initially.

ACM Transactions on Information Systems, Vol 9, No 4, October 1991.

328 .

1ooo-

9oo-

800-

700.

600-

!$ 5oo -
>
75
~ 400.

E

$ 300.

200.

1oo-

A C. Siochi and R W. Ehrich

y ❑ .207x -.313, r2 = .988
0

0 Number of Mrps

o

-loo~
-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Lines

Fig. 7, Plot of number of hnes versus number of MRPs detected

A related problem is the large amount of noise present. Some MRPs did not

appear to indicate anything interesting about the interface, while other

MRPs were actually substrings of larger MRPs and repeated information

provided by the longer MRP. The first case involved MRPs which occurred at
only two positions, thus this type of noise may be attributable to chance.

Some sort of statistical filtering of MRPs, such as reporting only those
occurring at greater than chance levels, may reduce this kind of noise. The

second type of noise is due to the definition of an MRP and is probably the

main contributing factor to the large number of MRPs detected, considering

the vastly greater number of shorter MRPs (See Figure 8).

7. CONCLUSIONS

The results demonstrate that the technique was useful for finding specific

problems in the GIPSY interface (e.g., the problems with the LWPIC

command). The MRP algorithm found repeating patterns of user actions in

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991

Computer Analysis of User Interfaces . 329

9ooo-

8000.

7000.

6000-

5ooo-

4ooo-

3000.

2000.

1000.

0

t

~--–-..—_–––––––

-10004
0 5 10 15 20 25 30 35 40

mrp Ien

Fig. 8. Distribution of number of positions an MRP occurs at according to its length.

the transcripts and these patterns indicated aspects of the GIPSY user

interface which needed attention. Although MRPs do not show a problem’s

cause, MRPs did identify specific, real problems.

7.1 Advantages

The distinguishing advantage of this technique is that by making no assump-

tions about what tasks are important to users, it reveals patterns of user

actions which can indicate interface problems. Consider the user macros

listed in Table IV. It is difficult to imagine how searching for fixed patterns

of user actions would uncover such unknown patterns. The specific GIPSY

help entries which needed further investigation would be difficult to identify

by using summary data such as command frequencies. Scanning for repeti-
tions revealed these specific patterns.

The technique was also useful in preparing and conducting the struc-

tured interviews. Users can be shown MRPs and recognize problems they

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

330 . A C Siochi and R W. Ehrich

experienced rather than be forced to recall problems when confronted with

the standard question, “What did you dislike about the system?” This was

particularly useful in GIPSY since attempts by the developers to get users to

report problems failed. In fact, a GRIPE command which allowed users to

make problem reports while in GIPSY was used only once since it was

installed.

Another benefit is the speed of the tool both for analyses and interviews.

Long processing times would tend to discourage evaluators from using the

technique, while rapid processing makes possible the analysis of large

amounts of data. Quick access to information such as MRPs, complete

command lines and raw data is important in interviews because a busy user

has graciously volunteered some time.

Finally, the specificity of the problems identified by this technique is useful

to developers responsible for maintaining the system. The ability to point to

and present raw transcript sections corresponding to problems is a tremen-

dous advantage in debugging and is not usually provided by user complaints.

7.2 Limitations

The technique’s central limitation is the type of information it provides.

MRPs focus on specific, detailed problems encountered by users. General

aspects of the usability of the system are not directly exposed. For example,

although this technique identified the previously known GIPSY problems of

poor response time and error messages, it did not show the well-known

deficiency of GIPSY, which is the great difficulty users have in discovering

which command to use for the task they wish to perform. However, the mere

fact that GIPSY has more than three hundred and fifty commands should

immediately raise concerns about the accessibility of those commands. This

type of information is readily discernible from even a short exposure to

GIPSY, or casual conversation with users. It is the details of everyday use

that are missed in such dialogue, probably because users have adapted to

those problems and thus do not talk about them. It is precisely those details

which the MRP technique addresses and has been shown to detect.

One might argue that since users have adapted to those problems, it would

not have been cost-effective to fix them. This statement has some validity,

yet it ignores the fact that such adaptation has associated costs in terms of
increased performance times and lower user satisfaction. Each adapt at ion is

a set of tasks the user has to perform either to avoid some undesirable

interface behavior or to effect some missing functionality. The extra time

involved in such tasks cannot be denied.

A more detailed limitation is that studying MRPs alone does not produce

as much insight as studying complete command lines. This is because MRPs

show only command names, while complete command lines show arguments

as well. Similarly, interviews generated more information. In general, the

technique does not use a lot of other information that could be part of a

transcript file. For example, error patterns, help usage, user think and

performance times, and system response times could all be recorded on the

transcript. In fact, some MRPs showed classes of usage patterns such as

repeated invocations of a command on an object (type one MRPs) or feeding

ACM TransactIons on Information Systems, Vol. 9, No 4, October 1991

Computer Analysis of User Interfaces . 331

the output of one command into the input of another (user macros). A broader

evaluation tool should encompass these diverse elements.

Another limitation is that the analysis depends heavily upon the evalua-

tor’s skill and knowledge of both the evaluation method and the application

system being evaluated. Human judgement is required in deciding which

MRPs to examine further, in making deductions and in proposing changes.

Also, although a sequence of commands may be repeated often, the conclu-

sion is not necessarily that a macro is needed. The repetition may be a user

adaptation to a different interface problem. Consequently, the MRP tool is

more analogous to a microscope than to a weighing scale: the tool provides an

ability to analyze transcripts at different levels of detail, rather than a

measure of some interface characteristic.

Finally, the technique was applied to a system with a command line

interface, ignoring the important class of direct manipulation interfaces. This

was a deliberate decision to simplify the problem, especially since the viabil-

ity of the technique was the object of investigation.

7.3 Ethical and Legal Considerations

This evaluation technique is based on the collection of user inputs and

outputs during the ordinary use of a system. This can raise ethical and legal

problems with regard to privacy issues—a system which is instrumented to

collect such data could be construed as a form of wire-tapping.

As was done for this study, users should be made aware of the collection of

their keystrokes and screen displays and of the purpose of the collection. In

addition, users should be given the opportunity to specify that they do not

wish their data to be collected. Moreover, when users have given permission

for their data to be collected, access to that data must be restricted only to

authorized persons and not released without prior user consent.

This disclosure of data collection may result in few or no users willing to

participate in the evaluation activity. For certain systems such as electronic

mail, this situation is almost to be expected. Even for other seemingly

innocuous systems, users may view the data collection as work/performance

monitoring and for this reason decline to participate. Despite the possibility

of having no users willing to participate, evaluators have an ethical responsi-

bility to disclose the data collection.

7.4 Recommendation

From the previous discussion it can be seen that MRP analysis is good for

working at the detailed level of interfaces, but not at a general level. At this

point, MRP analysis would be most useful in the summative evaluation,

beta-test and maintenance phases of software development, especially when

used in conjunction with user interviews.

8. FUTURE WORK

8.1 Reducing Analysis Time

Considering the graph of Figure 7, a large scale study would inundate

the evaluator with MRPs. One solution would be to limit the amount of

data collected. The maximum amount to be collected can be estimated by

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

332 . A. C. Siochi and R. W. Ehrich

determining how many MRPs the evaluator can analyze in the time sched-

uled and solving an equation similar to that shown in Figure 7 for the

number of command lines to collect.

Another way is to develop filtering algorithms or heuristics which can be

applied to the MRP list. A simple attempt at heuristics was implemented in

the MRP tool, where the evaluator examined only those MRPs whose lengths

were greater than average. Another heuristic might be to examine only

MRPs containing the most frequently used commands. Algorithms that

reduce the amount of redundant information and a reevaluation of the MRP

definition (specifically removing the independent occurrence condition) should

be investigated.

8.2 Similarity Indicator for Command Lines

It was noted that complete command lines (MRP instances) were necessary

for analysis. A means of representing those portions of command lines which

differed across instances of an MRP might reduce the need to examine

complete command lines. A similarity representation might show, for

example,

EXSIF f??.dat > f??.out
EZPLOT f??.out
at positions: 1, 234

where question marks indicate differences in the MRP instances. This repre -

sentation technique could be implemented using a string to string correction

algorithm, similar to that used by the difjj program in UNIX.

8.3 Use as a Support Technique

Another interesting avenue to explore would be MRPs as an aid to

videotape-based interface analysis. A major problem with videotape is having

to review the tape manually for critical incidents. Since the MRP technique

points to potential problem sections in the transcript, it could also be used to

indicate similar sections of videotape. This may be achieved by inserting

video frame numbers into the transcript file.

8.4 Time Stamping

MRPs might provide better information if combined with time-stamping
data. This would enable a quantitative expression of user effort represented

by each MRP, and could provide evaluators another means of selecting MRPs
on which to focus: those with elapsed times greater than expected.

8.5 A Transcript Analyzer

Because of the central limitation of MRP analysis of transcripts, a broader

transcript analyzer should be considered. This analyzer would provide the

evaluator with a suite of analysis tools, of which the MRP tool is but one.

Other tools that would be useful include pattern matching tools, grammatical

analysis tools and statistical tools. These tools may act as a preprocessor for

ACM Transactions on Information Systems, Vol 9, No. 4, October 1991

Computer Analysis of User Interfaces ● 333

transcript data and still other tools may locate or count complicated rela-

tional events of the form (A preceded by B and two consecutive occurrences of

A). Such tools would permit the MRP analyzer to focus on particular aspects

of a transcript, and they would allow an investigator to play with the data,

perhaps to test whether certain types of behavior suggested by MRP analysis

are in fact occurring elsewhere in the dialogue.

Earlier we described the possible use of AWK, LEX and YACC in con-

structing the normalizer. AWK is effective in locating complicated patterns

in a transcript, whereas LEX and YACC are useful tools for building proce -

dures that identify complicated relationships among patterns. These are the

types of tools that are needed to augment the MRP toolkit; because of their

sophistication they need powerful human computer interfaces supported by a

UIMS.

9. SUMMARY

This paper reported on the development of a new technique for evaluating

interfaces by analyzing user session transcripts. The technique involved the

detection of repeated user actions in those transcripts and is based on the

hypothesis that repetition of user actions is an indicator of potential interface

problems. The concept of maximal repeating patterns, or MRPs, was devel-

oped as a means of defining the repetition.

A tool was developed which extracts MRPs from transcripts in 0(rz2) time.

This tool also enabled the evaluator to manage lists of MR,Ps, select MRPs

based on their length or frequency and view the raw transcripts pointed to by

those MRPs.

The technique was tested on GIPSY, an image processing system in use at

several sites throughout the country. The data were collected from actual

users at one site over three months and the analysis involved both an

independent study of the MRP lists and structured interviews of two users.

The technique was shown to provide useful information about the GIPSY

interface by revealing several specific problems.

Advantages of the technique include detection of unknown patterns which

potentially show problems users were having, usefulness in preparing struc-

tured interviews and speed and ability to scan large amounts of data. The

technique’s limitation is that the information it provides is at a detailed level

and does not directly indicate general problems. This imp lamentation also

produces MRPs which are redundant or seem insignificant. Despite its limi-

tations, the technique provided useful information about GIIPSY’S interface.

In addition, it is important to remember that MRPs represent the experience

of users in their natural work context. As such, MRPs are a source for the

discovery of how users actually use the system.

ACKNOWLEDGMENTS

We would like to thank the SDA Lab at Virginia Tech for serving as a

testbed for the research and would like to express our appreciation to the

reviewers for their helpful comments.

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991.

334 . A. C. Slochi and R. W. Ehrich

REFERENCES

1, AEIO, A., WEINBERGER, P., AND KERNIGHAN, B. AWK—A pattern scanning and processing

language. So/7. Prac. and Experience (July 1978).

2. AFIO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Des~gn and Analysis of Computer

Algorithms. Harrison Ed. Addison-Wesley, Reading, Mass., 1974.

3. BLUMER, A. ET AL. The smallest automaton recognizing the subwords of a text. Z7wor.

Comput. Sci. 40 (1985), 31-35.

4. CARD, S, K., MORAN, T. P,, AND NEWELL, A, The Psychology of Human-Computer Interac-

tion. Lawrence Erlbaum, Norwood, N. J., 1983.

5. CARROLL, J. M., AND ROSSON, M. B. Usability specification as a tool in Iterative develop-
ment. In Advances in Human Computer Interaction. Hart son Ed. Ablex, Norwood, N, J.,

1985.

6. COHILL, A. M., AND EHRICH, R. W. Automated tools for the study of human/computer
interaction. In Proceedings of Human Factors SocLety 27th Annual Meeting (Norfolk, Va.,

Oct. 10-14). Human Factors Society, 1983, pp 897-900.

7. EASON, K. D. Towards the experimental study of usability, Behau. Inf Tech. 3, 2 (1984),

133-143.

8. EHRICH, R. W. The DMS Multiprocess Execution Environment, CSIE-82-6, Virgima Tech

Computer Science Dept., 1982,

9. GARLAND, E,, AND EHRICH, R. W. A GIPSY Primer. Spatial Data Analysis Laboratory,
Blacksburg, Vs., 1987.

10. GOOD, M. The use of logging data m the design of a new text editor. In Proceedings of

CHI’85, Conference on Human Factors in Computing Systems, (San Francisco, Apr. 14-18,
1985). ACM, New York, 1985, pp. 93-97,

11, GOULD, J, D,, AND LEWIS, C. Designing for usabdity: Key principles and what designers
think. Commun. ACM. 28, 3 (Mar. 1985), 300-311

12. HANSON, S. J., KRAUT, R. E., AND FARBER, J. M, Interface design and multivariate analysis

of UNIX command use. ACM Trans. Off Znf Syst. 2, 1 (1984), 42-57.

13. HARTSON, H. R., AND HIX, D. Toward empirically derived methodologies and tools for
human-computer interface development. ZJMMS. 31 (1989), 477-494.

14. JOHNSON, S. C. YACC: Yet Another Cornpder Compiler. Computmg Science Tech Rep 32,
Bell Laboratories, Murray Hill, N. J., 1975.

15. KARP, R. M., MILLER, R. E., AND ROSENBERG,A, L. Rapid identification of repeated patterns

m strings, trees, and arrays. In Proceedings of Fourth Symposium on Theory of Computing

(1972), pp. 125-136.

16. LESK, M. E. Lex – A lexzcal analyzer generator, Computing Science Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, N. J., 1975

17. MACKAY, W. E., GUINDON) R , MANTEI, M., SUCHMAN, L,, AND TATAR, D, G Video: Data for

studying human-computer interaction In proceedings of CHI’88 Conference on Human

Factors in Computing Systems (Washington, D. C., May 15-19, 1988), ACM, New York,
1988, pp. 133-137.

18. NEAL, A. S,, AND SIMONS, R. M. Playback: A method for evaluating the usability of

software and its documentation. In Proceedings of CHI’83 Conference on Human Factors in

Computing Systems (Boston, Mass., Dec. 12-15, 1983). North-Holland, Amsterdam, 1983,
pp. 78-82

19 OLSEN, D. R,, AND HALVERSEN, B. W. Interface usage measurements m a user interface

management system. In Proceedings of ACM SIGGRAPH Symposzum on User Interface

Softu,are (Banff, Alberta, Canada, Ott 17-19, 1988). ACM Press, New York, 1988, pp.
102-108.

20 SAS INSTITUTE. SAS User’s Guide. Helwlg and Council, Ed, SAS Institute, Raleigh, N.C ,

1979.
21. SHNEIDERMAN, B Direct manipulation: A step beyond programming languages. IEEE

Comput. 16, 8 (Aug. 1983), 57-69.

22. SIOCHI, A. C. Computer-based user interface evaluation by analysis of repeating usage

ACM Transactions on Information Systems, Vol 9, No 4, October 1991

Computer Analysis of User Interfaces . 335

patterns in transcripts of user sessions. Dissertation. Virginia Polytechnic Institute & State

Univ., Blacksburg, Vs., 1989.
23. SIOCHI, A. C., AND HARTSON, H. R. Task-oriented representation of asynchronous user

interfaces. In Proceedings of CHI’89 Conference on Human Factors in Computing Systems

(Austin, Texas, April 30-May 4, 1989). ACM, New York, 1989, pp. 183-188.
24. WEINER, P. Linear pattern matching algorithms. In Proceedings of IEEE 14th Annual

Symposium on Switching and Automata Theory, 1973, pp. 1-11.
25. WHITESIDE, J., BENNETT, J., AND HOLTZBLATT, K. Usabdity engineering: Our experience and

evolution. DEC-TR 547, Digital, 1987. To appear as a chapter in Handbook of Human-

Computer Interaction, M. Helander Ed., North-Holland, Amsterdam.

26. WILLIGES, R. C. The use of models in human-computer interface design. Ergonomics 30, 3

(1987), 491-502.

27. WILLIGES, R. C., WILLIGES, B. H., AND ELKERTON, J. Software interface design. In the
Handbook of Human Factors. Salvendy, Ed. Wiley, New York, 1987.

ACM Transactions on Information Systems, Vol. 9, No. 4, October 1991

