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ABSTRACT General Terms

Out-of-memory errors are a serious source of unreliability in most Reliability, Languages
embedded systems. Applications run out of main memory because
of the frequent difficulty of estimating the memory requirement Keywords
before deployment, either because it depends on input data, or be- ) .
cause certain language features prevent estimation. The typical lackOUt-0-memory errors, runtime checks, reuse, data compression,
of disks and virtual memory in embedded systems has two seriousStack overflow, heap overflow, reliability
consequences when an out-of-memory error occurs. First, there
is no swap space for the application to grow into, and the system 1. INTRODUCTION
crashes. Second, since protection from virtual memory is usually  Qut-of-memory errors can be a serious problem in computing,
absent, the fact that a segment has exceeded its bounds is not evepyt to different extents in desktop and embedded systems. In desk-
detected and hence no pre-crash remedial action is possible. top systems, virtual memory [15] reduces the ill-effects of running
This work improves system reliability in two ways. First it pro-  out of memory in two ways. First, when a workload does run out
poses a low-overhead system of run-time checks by which the out- of physical main memory (DRAM), virtual memory makes avail-
of-memory errors are detected just before they will happen, by aple additional space on the hard disk called swap space, allowing
using carefully optimized compiler-inserted run-time check code. the workload to continue making progress. Second, when either
Such error detection enables the designer to incorporate system+he stack or heap segment of a single application exceeds the space
specific remedial action, such as transfer to manual control, shut- available to it, hardware-assisted segment-level protection provided
ting down of non-critical tasks, or other actions. Second, this work by virtual memory prevents the overflowing segment from over-
proposes five related techniques that can grow the stack or heapwriting useful data in other applications. Such protection ensures
segment after it is out of memory, into previously un-utilized space than an application with an excessive memory requirement, mani-
such as dead variables and space freed by compressed live varifested by an unacceptable level of thrashing, can be terminated by
ables. These techniques can avoid the out-of-memory error if the the user without crashing the system.
extra space recovered is enough to complete execution. Embedded systems, on the other hand, typically do not have hard
Results from our benchmarks show that the overheads from the gisks, and often have no virtual memory support either. This means
system of run-time checks for detecting memory overflow are ex- that out-of-memory errors leave the system in greater peril [25].
tremely low: the run-time and code-size overheads are 1.1% andfor correct execution, the designer must ensure a rather severe con-
0.09% on average. When the reuse functionality is included, the straint — that the total memory footprint of all the applications run-
run-time and code-size overheads increase to only 3.2% and 2.33%ning concurrently fits in the available physical memory at all times.
but the method is able to grow the stack or heap beyond its over- This requires an accurate compile-time estimation of the maximum
flow by an amount that ranges from 0.7% to 93.5% of the combined memory requirement of each task across all input data Jdtsre-

stack and heap size. after, choosing a physical memory size larger than the maximum
_ _ _ memory requirement of the embedded application guarantees cor-
Categories and Subject Descriptors rect execution. For a concurrent task set, the physical memory must

be larger than the sum of the memory requirements of all tasks that
can be simultaneously livee., running or pre-empted before com-
pletion, at a time.

Unfortunately accurately estimating the maximum memory re-
quirement of an application at compile-time is difficult, increasing
the chance of out-of-memory errors. To see why estimation is diffi-
cult, consider that data in applications is typically sub-divided into
Permission to make digital or hard copies of all or part of this work for three segments — global, stack and heap data. The global segment
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permission and/or a fee. lowing reasons. Consider that the stack grows with each procedure

CASES’04 tember 22-25, 2004, Washington DC, USA. : . ; - .
Copyright ZSO%FZ?AH(]:NTr1-58113-890-3/0315/051(?95?200. and library call, and shrinks upon returning from them. Given this

D.3.4 [Programming Language$: Processors; D.4.5]perating
System$: Reliability; D.4.2 [Operating System$: Storage Man-
agement; C.3 $pecial-Purpose And Application-Based Sys-
temg: Real-time and embedded systems



behavior, the maximum memory requirement of the stack can be important.” In [1], the authors write about the desirability of mem-
accurately estimated by the compiler as the longest path in the call-ory protection in future systems. They write "Overrun protection
graph of the program frormain()to any leaf procedure. However  would, for example, allow ... stack overflows to be trapped to pre-
stack size estimation from the call-graph fails for at least the fol- vent corruption of other tasks’ memory areas. An even more fault-
lowing four cases: (i) recursive functions, which cause the longest tolerant system can be envisioned by incorporating ... (resource
call-graph path to be of unbounded length; (ii) virtual functions limit reached) thresholds that trigger appropriate recovery actions.”
in object-oriented languages, which result in a partially unknown In [25], in an article appropriately titled "Programming Without A
call-graph; (iii) first-order functions in imperative languages like Net”, the authors point out that even if an embedded system does
C, which also result in a partially unknown call-graph; and (iv) have a sophisticated OS, it still does not have a good solution to
languages, such as GNU C, which allow stack arrays to be of run- the memory protection problem without hardware support, which
time-dependent size, causing the procedure stack frame to be ofis often unavailable.
unknown size at compile-time. In all these cases, estimating the This paper proposes a scheme for software-only memory protec-
stack size at compile-time may be impossible. tion and memory reuse in embedded systems that takes a three-fold
Paradoxically, the stack may run out of memory even when its approach to improving system reliability. Each component is de-
size is predictable. This can happen if the size of the heap is unpre-scribed in turn below.

dictable, since the stack and the heap typically grow towards ea‘_:hSafety run-time checks The first technique proposed to improve
other. Further, the stack may run out of space, even when both itSgystem reliability is to modify the application code in the compiler
stack and heap requirements are predictable. This can happen ing insert software checks for all out-of-memory conditions. Lack-
pre-emptive multi-tasking workloads, common in many embedded jnq virtual memory, most embedded systems do not check for out-
systems. In such environments, the stacks of the different taSKSof-memory conditions; examples include [23, 16, 11, 32]. With
are given fixed amounts of space each, while the heap is allocateds,ch checks, the embedded system can take corrective action when
from a free-list shared across tasks. When a task is pre-empted (in-; runs out of memory. One can imagine industrial and transporta-
terrupted) before completion, its stack and heap remain in memory. tjon scenarios where warning the operator to assume manual con-
Hence, if the stack sizes of all the tasks are predictable, but the heapy| can prevent deadly and expensive accidents. In industrial con-
size ofeven onef them is not, the task whose stack abuts the heap, {ro| systems, shutting down the system can also prevent accidents.
may run out of space. o . In a naive implementation, checking for stack or heap overflow
Estimating the heap size at compile-time is even more difficult yequires a run-time check for overflow at each procedure call and
for the following reason. The heap is typically used for dynamic  gachmalloc() call in the program. We describe thalling-checks
data structures such as linked lists, trees and graphs. The sizes ofptimizationthat is able to selectively eliminate many of these
these data structures are highly data-dependent and thus unknowghecks while retaining the guarantee of always detecting overflow.
able at compile-time. _ _ This system of safety run-time checks istand-alone method
Lacking an effective way to estimate the size of the stack and hat can be implemented by itsefhe remaining techniques below
heap at comp?le-time,_ the usual industrial approach is to run the for reusing dead space and compressing live datatienal and
program on different input data sets and observe the maximum .5n pe implemented if the designer wants to use previously un-
sizes of stack and heap [7]. Unfortunately, this approach of choos- |;5aple memory, at the cost of some implementation complexity.
ing the size of physical memory never guarantees an upper boundrpe reuse and compression methods below augment the safety run-

on memory usage for all data sets, and thus out-of-memory errorsyime scheme to reuse memory when a segment overflows.
are still possible. Sometimes the memory requirement estimate is

multiplied by a safety factor to reduce the chance of memory er-
rors, but there is still no guarantee of error-free execution. Indeed,
the safety factor used for determining memory size is often limited
since many embedded systems have a low per-unit cost budget.
The possibility of out-of-memory faults takes a toll on the re-
liability of embedded systems. Unlike in desktops where a sys-
tem crash is often no more than an annoyance, in an embedde
system, a crash can lead to loss of functionality of the controlled
system, loss of revenue, industrial accidents, and even loss of life,
depending on the type of embedded system. Moreover, the lack
of virtual-memory-based protection implies that an out-of-memory
error may not even be detected by the embedded system. Withou
protection, the system does not check if the stack, for example, has

exceeded the space for it — the only observable effect is incorrectthe space for the deaq gl(_)bal varialid. Figure 1(c) shows the
functionality. Lacking such a check, the embedded system can- overflowing heap growing into the space for the same dead global.

not take corrective action before the crash occurs, such as shuttim{Igure 1(d) depicts the overflowing stack growing into free holes in

down the system safely, sending a message to the operator to tak h%?g@?r; F't?]lérifalcﬁ(eLigdh(gaar?n?f%snsﬁgr:ztiiter'o s space is im-
over manual control of the system to ensure safe operation, or shut- 9 ~ap ~contiguous sp -
ting down low-priority processes to free up memory. plemented in three step;. First, at compllg-tlme, liveness anaIyS|§
The problem of embedded systems lacking hardware protection detects c_:lead global Vaf'ab'_es at e:_:tch point n the coc_ie as possi-
and their consequent unreliability has been widely recognized and ble c3n_d|datej_ for grc:wmtg |ntto. Thlﬁ_llvegess |tnr:‘orn_1at|orfl {E thdent
lamented by industry practitioners. In [17] the authors argue for siored in run-ime data structures. 10 reduce the size of ihe data
some form of memory protection, and write, "It's truly a won- structures, liveness mformatlon |s_stor¢d per region, instead _of per
der that non-memory protected operating systems are still used in'nStrUCt'on’ where regions are defmgd in section 4. Dead variables
complex embedded systems where reliability, safety, or security arethat may become live in a later region may also be used for grow-

Reusing dead spaceOur second technique aims to reduce the ap-
plication’s memory footprint by allowing segments (stack or heap)
that run out of memory to grow into non-contiguous free space in
the system, when available. Two cases are explored: (i) when the
overflowing stack and heap are allowed to grow into dead global
variables, especially arrays; and (ii) when the stack is allowed to
Jrow into free holes in the heap segment. By using previously un-
utilized space, the out-of-memory error is postponed and may be
avoided if this extra space is enough to complete execution.

Figure 1 illustrates how the overflowing stack or heap grows into
various sources of free space in the system. Figure 1(a) shows the
jmemory layout during normal operation, when no segment is out
of memory. Figure 1(b) shows the overflowing stack growing into
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Figure 1. Memory layouts for our schemes. (a) Normal operation; (b) Overflow stack in dead globaB2; (c) Overflow heap in dead globalG2; (d)
Overflow stack in free hole in heap; (e) Overflow stack in compressed live glob&2; (f) Overflow heap in compressed live globaG2.

ing overflowing segments, provided the compiler can guarantee thatany real-time environment. The same is true for our reuse and
the overflow space will be freed before the dead variable becomescompression schemes in the common case before the system

live. Second, if the run-time checks described earlier reveal that would have run out of memory on a conventional system). The
the stack or heap is out of memory, then special code is executed toonly problematic case is when the reuse or compression schemes
grow the overflowing segment non-contiguously into unused space. are used, and the system has run out of mema@y,is using re-

The unused space can be dead globals for growing the stack orclaimed space. Here the overheads are less predictable, so hard

heap, or free holes in the heap for growing the stack. real-time guarantees are difficult to provide. Soft real-time guar-
The common case overheads of the reuse and compressiorantees are still possible though. In the vast majority of systems, a
schemes are reduced by the negion-merging optimizatiode- slow response is better than no response.

scribed later, and by the rolling-checks optimization inherited from At first glance, it appears that a counter argument to our scheme
the safety checks. Results shows that the overheads with optimiza-is that simply increasing the amount of physical memory in the
tion are low. system can improve reliability by the same amount as our method

Compressing live data Our third and final technique for improv- ~ does. Although it is true that increasing the amount of memory
ing reliability compresses live data and uses the resulting freed improves reliability, there are three justifications for our method.
space to grow the stack or heap when it overflows. The compressed-irst, reliability at any given system cost is improved. Because of
data is later de-compressed before it is accessed. Live data is comihe earlier-described difficulties in estimating the memory require-
pressed only after all available dead space is used up for overflowMent of an application set, a 100% guarantee of adequate memory
by our reuse technique described above. Currently we investigate!S Still not possible. By delaying or avoiding the out-of-memory
compressing globals for growing the stack and the heap. _condltlon, the rellablllty_ for_gny given memory size is significantly
Figures 1(e) and (f) illustrate how the overflowing stack or heap improved. A second justification for our method is that some-
grows into space freed by compressing live global variables. Fig- imes when reusing dead space, our method can provably reduce
ure 1(e) shows the overflowing stack growing into the space freed the memory requirement of the system, which can reduce the size
by compressing the dead global variafi Figure 1(f) shows the of phys!cal memory needed, and thus its cost. Thlrd, the presence
heap growing into the same space. of run-time checks f(_)r out-of-memory conditions is a new featu_re
Let us consider the correctness requirements and performancehat cannot be substituted by increasing the physical memory size.
of our compression scheme. For correctness, the data placed in Our method has been implemented irG& C-based compiler
space freed up by compression must itself be provably dead beforefor the Motorola MCore _[24] processor. Results are collected ona
the compressed global is accessed again, so that the global can beycle-accurate MCore simulator. For our benchmarks, the run-time
de-compressed in-place. In-place de-compression ensures that th@nd code-size overheads of our scheme of safety run-time checks
global is never moved — moving data can complicate its address-are measured at 1.1% and 0.09% respectlvely. Q_uantltgtlve results,
ing, and can cause incoming pointers to it to become invalid, and of course, cannot evaluate the peneflt of r_emedlal action that our
so is avoided. For good performance, the global chosen for com- 0ut-0f-memory checks allow, which can be invaluable. _
pression should be one that will not be used for a long time, sothat We also measure the benefits of the reuse and compression
compression and de-compression are infrequent. To be sure, comSchemes. Results show that 0.7% to 93.5% of the combined stack
pression and de-compression can be expensive at run-time, but théiNd heap size can be grown non-contiguously into previously un-
overheads are incurred only if the system runs out of memory. At Utilized space, such as space for dead globals, or space freed by

that point, any overhead is often acceptable if the alternative is a cOmpressing live globals. The results do not measure the reduc-
system crash! tion in the total memory footprint since the primary goal of the

Discussion Let us examine whether our schemes can be used in method is not to reduce the amount of physical memory. Instead
Y u u u the results measure the reduction in the footprint of the growing

real-time systems. Since the overhead of the safety run-time checks

is compile-time-oredictable and small. thev are easily adaoted to segments, which is a more direct measure of reliability. The over-
IS piie-time-pred » they Y p head is higher when reuse or compression is used, but is still low in



the common case when the system is not out of memory — 3.2% iN peR_pROCEDURE SAFETY CHECK CODE

run-time and 2.33% in code-size. 1. if (Stack-Ptr< ORIGINAL_BOUND) { /* Stack Overflow */
The rest of the paper is organized as follows. Section 2 presents 2 call routine to handle out-of-memory condition

related work. Section 3 describes our scheme for run-time checks s}

for memory overflow protection. Sections 4 and 5 describe our

schemes for growing the stack and heap, respectively, into dead

global variables. Section 6 describes how to grow the stack into free and heap can grow into each other, as is possible in the general

holes in the heap. Sections 7 and 8 describes how to grow the stackcase. Fifth, our scheme can handle virtual function calls, essential

and heap, respectively, into space freed by compressing live globalto handle object-oriented languages, while their scheme does not

variables. Section 9 explores the choice of data compression algo-apply to such languages. Sixth, our reuse scheme can reclaim the

rithm. Section 10 discusses the space requirement of running ourspace in dead global variables, which is not their goal. Seventh, our

overhead routines. Section 11 describes issues in liveness analysisvaluation measures the impact on code-size which is important for

Section 12 describes experimental results. Section 13 concludes. embedded systems, while they do not, given their focus on desktop

servers.

2. RELATED WORK A different approach to increasing the amount of space avail-

| able to a program is garbage collection [4, 6], whose primary

goal is to reclaim unreachable heap objects. Recently, traditional

garbage collection techniques have been adapted to embedded en-

vironments [18, 8, 21]. Of our five techniques, however, four at-

tempt to recover space from the global segment, which is not ad-

memary, all embedde_d systems, V.V'th or without _V|rtual memory, dressed by garbage collection. A further distinguishing feature of
are inherently constrained by the size of the physical memory [25] our work is that we provide run-time checks for reliability which

because of the typical lack of hard-disks and hence of swap space. not a feature of aarb lection. In N b I
As a consequence, even programs running on embedded systemlsc' ot a leature of garbage coliection. In €SSence, garbage coliec-

that have memory management hardware and virtual memory, cant'odnﬁaISO rteduces tr;]e mzrrlj]ory foptprlnt olf a pr(igrartn, but byhusmg
run out of space. Hence, our techniques for recovering space from@ @llférent approach, and hence IS complémentary to our scheme.

the limited amount of memory available, are also valuable for such Compression of program data [35] has been discussed in the con-

programs. The added benefit of run-time checks discussed earlier,text of heap structures to reduce the memory footprint and hence
however, is not applicable to these systems the cost of embedded systems. The overall goal of our technique,

On the other hand, most commercial embedded processors suctf” the other hand, is increasing the reliability of the system by
as [23, 16, 11, 32 é] do not have virtual memory of any ki’nd smoothly transitioning to a reuse mode in case of a memory short-
This is because the cost of the hardware memory management unit ggaoc:heréecgrilqtljgs TZCh ast (c:jortnpreszlon atr;1d compacttloP SZ)GI\T-
(MMUSs) that provide virtual memory has been considered by pro- edade dco detk[l ’ ,h ] (no aa)ﬁ re uceth € amlotun 0
cessor vendors to be excessive in an embedded environment [12].requlre and these schemes, as such, are orthogonal to ours.
It is easy to see why: MMUs must contain segment or page tables
and their associated logic, which are expensive in area, runtime3. SAFETY RUN-TIME CHECKS FOR
and power. In such processoe| our techniques proposed are OVERFLOW PROTECTION

valuable since they provide memory protection in software at low This section describes our light-weight, software-only scheme

cost and also some ability to reclaim dead space in the case of ang,, detecting out-of-memory errors. To see how out-of-memory
overflow. .__errors can be detected, consider that the stack grows only at proce-
We are not aware of any method that uses software_ run-time e calls, and the heap grows only in dynamic memory allocation
checks for out-of-memory errors, or that reuses space in anotherroutines such amalloc(). It follows that a baseline un-optimized
Segme_m when one segment is full . scheme involves simply inserting a run-time check for overflow at
Similar run-time checks to ours have been proposed in [5], each procedure call and eatfalloc()call. In the rest of the paper,

though ina completel){ different context, a_md with a different goal. malloc() is used as shorthand for any dynamic memory allocation
The run-time checks in [5] are used to implement a stack man- routine

agement scheme.that . high-concurrenqy deskiop SCIVErS 10 g safety run-time checks are implemented as follows. First,

support threads without allocating a large contiguous portion of the for heap checks, if thenalloc() finds that no free chunks of ade-

virtual memory for their stacks. Instead a thread’s stack is allo- ; o :

cated in a sm)e/lll fixed-size heap chunk, and is grown discontinu- quate size are avaﬂa_ble then an ogt-of_—memory error 1S reported.
. . 9 . Such a check is nothing new since it exists by default in most ver-

ously into other heap chunks when one is full. Our system differs sions ofmalloc(), and thus it adds no overhead. Second, consider

frl(_)rrgi theitrs _in t(;]e fgllowilngtszvfen wa%/sadFi(rjst, Oi” SySte;nfis ag’.f the stack checks which are inserted at each procedure call. These
piied, optimized and evaluated for embedded systems and for a ait 5o hew and add run-time overhead. They work as follows. The

ferel?t gq{ak: of detept;lng outt-olf;rlnem(zry ehr_rlortsk.] S.ecorlg’ Sur mgthod compiler inserts code at the entry into each function, which com-
WOrks with any existing stack layout, while their method requires pares the values of the new, updated stack pointer and the current

.‘"tl chan_gte |nfthe StSCk Ig}f/putjto_trea:]lt nk]ortﬁ l'tke thg heap, ITI thal‘t allowable boundary for the stack. Without loss of generality, if the
: CO?S(;S ST(P)T Lén-or ereh Xe C;SIZQ c ;JT‘ N {ah are ¢ ynamlc;]a yda 'fstack grows into lower addresses, then if the new stack pointer is
ocated. Ird, our scheme goes not Incur the extra overnead ol oo than the stack’s allowable boundary, an out-of-memory error

dIS.COI’].thOUS stgck gr.owth unless the .system Is out of memory, is flagged and handled safely. The boundary for the stack could be
which is rare, w_hﬂe th?” scheme would mcur_tha_t overhead when- either (i) the heap pointer, if the heap adjoins the growing direction
ever the small flx_ed-3|ze chunks run out, which is more Common. ¢ e stack; or (ii) the base of the adjoining stack, if another task’s
Fourth, our run-time checks consider heap growth in deciding if stack adjoins the growing direction of stack; or (iii) the end of mem-

_the s_tack i_s running out of memory. This_ is not needed when us- ory, if the stack ends at the end of memory. Which of these three
ing fixed-size heap chunks for stack, but is needed when the stack

Figure 2: Pseudo-code for safety run-time checks.

In a few high-end embedded systems, a limited form of virtual
memory is available [27, 22] that provides memory protection but
not swap-space. Unlike virtual memory for desktop systems that
gives programmers the illusion of an unlimited amount of available



void do_rolling _optimization() { 20. Sumstacksize« Sum of stack sizes along Longgsth

1.  Sortall procedures in decreasing order of number 21. if (Sumstacksize> 10% of max. stack + heap size in profile)

of calls to each procedure in the profile data 22. return (false)
2. for (each procedure CuRroc in sorted list) 23. if (Rolled.size [Ancestor] == 0) /* No check on Ancestor */
3. canroll_to_all_parents— true 24, for (each parent P of Ancestor in the call-graph)
4. for (each parent P of CufProc) 25. if (!can.roll (Curr-Proc, P, Ancestor))
5. if (!can.roll (Curr_Proc, P, CuriProc)) 26. return (false)
6. {canroll to_all_parents— false;break} 27. return (true) /* Can roll check from CurProc to Ancestor */
7. if (canroll_to_all_parents)
8. for (each parent P of CufProc)
9. roll _checCurr-Proc, P)
10. return void roll _check(Curr_Proc, Ancestor)

28. if (Curr_Proc == Ancestor)
29. return (false) /* Termination for recursive cycles */
boolean can.roll (Curr_Proc, Ancestor, AncestdaEhild) { 30. if (Rolledsize [Ancestor] == 0)
11. if (call to CurcProc is virtual function call) 31. for (each parent P of Ancestor in the call-graph)
12. return (false) 32. roll _check(Curr_Proc, P)
13. if (there is any heap allocation in Ancestor before calling 33. else{ [* Can roll check from CurtProc into Ancestor */
AncestorChild for the LAST time in Ancestor) 34. Longesipath« Path in call graph from Ancestor to

14, return (false) Child, not including Child, with largest sum of
15. if (either CurtProc or Ancestor recursive but not both in same cycle)) stack frame sizes among all such paths
16. return (false) 35. Sumstacksize<— Sum of stack sizes along Longgsith
17. if (Curr_Proc == Ancestor) 36. Rolledsize [Ancestor}— max (Rolledsize [Ancestor],
18. return (false) /* Termination for recursive cycles */ Sumstacksize + Rolledsize [CurtProc])
19. Longesipath« Path in call graph from Ancestor to 37. Rolledsize [CurcProc]« 0

Child, not including Child, with largest sum of 38. }

stack frame sizes among all such paths 39. return

Figure 3: Pseudo-code for rolling checks optimization

cases to use is known at compile-time and thus the compiler usesprocedure is called, its child procedure can be called multiple times
the correct boundary in the compiled code. Figure 2 shows what if it is recursive.
the safety run-time check code looks like for the stack checks; the Figure 3 shows the complete pseudo-code for the rolling checks
heap checks are not shown. optimization, taking into account the issues mentioned above. Too
The above scheme is un-optimized, but we can reduce the over-involved to describe in detail, we briefly outline the pseudo-code
heads of the added stack checks byrtiiing checks optimization here. Routinedo_rolling _optimization() is the highest-level rou-
The intuition behind the optimization can be understood by the fol- tine for the optimization. It considers rolling checks in the order
lowing example. If a parent procedure calls a child procedure, then of their frequency. In order to roll a check, it first ensures that
instead of checking for stack space at the start of both proceduresthe check can be legally rolled to all its parents (lines 3-6), be-
it might be, in certain cases, enough to checke at the start of fore it actually rolls the checks to its parents (lines 7-9). Routine
the parent that there is enough space for the stack frames of bothcan_roll (), shown next, is a recursive routine that checks if the cur-
parent and child procedures togethemn this way, the check for rent procedure can be rolled in to the Ancestor (both arguments to
the child is ‘rolled’ into the check for the parent, eliminating the can.roll ()). It handles the exceptions mentioned earlier that pre-
overhead for the child. If the child is called more frequently than vent rolling for virtual functions (line 11-12), heap allocations (line
the parent, the reduction in overhead can be more than half. Thus,13-14) and pre-mature declarations (lines 19-22). It also handles
given a choice, it is more important to roll checks out of frequently recursive functions in the application as outlined earlier (lines 15-
called child procedures than out of less frequent procedures. 18). Finally lines 23-26 check if the parent already had its check
There are several issues that complicate the above simple pic-rolled; if so, the child recursively checks (line 25) whether it can
ture of the rolling checks optimization, which must be taken into roll its check to the parent’s parenis(, its grandparents).
account. First, a child procedure’s check cannot be rolled into its ~ Routine roll _check)) takes a similar recursive approach of
parent if heap data is allocated inside the parent before the childrolling the checks from the current procedure up to its ancestors
procedure is called. This is because when the parent is called, it is(lines 30-32). It does not need to check rolling-preventing excep-
impossible to guarantee enough space for the child since the heagions, as those have been checked alreadyamroll (). The pri-
could have grown in the meantime cutting into the space available mary termination condition of the recursion is when the parent has
for the child. Thus the rolling optimization is not done in this case. a check on it, and hence the rolling can be done to it (line 33-
Second, in object-oriented languages if the call to the child from 38). The Rolledsize variable for each procedure initially stores
the parent is an unresolved virtual function call, then the child’s the size of the frame for that procedure. When a check is rolled,
check cannot be rolled to the parent since the exact identity of the the Rolledsize is set to zero for the child, and to the sum of the
child is unknown at compile-time. Third, since a call-graph rep- parent and child frame sizes for the parent. Care is taken that if a
resents potential calls and not actual calls, it is possible that for a parent has multiple children, then the Rollside is set to be the
certain data set a parent may not call a child procedure at all. In maximum needed across all its children (line 36).
that case, rolling the child’s check to the parent may declare the The rolling checks optimization is effective in eliminating much
program to be out of memory when in reality it would not have of the overhead of the safety run-time checks. More details are in
been. To avoid this effect from becoming too pronounced, we limit the results section.
the rolling checks optimization such that the rolled stack frame size

does not exceed 10% of the maximum observed stack + heap size4, REUSING GLOBALS FOR STACK
in the profile data. This guarantees that a premature out-of-memory Our scheme of reusing globals for stack allows the program’s

declaration can happen only when the space remaining is less tharE'[ack to grow into the global segment when it is detected that the
o . : .
10% of the maximum stack + heap requirement. Fourth, roliing system is running out of stack space. This is implemented by the

C?gcl(:nfaguk;eng?rornltttgfdrg];:(:;\?; chlféss'\/;ncggl:\%? tzi]nghcz;t;? following two tasks. First, the compiler performs liveness analysis
prog ' Y y P to detect dead global arrays, if any, at each point in the program.



main () {
proc-A()
proc-B()
while (... ){X=...} /*Loop 1%

proc-A () {
proc-C()

proc-B (){
proc-C()
for(...){Y=...}  [*Loop2*

}
proc-C (){ ...} (a) (b)

Figure 4: Example showing (a) a program outline; and (b) is its DPRG showing nodes, edges & timestamps.

Second, in case the safety run-time checks described in section 3 More formally, figure 4(b) is theéData-Program Relationship
find that the stack is out of memory, our scheme selects one of the Graph (DPRG)for the code in figure 4(a). The DPRG is a com-
global arrays that is dead at that point, and grows the stack into it. piler data structure that was first proposed in [33], which we adopt

Identifying dead globals Depending on where in the program’s in.our work. It consists of thg call-graph of the program a}ppended
execution the stack ran out of space, a different global array is cho- With nodes for loops and variables connected in the obvious man-
sen to grow the stack into. The method of choosing the global to Ner depicted in the figure. The timestamps (1-14) are obtained by a
grow into has the following three steps. First, the compiler divides depth-first search (DFS) of the DPRG, which numbers each region
the program up into several regions, and for each region, builds mtht_a order in which t_hey are V|s_|ted during traversa_l. Interestlngl_y,
a list (called Reuse Candidate List) of global arrays that are dead the timestamp order is the run-time order of the regions. Recursion
throughout that region and also dead in all functions that are called iS handled by collapsing recursive cycles in the DPRG into a single
directly or indirectly from that regich This deadness constraint node before DFS; such a node is therefore assigned a single times-
ensures that none of the functions pushed on to the global variablet@MPp during DFS. The collapsed node is thus a single region, and is
portion of the stack access the global array, and thus the global ar-nandled as any other. More details on the properties of the DPRG
ray remains dead during the life of those stack functions, allowing are available tolthe |nterested reader in [33], but are not essential to
reuse. Second, the Reuse Candidate List is sorted at compile-timeghe understanding of this paper.

in decreasing order of size to give preference to large arrays for Region-merging optimization One optimization we perform to
reuse. Third, at run-time, when the program is out of memory it reduce the overhead of regions is to merge regions whenever pos-
looks up the Reuse Candidate List for that region and selects thesible. In particular, if two regions that are executed consecutively
global variable at the head of the list to extend the stack into. Since at run-time are such that they have the exact same Reuse Candidate
the list is sorted at compile-time in decreasing order of size, this Lists, they are merged into a single region. This process is repeated
chooses the largest dead global to grow into. An implementation until the minimal set of regions, each with a distinct Reuse Can-
detail is that for the program to look up the list for the current re- didate List, is obtained. This ensures that the overhead from code
gion, it must know what the current region is. Thus the compiler inserted at the entry into regions is minimized, without sacrificing
inserts a current- region variable into the program which is assigned the best choice of the Reuse Candidate List per region.

anew value each time a new region is entered. Thispewegion Growing stack into globals Once the out-of-stack condition is
reuse codes shown in figure 5(i). . . _ detected by the safety run-time checks, growing the stack discon-
A good choice of regions should satisfy the following three cri- {jnyously into the dead global array is done by changing the stack
teria. First, the regions _should_be short enough to b_e able to closelypointer to the end address of the array. Further calls occur as usual,
track the Reuse Candidate List preferences of different program gnq procedure returns need no modification since the return address
points. Second, the regions should be long enough that the run-timejs recovered from the current procedure’s stack frame. The return
overhead due to code inserted at the start of every region remains,ggress, when recovered from the stack frame, is correct since the
a small fraction of the total run-time. Third, it is desirable if the  giack pointer is updated to reflect the address of the global array
regions can be numbered at compile-time in the order of their run- ony after the original stack pointer value has been saved in the
time execution. Such a static run-time ordering does not help in ¢y rrent procedure’s frame.
_this section, but WiII_heIp later in section 5 while growing the heap Growing the stack into globals is implemented by augmenting
into dead global variables. . o the safety check code, which detects the overflow, with code that
The following heuristic choice of regions satisfies all the above performs the reuse for that region. Figure 5(ii) shows the aug-
criteria: every static loop beginning and end, and function begin- mented code. To understand the code, consider that a new global
ning and end, marks the entry into a new regi&ach region con-  poolean variable called Reuse-Started, initialized to false, is in-
_tlnues until the sta_rt ofthe ngxt regionin run-tl_mg order. Figure 4(_b) serted in the code by the compiler. The first time the stack over-
illustrates the choice of regions for the code in figure 4(a). The fig- flows (first part of line 1), Reuse-Started is set to true(line 3), and
ure shows the start of the regions numbered wiitiestampsl. to the stack pointer is changed to the end address of the first element
14. The timestamp to the left of a node depicts its beginning, and o that region’s Reuse-Candidate-List (lines 4-5), which achieves
the timestamp to its right depicts its end. Timestamps depict the {he discontinuous growth. Otherwise, if Reuse-Started is irele,
run-time order of those points in a compile-time data structure.  the stack is currently in overflow mode, (lines 8-17), the stack over-

1such liveness analysis is possible even for situations where theflow check is repeated with the new boundary of the global array
call-graph is not fully known. See section 11 for details. (line 8), since the original check on line 1 is no longer correct. If the




PER-REGION REUSE CODE (|)
1.  Current-Region— CURRENT.REGION.CONSTANT.ID

SAFETY CODE AUGMENTED WITH REUSE CODE FOR THAT REGION
1. if ((Stack-Ptr< ORIGINAL_BOUND + Space needed by reuse routines) OR (Reuse-Stafted))

2 if ({Reuse-Started)
3 Reuse-Started- 1
4, Current-candidate- Head of Reuse-Candidate-List[Current-Region]
5. Stack-Ptr— Current-candidate-base-address + Current-candidatdze
6
7 else{
8 if (Stack-Ptr< Current-candidate-base-address + Space needed by reuse routnes) /* Stack Overflow */
. Current-candidate- Next element of Reuse-Candidate-List{Current Region] (| |)
10. Stack-Ptr— Current-candidate:base-address + Current-candidatgze
11.
12. if (Stack-Ptr> (Current-candidate-base-address + Current-candidatize)) { [* Stack Underflow */
13. if (Current-candidate == Head of Reuse-Candidate-List[Current Regjon])
14, Reuse-Started- 0
15. else
16. Current-candidate- Previous element of Reuse-Candidate-List[Current Region]
17. }
18. }
19. }

Figure 5: Pseudo-code for inserted safety run-time checks augmented for reuse.

stack has overflowed this global array, it is discontinuously moved at the head of the current region’s Reuse Candidate List, and adds
to grow into the next global array in the Reuse-Candidate-List of it to the heap free-list. The code for these three tasks is not shown,
that region (lines 9-10). If there is no next element on line 9, (code but each is elaborated upon below.

not shown), we are out of memory. Sorting Reuse Candidate Lists To see why the individual Reuse
Lines 12-17 handle the case when the array had overflown, but cangidate Lists need to be resorted on the basis of next-time-of-
has now retreated to the original space. If the retreat is from the first ocess of the dead global arrays, consider the difference between
global array in the Reuse-Candidate-List (line 13), then we go back growing the stack into dead globals versus growing the heap. The
to the original stack space and reset Reuse-started to false (line 14)gjtference arises because stack frames have predictable lifetimes
otherwise we go back to the previous global array. and are automatically popped off the stack once the corresponding
The overheads for reuse are larger than those for safety checksynctions exit. Thus it is easy to guarantee that the extended stack
alone in three ways. First, figure 5(i) shows that the run-time over- || pe popped off by the time the dead global becomes live again.
head for the start of regions without a safety check is one scalar | contrast, liveness analysis for heaps is difficult. Even if heap
assignment. Second, figure 5(ii) shows that the safety check is aug-gpjects are freed, it is difficult to prove that all objects allocated at
mented so that in the common case when the system is not out of, sjte, and not just some, have been freed. Consequently, there is
memory, the additional run-time overhead is that itheondition no guarantee that the extended heap structure will be dead by the
on line 1 has an extra OR with a boolean variable Reuse-Started.{ime the global array that it was growing into becomes live again.
The body of thef (line 2-18) is not executed in the common case.  Gijyen the difficulty in liveness analysis for heaps, in case the
Third, the code-size overhead from figure 5(ii) is modest since the jogq global occupied by the extended heap becomes live, our
entire body of thef statement (line 2-18) is moved to a procedure  scheme does a run-time check to see if the extended heap has been
that is called repeatedly from each modified safety check instancefrgeq, immediately prior to the the global coming back to life. If
in the program. The results section shows that the overheads withyha extended heap is empty then the program runs successfully. If

reuse remain small. the extended heap is not empty, then we declare that we are out-
of-memory. In this last case, the out-of-memory condition is post-
5. REUSING GLOBALS FOR HEAP poned but our method fails to prevent it. Finally, if there is a dead

This section describes how our scheme of reusing globals for 9lobal that remains dead for the remaining lifespan of the program,
stack, described in section 4, is extended to allow reuse of global then that variable is selected to grow the heap, and no further run-
variables for heap data as well. This is achieved by adding the time check is needed to guarantee correctness. .
dead global arrays to the heap free-list when the heap is full. The We can now see why the dead globals in the Reuse Candidate
extended scheme leverages the framework built earlier, which in- LiSts are sorted in decreasing order of next-time-of-access. The
cludes dividing the program into regions, adding a variable to keep later the global variable comes back to life, the greater is the prob-
track of the current region, performing liveness analysis to detect ability that the run-time check, discussed above, would succeed.
dead global arrays and building Reuse Candidate Lists per region. Thus the chance .of success increases, if globals that come alive

Growing the heap into dead globals entails implementing the fol- later, are chosen first, to grow into. _ _ _
lowing three additional tasks beyond the ones for growing the stack. ~ TNe next-time-of-access of the dead global variable is estimated
First, the Reuse Candidate Lists are sorted at compile-time by next-at compile-time using the DPRG timestamps described in section 4
time-of-access and size, rather than by size alone, such that the dea@$ follows. Initially, for the current region, the set of later regions
global array that comes alive farthest into the future is placed at the IS computed as the union of two sets: (i) all regions with a greater
head of the list. The size is used as a tie-breaker: if there are two ar-timestamp than the current region, and (ii) all regions thatiare
rays that come alive at the same time, the larger is placed earlier inScendedrom the loop node L closest main()on the DPRG path
the list. Second, thenalloc() library function is modified to make ~ from main()to the current region. A node is descended from L if
a call to a special Out-of-Heap Function when there is no available there exists a path fromain()to the node through L. If there are
free chunk to satisfy the allocation request. Third, the compiler in- N0 l0op nodes on the path then this latter set is empty. Using these
serts the Out-of-Heap Function in the code; it selects the candidatetWo sets, the nexttimestamp of access of the global variable is com-



puted aghe next timestamp in the common case ordering of the set by our reuse technique described above. The compressed data is
of later regions keeping in mind that the common-case ordering of later de-compressed before it is accessed. For good performance,
nodes descended from loops follows the loop’s backward branch. the global chosen for compression should be one that will not be

Modifying malloc  The second task needed for growing the heap ysed for a long time_, so that compression and de-(_:ompresgion are
into dead globals is to modify taalloc()library function (or other |nfrequent. The chope of th.e actual data compression algorithm to
dynamic memory allocation routinesMalloc() is modified such use is explored later in section 9. _
that, instead of returning -1, when it is unable to find any chunk  This section describes how the freed up space from compression
on the free-list capable of satisfying the current allocation request, €@n be used to grow the stack. The scheme is similar to the method
it makes a call to the Out-of-Heap Function, which is described desc_:rlbed in section 4 for growing the stack into dead globals. In
in detail in the next paragraph. This task simply involves replac- particular, it uses the same set of regions, the same method to detect
ing the return statement malloc()with a call to the Out-of-Heap the Out_—of-Stgck condl_tlon and the same mechanics for growing the
Function, and since this call is executed only when the program hasStack discontinuously into the global segment.

actually run out of heap space, there is no overhead in the common The implementation of this scheme differs from the scheme for

case of when the program is not out of memory. growing the stack into dead globals in the following three ways.
First, the reuse candidates are extended to include live global ar-

rays. Second, at run-time, when the stack is about to grow into a
particular candidate in the global segment, if the candidate chosen
is live at that point, it is compressed and saved so that it can be re-
tored when the array is accessed later. Third, the code inserted by
the compiler at the start of every region is augmented to ensure that
if reuse has started, then all compressed global arrays accessed in
the following region are de-compressed in their original locations.
The rest of the section describes these three modifications in detail.

Out-of-Heap Function The Out-of-Heap function is called from
malloc()when it is out of heap space and does the following three
tasks. First, it looks up the Reuse Candidate List corresponding
to the current region and selects the dead global array at the hea
of the list. Second, it createsmalloc() chunk header at the start
address of the selected global array so as to make it look like a
usual heap chunk obtained by callimglloc() Themalloc()chunk
header is standard in most language implementations — it includes
information on the size of the chunk and whether the chunk is cur- i ) )
rently in use. Third, the Out-of-Heap function calls the free library EXtending the Reuse Candidate Lists In order to have more
function with a pointer to this global array, which places this chunk "euse candidates per region, we extend the definition of a reuse can-
in the appropriate heap free-list bin, based on its size. plldate - a global array is a reuse car_ldldate fqr aregion if the array
Two advantages of the extended scheme described above, aréS Not accessed throughout that region, and is not accessed in any
as follows. First, it is based on the same framework as the origi- of thg _functlons called qllrectly or |r_1d|rectly from_that region. This
nal scheme of reusing globals for stack, and requires no additional condition of no-access is a relaxation of the earlier-mentioned con-
data-structures. Second, it has no extra run-time overhead in thedition for growing into dead globals, where the requirement was

common case, as explained earlier. that the variable is dead in the same regions. Satisfying this no-
access constraint guarantees that when the overflow stack is live,
6. REUSING HEAP FOR STACK the compressed global is not accessed. Conversely, when the com-

) ... pressed global is accessed again, it can be de-compressed in-place

When the program is out of stack space, another possibility is since the portion of stack that had overflowed is guaranteed to
to grow the stack into free holes inside the heap, if available. Im- ¢ popped off by then. In-place de-compression ensures that the
plementation is done by inserting additional code (not shown) in giohal is never moved — moving data can complicate its address-
the existing check for whether the stack is out-of-memory in fig- jng, and can cause incoming pointers to it to become invalid, and
ure 5(ii). When the stack is out-of-memory, the code first tries to o s avoided. In implementing this constraint, finding the vari-
grow the stack into dead globals as described earlier; only after apjes accessed in a certain region is possible even in the presence
those are full is the stack grown into free holes in the heap. To ¢ pointers by using a pointer analysis [30, 9] scheme to find the

grow into the heap, a speciedalloc() call is made to allocate a it of all variables a pointer-based reference could access.
chunk in the heap among its free holes, and thereafter the stack i

grown into the returned chunk. The specralloc()call returns the
free hole of the largest available size, or of the compiler-estimated
size of the remaining stack, if known, whichever is smaller. The
free hole of the largest size is readily available in most widely used
malloc() variants, which usually store the holes in lists of increas-
ing power-of-two hole sizes [20].

This method of growing into free holes in the heap is unneces-
sary when these holes are periodically eliminated using heap com-
paction. Heap compaction is usually possible only in systems that

do garbage collection. Garbage collection is usually not done in extends the stack into it. Third, in case it is alive, it calls a com-

imperative languages such as C and our technique of reusing hea;g ;egﬁltoniLost'cnfnfh?etscs?g?]p;zﬁeesst?ﬁngI?r?flsgrrfg Jg;glsasczhénfgf_
for stack is useful in such environments. In systems that do heap g4 P 9

compaction, however, the reusing heap for stack component of ourpressed size of the array, and moves the end address of the global
technique is, not useﬂjl and should be turned off array into the stack pointer register. Finally, after compression, the

stack pointer is checked against the end address of the compressed
array, rather than its base address (line 8).

7. COMPRESSING GLOBALS FOR STACK T : . ,
Triggering de-compression In order to trigger de-compression

When the program is out of stack or heap, itis possible to free up \hen needed, the compiler augments the code at the start of ev-
even more space by compressing live global variables, and growing gy, region. Figure 6 shows this additional code which is added to

the stack or heap into the resulting free space. Live data is com-yq codes in both figures 5(i) and (ii). It ensures that if reuse has
pressed only after all available dead space is used up for overflow

STriggering compression Once the reuse candidates per region
have been determined, the process of compression is triggered
when needed. To implement this, the reuse candidate lists are
sorted as before, but an extra field is added to each candidate to
indicate whether it is dead or live. In addition, the code inserted for
when the stack is out of memory, shown in figure 5(ii), is extended
as follows (modifications not shown). First, it selects the candidate
at the head of the current region’s Reuse Candidate List and checks
whether it is dead or alive. Second, in case it is dead, it simply



ADDITIONAL PER-REGION CODE WITH COMPRESSION

1. if (Reuse-Started)
2. for (each global array GA used in region CURREIREGION.CONSTANT.ID and that is currently compressed)
3. De-compress GA in its original location
4.

}

Figure 6: Extra pseudo-code for compression added to figures 5(i) and (ii).

started, then all compressed global arrays accessed in the follow-extra book-keeping space, if any, needed by the compression algo-
ing region are de-compressed in their original locations (line 3). rithm that persists until de-compression. Persistent storage is unde-
To find which arrays are compressed, it looks up each global array sirable since it reduces the net space freed by compression. Third,
(code not shown) in the Compression Table mentioned above. If since compression is done at run-time, the sum of the compression
there is no entry corresponding to that array, it implies that the ar- and de-compression times should be small.
ray is not compressed and can safely be accessed in this region. If We explored the following three compression techniques, all of
a matching entry is found, the start address and compressed size ofvhich roughly satisfy the above criteria: (i) LZO, a modern im-
the array are looked up from the Compression Table, and the arrayplementation of the Lempel-Ziv dictionary-based compression al-
is de-compressed in-place. In the case of figure 5(ii) the added codegorithm [29]; (ii)) WKdm, which uses a combination of dictionary-
does not increase the common case overhead since it can be placebased and statistical methods and is characterized by a very small
inside the body of thelsepart on line 7. The code is added only dictionary size [34] and (iii) WKS, a modified version of WKdm
when the compression is employed for an application. that supports in-place compression and de-compression, without
The above scheme of compressing live global arrays and reusinghaving to copy data to an intermediate buffer [28].
the space for stack creates many more opportunities to reuse space. Upon detailed evaluation, we chose WKS because it has (a) no
Moreover, the additional common case overhead of this schemepersistent memory overhead, (b) has the best compression ratio
is negligible when compared to the basic scheme, both of which when tested on global variables, and (c) requires a low number of
are low. The overhead when compression is done is high, but is cycles for compressing and de-compressing the data. For instance,
incurred only when the system would have otherwise crashed. At we evaluated global data compression in block sizes ranging from
that point, anyone would prefer a slow system to a crashed system. 16 bytes to 8 KB. The average amount of space freed up by WKS
is about 60% of the uncompressed space, and compression and de-

8. COMPRESSING GLOBALS FOR HEAP compression took an average of 43 cycles per word compressed.

The final scheme we present is to grow the heap, when it is out- Further details are not presented here for lack of space, but can be

. LT . found in a technical report [28].

of-memory, into the space freed by compressing live global vari-
ables. Itis implemented by combining parts of two earlier schemes:
the method tg grow the geap into d%gd globals in section 5, and 10. SPACE OVERHEADS OF ROUTINES
the method to grow the stack into compressed live globals in sec- This section discusses the main memory space required to run
tion 7. It has the following three components. First, it uses the the added routines for our reuse and compression methods (no
same Reuse Candidate Lists as section 7, that are sorted accordadded routines are needed for the optimized scheme of run-time
ing to the next-time-of-access of the global arrays, as described inchecks). Space is needed for the following two reasons. First, calls
section 5. Second, once the system has run out of heap space, iare made to certain functions such as the Out-of-Heap Function
makes a call to the Out-of-Heap Function, discussed in section 5, (sections 5 and 8), the compression and de-compression functions
which is now slightly modified to support compression. The mod- (sections 7 and 8). Each of these functions requires some space on
ification involves selecting the candidate at the head of the current the stack. To ensure correct execution, the application cannot wait
region’s Reuse Candidate List, and instead of directly calling a free until the stack is full to make these calls; instead the application
on that array, first checking to see if the candidate is live. If that must make the calls when there is just enough space on the stack
is indeed the case, it first compresses the global array in place, ex-to make these calls, but no more. Their stack space is not wasted
actly the way it was described in section 7, including maintaining in the final analysis since our overhead routines are exited and their
book-keeping information in the Compression Table, and finally, stack frames are popped off by the time they return to the applica-
makes a call to the free library function with a pointer to the space tion program, which can thereafter reuse the space. Nevertheless to
freed up by compression. Third, before every region a check is limit the pre-mature invocation of our method, special care is taken
made to see if reuse has started, just as in section 7. If it has, allin writing our functions to ensure that their stack space is small.
compressed globals are de-compressed as in that section. The only A second source of memory overhead from our schemes is to
additional task needed before de-compression is that the overflowstore the Reuse Candidate Lists for every region in the same mem-
heap is checked to see if it is empty, like in section 5, and if it is ory device where program code is stored, which is usually read-
not, an out-of-memory error is declared. only memory (ROM) in embedded systems. The reuse candidate

Since this scheme is a combination of existing technologies, it lists can be stored in ROM because they are known at compile-
does not use any new data structures and has the same run-timéime, and do not change at run-time. Results show that the lists
overhead as the older scheme of compressing globals for stack. typically are only a tiny fraction of the program code-size, and do

not significantly change the required code-size.

9. COMPRESSION ALGORITHM

Since sections 7 and 8 involve compressing global arrays, a datall- LIVENESS ANALYSIS
compression algorithm is needed. For our situation, a good com- Liveness analysis, needed for our reuse schemes for detecting
pression algorithm is one that has the following characteristics. dead globals, is a well-established dataflow analysis in the compiler
First, it should compress program data to a high degree, so thatliterature [2]. It is always possible even in languages with pointers
a significant amount of free space is recovered. Second, it shouldby using pointer analysis. The less precise the pointer analysis, the
have a very low or zero persistent memory overhead, which is the more conservative the liveness analysis, but it is never wrong.



[ Benchmark [ Source | Description | Total Data Size (in bytes) Lines of Code|

SUSAN MiBench Digital Tmage Processing 383000 5733
HISTOGRAM | UTDSP Image Enhancing Application 17850 634
KS PTRDist Graph Partitioning Tool 31400 2231
JPEG UTDSP Image Encoding and Decoding 169000 18758
SPECTRAL | UTDSP | Power Spectral Estimation of Speech 3200 1218
LPC UTDSP Linear Predictive Coding Encoder 8000 4377
Table 1: Benchmark programs and characteristics.
A difficulty arises in doing compile-time liveness analysis in sit- Benchmark Run-time Increase (%) Code size
uations when the call-graph for the program is not fully known at Without with Increase(%)
o L Optimization | Optimization | (with optim.)
compile-time. There are two situations when the call-graph may SUSAN 038 01T 01
not be known at compile-time. First, in object-oriented languages HISTOGRAM 35 77 0.06
when a virtual function is called, the compiler does not usually KS 3.8 15 0.01
know which real function is actually called at run-time. Second, in JPEG 2.0 0.2 0.2
imperative languages such as C, first-order functions may prevent SPECTRAL 1.1 0.6 0.1
knowledge of the call-graph at compile-time. First-order functions LPC 3.7 2.2 01
are those that are assigned to function variables, and called indi-[___Average | 2. [ 1 [ 0.09 l
rectly through those variables, so that the compiler may not know Table 2: Overheads for Safety Checks

which function is actually called when a function variable is called.
Fortunately there are technologies that allow liveness analysis
even when the call-graph is not fully known. Liveness analysis in
such situations may not be precise, but is always conservative in
that it never declares a live variable to be dead. For object-oriented
languages, liveness analysis has been investigated in [26]. Restrict-
ing the set of functions a virtual function may call, is possible at
compile-time, in many cases, by using techniques such as [10]
which use type information to narrow down what functions can be
called. Even when the call set cannot be restricted to one, a conser-
vative analysis is possible which considers if a variable can be live
under any of the functions in the restricted set. For imperative lan-
guages such as C, which is the most widely prevalent language in
embedded systems, unknown call-graphs are rare since first-order
functions are rare [13], and hence this problem is mostly absent.
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12. RESULTS
This section presents results for the different schemes proposed ® SUSAN  HIST KS JPEG  SPEC LPC
in the paper. The proposed techniques have been implemented in BENCHMARKS

the public-domairG CC cross-compiler targeting the Motorola M- Figure 7. Extra space recovered for stack and heap as a fraction of
Core [24] embedded processor. The compiler is modified to auto- total stack and heap requirement for each benchmark

matically determine the program regions and reuse candidates forSafety Runtime Checks Table 2 shows the overheads due to in-

each region. Automating the code insertions, however, is not yet geting the safety checks alone. The second column reports the run-
complete and therefore the current implementation involves manu- time overhead without any optimization, whereas the third column

ally inserting the required check code into the application sources .o4rds the reduced run-time overhead after applying the rolling
at the beginning of functions and at the start of regions. Since the .pack optimization proposed in section 3. The run-time overhead
resulting executable code is exactly the same as what will be pro- oqyces from 2.5% to 1.1% with optimizations, and the code-size
duced by automating the code insertions, manual coding causes NQ, erhead with optimization is only 0.09%. Recall that the safety
error of any kind in the results. One of the schemes, namely grow- nime checks is a stand-alone scheme that can be used with or
ing the stack into heap fragments has not yet been implemented; butyithoyt the reuse and compression schemes. Results show that
the remaining techniques - safety runtime checks, reusing global yejr g aranteed detection of out-of-memory errors, thus allowing
fordstack, reusing gllot?all ffor kr:eap, chomprgssmg glcl)bal f‘ir jtalef remedial action, is possible with very low overhead.

and compressing global for heap - have been implemented. Fi- _ L .

nally, the compiled applications are executed on the public-domain iiﬁereasﬁtiﬁgr?g;sioenubseeni];lt;'jrlgrléﬁsz Zzgvisomp?r;rgsi?r\llzch-

cycle-accurate simulator for the Motorola M-Core. . . .
4 iques for each benchmark. Since the goal of the scheme is to en-

The names, sources and other characteristics of the embedde U - -
benchmarks evaluated are shown in table 1. The benchmarks sel'a1¢€ the reliability of the system by providing additional memory

lected are such that they have at least some global arrays eachin case of a space shortage, the improvement numbers on_the y-axis
since four out of the five reuse schemes proposed rely on recov-have been expressz_ed as percentages of the to_tal dynamic (stack +
ering space from global arrays. Owing to the tedious nature of heap) memory requirement of the system. The figure shows that the

; ; ts range from 0.77%, in the case of JPEG, t0 93.5% in
manually inserting code, the benchmarks chosen are such that they""Provemen ' ,
demonstrate the merits of the technique, without being too large to 1€ case of SUSAN. In other words, for SUSAN 93.5% of the max-

modify manually. One benchmark (JPEG) that is not favorable to imum stack and heap combined usage can be placed in dead global
our technique is also included.

arrays in case of a memory overflow.



Benchmark Increase in Run-time (%) Increase in Code-sizéwith optimization)
Without Optimization| With Optimization | Due to checks (%] Due to added routines (KB, %
SUSAN 1.8 0.3 0.2 6.7, 15
HISTOGRAM 10.6 6.5 0.2 143, 4.0
KS 8.8 3.6 0.06 6.7, 1.7
JPEG 4.6 0.4 0.4 6.7, 2.1
SPECTRAL 3.3 1.9 0.4 6.7, 1.6
LPC 11.1 6.5 0.3 6.7, 15
[ Average | 6.7 [ 3. [ 0.26 [ 2.07% ]

Table 3: Overheads for Memory Reuse and Compression Schemes

The above numbers are collected as follows. The program is first Reuse and compression overheadsTable 3 shows the increase
executed with an extremely large stack and heap space in orderin run-time and code-size caused by our reuse techniques. The
to determine the exact stack and heap footprints for a particular increase in run-time is incurred due to the insertion of the reuse
input data-set. Thereafter, the program is re-run with a heap andchecks. Recall from figure 5 that the reuse code is more expensive
stack space that is less than the requirement determined in the firsthan the safety check since it has two predicates OR-ed together,
pass and it is observed whether the program can execute correctlyand because of the assignment of the Current-Region variable at
This process is repeated several times, with progressively smallerthe start of regions. Our rolling check and region-merging opti-
amounts of dynamic memory, until even the space freed up by our mizations however, reduce the run-time increase significantly. The
techniques is not enough to allow the program to run to the end. optimized run-time overhead is 3.2% on average, which is higher
In KS, for instance, the program runs to completion even with a than for the safety checks, but is still low.
dynamic memory size that was 23% less than the actual dynamic Table 3 also shows the increase in code-size in its last two
memory requirement calculated in the first pass. columns for the optimized case. Code size is increased from two

The significant space recovery shown in figure 7 for several components - an application-specific part from the inserted run-
benchmarks shows the promise of the method in improving sys- time checks, and a fixed part from the same extra handler rou-
tem reliability. When the program is out of memory, the recov- tines for our method linked into all applications. The fixed part
ered space can be used to postpone and hopefully avoid a systenis the same for all benchmarks, except HISTOGRAM, for which
crash. In this manner, the techniques improve reliability for a given it is higher because it also uses compression and de-compression
memory size, and hence reduce the dollar cost of the system. Theroutines. Table 3 shows that the application-specific increase in
numbers under-estimate the benefits from the technique in two im- code-size is almost insignificant — only 0.26% on average for our
portant ways. First, the implementation of the technique for grow- benchmarks. Table 3 also shows that the fixed code-size increase is
ing the stack into free holes in the heap is not yet complete, and 2.07% on average for our benchmarks; this number is expected to
hence its improvements are not counted. Second, numbers canbe much smaller for real embedded systems, which typically have
not quantify the additional safety and reliability benefits from au- much larger applications than our benchmarks. Further the fixed
tomatic detection of out-of-memory errors made possible by our size routines in our method have not currently been carefully en-
method, which enables remedial action of various kinds. gineered during their programming to reduce code size; we expect

The figure 7 also shows the contribution of the different reuse that programming them carefully will reduce the fixed code-size
schemes to the total space recovered for each benchmark. Reusingverhead further from the already low 2.07% number.
globals for stack appears to be the most promising because pre- Currently the Reuse Candidate Lists are placed in heap instead of
dicting the lifetime of stack variables at compile-time is easier than ROM for implementation convenience, and hence their code-size is
doing the same for heap variables and also because three out of th@ot counted in table 3. We do, however, count their impact in the
six benchmarks, namely HISTOGRAM, LPC and SPECTRAL, do earlier experiment in fig. 7, when their space is subtracted from the
not have any heap allocation. space saved and only the net space recovered is reported. When

Some additional benchmark specific observations are as follows. the candidate lists are placed in ROM, we have computed that their
For SUSAN, the space recovered is substantial since it has one 36dmpact on code-size will be less than 0.5%.

KB array which is used only when a specific option is chosen by the

data set. In case a different option is chosen, the array innotusedat] 3. CONCLUSION

all, and is automatically freed for heap usage by our scheme. The
360 KB array referred to above is actually declared on the stack in
the main() procedure, and is retained on the stack throughout the
lifetime of the program. Our compiler implements a simple opti-
mization which promotes all arrays main()to global variables so
that our method can benefit from them. HISTOGRAM, LPC and
SPECTRAL are selected because each of them uses global array
with mutually exclusive lifetimes, thereby presenting opportunities
for benefiting from our techniques. While all space freed up to
the stack in LPC and SPECTRAL are from reuse of dead global
arrays, in HISTOGRAM, one of the arrays in the candidate list is

This paper presents a flexible memory management method for
embedded systems whose main goal is to improve the reliability
of such systems in case of out-of-memory errors. It proposes three
techniques for providing reliability. The first technigue is to modify
application code automatically in the compiler to check for all out-
gf-memory conditions. Such a system of software-only run-time
checks can be invaluable in embedded systems without memory
protection. This is a stand-alone technique that can be implemented
without the remaining techniques, if desired. The second technique
is to reduce the memory footprint of the program by allowing seg-
i L . : . ments that are out of memory to grow into non-contiguous free
ive throughout, making its reuse impossible. However, the array is . . . : -

space in the system, when available. The third technique involves

not used throughout and thummpressions feasible and is auto- compressing live data and using the resulting free space to grow
matically invoked. The low improvement in JPEG resulted from it the stack and the heap when they overflow. Results show that the

being extremely heap-intensive and having large heap Strucwresoverhead from the system of run-time checks is very low. The ad-

whose compiler-derived live ranges spanned the entire program. . . X
The small benefit arose from reusing some global space for stack. ditional space .recovered by the schemes for reusing dead space and
compressing live data, ranges between 0.7% to 93.5% of the com-



bined stack and heap size for our benchmarks. In future work, we
wish to explore the opportunities of reusing space across tasks in

multitasking environments.
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