

Using Particles to Sample and Control
Implicit Surfaces

Andrew P. Witkin
Paul S. Heckbert

Department of Computer Science
Carnegie Mellon University

Abstract
We present a new particle-based approach to sampling and con-

trolling implicit surfaces. A simple constraint locks a set of particles
onto a surface while the particles and the surface move. We use the
constraint to make surfaces follow particles, and to make particles
follow surfaces. We implementcontrol pointsfor direct manipula-
tion by specifying particle motions, then solving for surface motion
that maintains the constraint. For sampling and rendering, we run the
constraint in the other direction, creatingfloaterparticles that roam
freely over the surface. Local repulsion is used to make floaters
spread evenly across the surface. By varying the radius of repulsion
adaptively, and fissioning or killing particles based on the local den-
sity, we can achieve good sampling distributions very rapidly, and
maintain them even in the face of rapid and extreme deformations
and changes in surface topology.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling:Curve, surface, solid, and object rep-
resentations, Physically based modeling;I.3.6 [Computer Graph-
ics]: Methodologies and Techniques:Interaction techniques;G.1.6
[Numerical Analysis]: Optimization:Constrained Optimization.

General Terms: algorithms, design.

Additional Key Words and Phrases: physically based modeling,
constrained optimization, adaptive sampling, interaction.

1 Introduction
Implicit surfaces have proven to be useful for modeling, ani-

mation, and visualization. One appeal of implicit models is that
new surfaces can be created by adding or otherwise combining the
functions that define them, producing a variety of subtle and inter-
esting shape effects. Another is their role in the visualization of
volume data. In addition, the implicit representation lends itself to
such calculations as ray/surface intersection and inside/outside test.
However, implicit surfaces suffer from two serious drawbacks: first,
although well suited to ray tracing, they are not easily rendered at in-
teractive speeds, reflecting the underlying problem that it is difficult
to samplethem systematically. This is particularly a problem if we
wish to render time-varying surfaces in real time, which is vital for
interactive sculpting. Second, the shapes of implicit surfaces have
proven to be more difficult to specify and control than those of their
parametric counterparts.

Mail to the authors should be addressed to the Department of Computer
Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213,
USA. Email should be addressed to Andrew Witkin asaw@cs.cmu.edu, and
to Paul Heckbert asph@cs.cmu.edu.
c©1994 ACM. Reprinted fromComputer Graphics, Proc. SIGGRPAH ’94.

In this paper, we present a new particle-based approach to sam-
pling and shape control of implicit surfaces that addresses these
problems. At the heart of our approach is a simple constraint that
locks a collection of particles onto an implicit surface while both
the particles and the surface move. We can use the constraint to
make the surface follow the particles, or to make the particles follow
the surface. Our formulation is differential: we specify and solve
for velocities rather than positions, and the behavior of the system
is governed by differential equations that integrate these velocities
over time.

We control surface shape by moving particles interactively, solv-
ing for surface motion that keeps the particles on the surface. This
technique lets us pin down the surface at some points while inter-
actively dragging others. These particles act ascontrol pointsfor
direct manipulation of the surface.

For sampling and rendering, we run the constraint in the other
direction, creating particles that may roam freely over the surface,
but are compelled to follow it as it moves. We call these particles
floaters.Our starting point is the idea that uniform sampling density
can be achieved by making the particles repel each other. This
approach was used by Turk [29] to resample polygon meshes, and
by Figueiredoet al. [12] to sample implicit surfaces.

Simple repulsion can work quite well for stationary surfaces, but
only if a reasonably good initial sampling is available. If large-
scale non-uniformities exist, convergence can be extremely slow
for even moderate sampling densities. We eliminate the need for
a good starting point, and dramatically accelerate convergence, by
employing an iterative “fissioning” approach, in which we start with
a small number of particles and a large radius of repulsion, allow
them to equilibrate, then split each particle in two, reducing the
radius of repulsion. We repeat the process until the desired sampling
density is reached. Each level thus inherits a distribution that is
already uniform at large scale, requiring just a few iterations to iron
out the local irregularities.

Global fissioning still fails to handle surfaces that move and de-
form, since irregularities can arise after the density becomes high.
We introduce a local adaptive repulsion algorithm, in which the re-
pulsion radius and particle birth and death are regulated based on
local density. This method is fast enough to maintain good sampling
even in the face of rapid and extreme surface motion and deforma-
tion.

The remainder of the paper is organized as follows: we begin
by discussing previous related work. Then we introduce the basic
constraint mechanism that attaches particles to surfaces. Next we
describe the use of particles for surface shape control. We then
explain our adaptive repulsion sampling algorithm. After describing
the implementation and results, we conclude with a discussion of
future work.

2 Previous Work
Related work can be divided into two categories: sampling meth-

ods and control methods.

2.1 Sampling Methods
Related research on surface sampling includes both particle-based

sampling techniques and polygonization techniques for implicit sur-
faces.

Turk used repelling particles on surfaces to uniformly resample
a static surface [28] and to simplify a polygonization by reducing
the number of polygons [29]. Hoppeet al. also explored mesh
simplification, framing it as an optimization problem with penalties
for geometric error, number of samples, and edge length [16]. Their
method did not restrict the points to a surface, however, as Turk’s
and ours do.

Szeliski and Tonnesen used oriented particles to model surfaces
[27]. Their technique allowed the user to move the particles interac-
tively, employing short-range repulsion and long-range attraction to
keep the particles from clumping or flying apart. The system gen-
erated a surface by connecting neighboring particles appropriately,
but it did not manipulate a high level representation for a surface,
such as a parametric patch or an implicit function, as ours does. The
output of their system was a triangulation. Their system bears a su-
perficial resemblance to ours because we both use disks to visualize
the surface, but in other respects our techniques are quite different.

An implicit surface, also called an iso-surface, is the set of points
x that satisfyF(x) = 0. Implicit surfaces are typically defined by
starting with simple building block functions and by creating new
implicit functions using the sum, min, or max of simpler functions.
When the building blocks are polynomials inx, y, andz, the resulting
surfaces are calledalgebraic surfaces, and when the building blocks
are spherical Gaussian functions, the surfaces are calledblobbies[8],
“soft objects”, or “metaballs”. The use of sums of implicit functions
allows blend surfaces to be created [24], and the use of min and max
yields the union and intersection of solid objects.

Rendering an implicit surface is often difficult. If a ray tracer
is used, intersecting a ray with an implicit surface reduces to one-
dimensional root-finding, but this can be very slow for a complex
implicit function [8]. To exploit the speed of graphics hardware,
we would prefer to render using a z-buffer algorithm. This requires
converting the implicit surface into polygons or other parametric
surfaces.

Most existing methods for polygonizing implicit surfaces sub-
divide space into a uniform grid of cubical or tetrahedral voxels,
sample the function at the vertices of the voxels, and then, for each
voxel whose vertices are not all in or all out, generate polygon(s) ap-
proximating the surface [33,18,21,10]. This approach is often called
themarching cubesalgorithm. Improvements on this algorithm use
adaptive subdivision based on curvature [9]. Unfortunately, all of
these algorithms will miss small surface features if the initial sam-
pling grid is too coarse, except Snyder’s, which uses interval arith-
metic to guarantee that the topology of the polygonization matches
the topology of the real surface [26].

These polygonization algorithms were designed for static sur-
faces; to polygonize a changing surface with them would require
beginning from scratch each time. The algorithm of Jevanset al. is
an exception. It re-polygonizes only those voxels that change [17].

Physically-based approaches to the polygonization of implicit
surfaces were pioneered by Figueiredoet al. [12]. One of the two
methods they describe starts with particles randomly scattered in
3-D space, subjects them to forces that pull them to the surface
(an idea proposed in [11]), and uses repulsion between particles to
distribute them uniformly over the surface. Their technique uses

penalty methods, however, which lead to stiff differential equations
whose solution is generally either slow to repel into a nice pattern, or
inaccurate at staying on the surface. Once the particles have reached
equilibrium, a polygonization is found using Delaunay triangulation.
Their work resembles ours most closely, but our simulation method
differs from theirs, and our technique supports interactive control
of surfaces and incremental sampling of changing surfaces, while
theirs does not.

2.2 Control Methods
One of the principal disadvantages of implicit modeling relative

to parametric modeling is the difficulty of controlling the shape of
an implicit surface [11]. The effect of the parameters of an implicit
surface is often non-intuitive.

With algebraic surfaces, for instance, it is hard to predict the sur-
face shape given its coefficients. Modeling is further complicated by
the global nature of an algebraic surface’s polynomial basis func-
tions, which prevent local shape control. For these reasons and
others, piecewise algebraic surfaces have recently become popu-
lar [25]. Piecewise algebraic surfaces are typically defined by a
weighted sum of Bernstein polynomials over a lattice of tetrahe-
dra. Least squares methods for fitting surfaces to a set of points are
available both for standard algebraic surfaces [22] and for piecewise
algebraic surfaces [1]. Pratt’s algorithm can fit a surface withm pa-
rameters ton points (n > m) in timeO((n+m)m2). These methods
are limited to algebraic surfaces, however.

Blobby models employ local basis functions, so they are often
more intuitive to work with than algebraic surfaces [8]. In an inter-
active blobby modeling system, a user might use dials or sliders to
adjust the position and radius of each blobby center [7], but arriv-
ing at a desired surface is a matter of guesswork, and the real time
display is typically just a wireframe, with a higher quality rendering
requiring off-line ray tracing or polygonization. Some recent work
has fit blobby models to a set of surface points, but the method is
quite slow, one example requiring days of computer time to fit 2900
control points using 1200 parameters [20]. Direct manipulation of a
blobby surface at interactive speeds has remained an open problem.

The differential methods we use to constrain the motion of par-
ticles and surfaces are rooted in classical mechanics (see, e.g. [15]
for a discussion of mechanical constraints and constraint forces) and
are closely related to constraint methods used in physically based
modeling for computer graphics [5,2,3,32,31,4]. Allied methods
have also been used for interactive geometric modeling [30,14].

3 The Particle/Surface Constraint
In this section we derive the basic machinery that allows us to

attach moving particles to moving surfaces. First we derive a ba-
sic constraint on particle and surface velocities that establishes, then
maintains contact as the system evolves over time. We then pose two
related problems: solve for particle velocities given time derivatives
of the surface parameters, and solve for surface derivatives given
particle velocities. Since the problem will generally be undercon-
strained, we express it as a constrained optimization.

Notation: We use boldface to denote vectors, and italics for
scalars. Subscripts denote partial differentiation. Superscripti or j
denote thei th or j th member of a collection of objects. E.g.pi is
the i th in a collection of vectors, andFx is the derivative of scalar
F with respect to vectorx, hence a vector. Superscripts other than
i or j have their usual meaning as exponents, e.g.|x− c|2 or e−x2

.
A dot, as inq̇, denotes a derivative with respect to time.

c©1994 ACM 2 Computer Graphics, Proc. SIGGRPAH ’94.

3.1 The Basic Constraint

We represent the moving implicit surface byF(x,q(t)) = 0,
wherex is position in space, andq(t) is a vector ofm time-varying
shape parameters. For example, an implicit sphere could be defined
by F = |x − c|2 − r 2, with centerc and radiusr . The parameter
vectorq would then be the 4-vector [cx, cy, cz, r].

The condition that a collection ofn moving particles lie on the
surface is

F(pi (t),q(t)) = 0, 1≤ i ≤ n, (1)

wherepi (t) is the trajectory of thei th particle. In order for this
condition to be met from some initial timet0 onward, it suffices
that equation 1 is satisfied att0, and that the time derivativėF =
0 thereafter. Since we want to manipulate velocities rather than
positions, we obtain an expression forḞ using the chain rule:

Ḟ i = Fi
x · ṗi + Fi

q · q̇, (2)

where Ḟ i , Fi
x, andFi

q denoteḞ , Fx, andFq evaluated atpi . By

settingḞ i to zero in equation 2, we obtainn linear constraints on the
ṗi s and oṅq. In principle, if we began with a valid state and ensured
that these conditions were met at every instant thereafter, we would
be guaranteed that the particles remained on the surface. In practice,
we might not have valid initial conditions, and numerical integration
errors would cause drift over time. We cure these problems using
a feedback term [6], settinġFi = −φFi , whereφ is a feedback
constant. This yields the set ofn linear constraint equations

Ci (pi , ṗi ,q, q̇) = Fi
x · ṗi + Fi

q · q̇+ φFi = 0 (3)

3.2 Constrained Optimization
We employ these constraints in two ways: first, in order to use

particles to move the surface, we solve forq̇ given theṗi ’s. Second,
to use mutually repelling particles to sample the surface, we solve
for the ṗi ’s given q̇. In either case, we generally wish to solve un-
derconstrained systems. To do so we minimize a quadratic function
of ṗi and q̇, subject to the constraints. The objective function we
use here is

G = 1

2

n∑
i=1

|ṗi − P i |2 + 1

2
|q̇−Q|2,

whereP i andQ are knowndesiredvalues forṗi andq̇ respectively.1

These desired values can be used in a variety of ways. SettingP i to
zero minimizes particle velocities. SettingQ to zero minimizes the
surface’s parametric time derivative.

In unconstrained optimization we require that the gradient of
the objective function vanish. At aconstrainedminimum, we re-
quire instead that the gradient of the objective function be a linear
combination of the gradients of the constraint functions [13]. This
condition ensures that no further local improvement can be made
without violating the constraints. In the case of a point constrained
to a surface, this condition is easily visualized: the gradient of the
objective function must lie normal to the surface, so that its orthog-
onal projection onto the tangent plane vanishes. Though harder to
visualize, the idea is the same in higher dimensions.

1Although we do not give the derivation here, a straightforward and useful
generalization is to allow error to be measured using an arbitrary symmetric
positive-definite metric tensor, e.g.(q̇ −Q)T M (q̇ −Q). In particular, it
is possible to automatically compute a sensitivity matrix, analogous to the
mass matrix in mechanics, that compensates for scale differences among the
components ofFq (see [31].)

The classical method of Lagrange multipliers [13] solves con-
strained optimization problems by adding to the gradient of the ob-
jective a linear combination of constraint gradients, with unknown
coefficients. One then solves simultaneously for the original un-
knowns, and for the coefficients. In the case of linear constraints
and a quadratic objective, this is a linear problem.

The two problems we wish to solve—obtainingṗi givenq̇, andq̇
given ṗi —seek to minimize the same objective subject to the same
constraints, differing only in regard to the knowns and unknowns.
Even so, the solutions will turn out to be quite different because of
the structure ofC j ’s dependencies oṅpi andq̇. We next consider
each problem in turn.

3.3 Floaters
In solving for theṗi ’s, the requirement that the gradient of the

objective be a linear combination of the constraint gradients is ex-
pressed by

Gṗi +
∑

j

λ j C j
ṗi = ṗi − P i + λi F i

x = 0 (4)

for some value of the unknown coefficientsλi . The summation over
j drops out becauseC j cannot depend oṅpi unlessi = j . In addition
we require that the constraints be met, i.e. thatCi = 0, 1≤ i ≤ n.
Equation 4 allows us to express theṗi ’s in terms of the unknown
λi ’s. Substituting foṙpi in equation 3 gives

Fi
x · (P i − λi F i

x)+ Fq · q̇+ φFi = 0.

We may solve for eachλi independently. Doing so yields

λi = Fi
x · P i + Fq · q̇+ φFi

Fi
x · Fi

x
.

Substituting into equation 4 yields

ṗi = P i − Fi
x · P i + Fq · q̇+ φFi

Fi
x · Fi

x
Fi

x (5)

which is the particle velocity that solves the constrained optimization
problem. Notice that in the case that the surface is not moving and
the constraints are met, so thatFi = 0 andq̇ = 0, this reduces to

ṗi = P i − Fi
x · P i

F i
x · Fi

x
Fi

x,

which is just the orthogonal projection ofP i onto the surface’s tan-
gent plane atpi .

3.4 Control Points
We follow the same procedure in solving forq̇, except that deriva-

tives ofC j andG are taken with respect tȯq. The condition that the
gradient of the objective be a linear combination of the constraint
gradients is

Gq̇ +
∑

j

λ j C j
q̇ = q̇−Q+

∑
j

λ j F j
q = 0. (6)

This time, the sum does not vanish, because everyC j generally
depends oṅq.

c©1994 ACM 3 Computer Graphics, Proc. SIGGRPAH ’94.

We next use equation 6 to substitute forq̇ in equation 3:

Fi
x · ṗi + Fi

q ·
(

Q−
∑

j

λ j F j
q

)
+ φFi = 0.

Rearranging gives us then× n matrix equation to be solved forλ j :∑
j

(
Fi

q · F j
q

)
λ j = Fi

q ·Q+ Fi
x · ṗi + φFi . (7)

Note that element(i, j) of the matrix is just the dot productFi
q · F j

q.

Having solved for theλ j ’s, we then solve foṙq using equation 6:

q̇ = Q−
∑

j

λ j F j
q. (8)

3.5 Summary
In this section we have given the solutions to two very closely

related problems:

• Given the instantaneous surface motionq̇, solve for particle
velocitiesṗi that minimize deviation from desired velocities
P i subject to the constraint that the particles stay on the sur-
face. Each particle’s constrained velocity may be computed
independently.

• Given the particle velocitieṡpi , solve for the implicit function
time derivativeq̇ that minimizes deviation from a desired time
derivativeQ, again, subject to the constraint that the particles
must remain on the surface. Calculatingq̇ entails the solution
of ann× n linear system, wheren is the number of particles.

We combine these methods by maintaining two populations of
particles: control pointsand floaters. Control points are moved
explicitly by the user, anḋq is calculated to make the surface follow
them. In contrast, floaters’ velocities are calculated to make them
follow the surface, oncėq has been computed.

4 Adaptive Sampling
In this section we address the problem of sampling implicit sur-

faces, building on the floater mechanism that we presented in the
previous section. Good sampling is a requirement both for quick
rendering and for the evaluation of integrals such as surface area or
volume.

Our primary goal is to obtain sampling distributions that are either
(a) uniform, with user-specified density, (b) or non-uniform, with
density based on local criteria such as surface curvature. We wish
to reach the specified distribution quickly from a few seed points
(ideally, only one per connected component) and tomaintaina good
distribution as the surface moves and deforms. To support interactive
sculpting, we must be able to update at least a few hundred sample
points at 10Hz or better. Additional goals are that the particles should
move as little as possible in response to surface motion, and that only
basic and generic information about the functionF be required. It
should not be necessary to supply a surface parameterization.

The starting point for our approach is the idea, introduced by
Turk [28] and by Figueiredoet al. [12], that particles can be made
to spread out to uniform density by local repulsion, relying on the
finiteness of the surface to limit growth. Simple repulsion can do a
good job at ironing out local irregularities given a reasonably good
initial sampling (as in Turk’s application to resampling of a polygon

mesh) but is extremely slow to converge if the initial sampling is
irregular at large scale, and fails completely to track surface motions
and deformations.

After describing our basic repulsion scheme, we introduce the
idea ofglobal fissioning: we start the sampling process with a very
small number of particles but a very large radius of interaction, com-
ing close to equilibrium in just a few iterations. We then fission each
particle, imposing random displacements that are smaller than the
interaction radius. At the same time, we scale the interaction ra-
dius to a smaller value. We now have a new starting point, locally
irregular but with nearly uniform large-scale structure. A few itera-
tions suffice to smooth out the small irregularities and reach a new
equilibrium. The scaling and fissioning process is repeated until the
target sampling density is reached.

Global fissioning still fails to handle surface motion: should new
nonuniformities be introduced after the fissioning process termi-
nates, the system suffers all of the shortcomings of simple fixed-
scale repulsion. So, for example, the sudden introduction of a bulge
in the surface can create a gaping hole in the sampling pattern that
will be repaired extremely slowly, if at all. Intuitively, we would
like particles at the edge of such voids to “feel” the reduction of
density, expand their radii of interaction to quickly fill the hole, then
begin fissioning to restore full density. On the other hand, if density
becomes too high, we would like particles to die off until the de-
sired density is restored. We will conclude the section by describing
a fast and robust adaptive repulsion scheme that provides just this
behavior, meeting all of our goals.

4.1 Simple Repulsion
As a windowed density measure, we employ a simple Gaussian

energy function based on distances between particles in 3-D. We
define theenergyof particlei due to particlej to be:

Ei j = α exp
(
−|r

i j |2
2σ 2

)
wherer i j = pi − p j is the vector between particles,α is a global
repulsion amplitude parameter, andσ , called the globalrepulsion
radius, is the standard deviation of the Gaussian. The repulsion
radius controls the range of the repulsion “force.” Note thatEi j =
E ji .

The energy of particlei in its current position is defined as:

Ei =
n∑

j=1

Ei j

Ultimately, we would like to reach the global minimum of each
Ei by varying the particle positions on the surface. Finding the
global minimum is impractical, but we can find a local minimum by
gradient descent: each particle moves in the direction that reduces its
energy fastest. We therefore choose each particle’s desired velocity
to be negatively proportional to the gradient of energy with respect
to its position:

P i = −σ 2Ei
pi =

n∑
j=1

r i j Ei j

The formulas for energy and desired velocity have been carefully
chosen here so that “energy” is unitless, while desired velocity is
proportional to distance. This guarantees that the sampling pattern
computed by this simple repulsion method scales with a surface.

If desired particle velocities are set in this way, and constrained
particle velocities are computed with equation 5, particles repel, but
their behavior is highly dependent on the parameterσ . The slope of a

c©1994 ACM 4 Computer Graphics, Proc. SIGGRPAH ’94.

Gaussian peaks at distances of±σ and it is near zero at much smaller
or much greater distances. When the distance between particles is
not between.03σ and 3σ , for instance, the repulsion is below 7%
of its peak. Ifσ is chosen too small then particles will (nearly) stop
spreading when their separation is about 3σ , and ifσ is chosen too
big then distant particles will repel more than nearby ones, and the
resulting sampling pattern will be poor. The best value forσ is about
.3
√

(surface area)/(number of particles).

4.2 Global Fissioning
If a surface is seeded with several floater particles, and an initial

value ofσ can be found that causes these particles to disperse, then
the sampling can be repeatedly refined by allowing the particles
to reach equilibrium, then simultaneously fissioning each particle
into two, giving the new particles a small random displacement, and
simultaneously dividingσ by

√
2. The particles are considered to be

at equilibrium when their net forces, and hence their speeds, get low.
With this global fissioning scheme, early generations will spread out
sparsely, and succeeding generations will fill in more densely.

Simple repulsion with global fissioning is acceptable for main-
taining a good distribution on a very slowly changing surface, but the
population is always a power of two, and particles do not redistribute
quickly in response to rapid surface changes. Global fissioning fails
to adapt to changes in a surface adequately, as mentioned earlier.

4.3 Adaptive Repulsion
To develop a more adaptive repulsion scheme, we employ an anal-

ogy to a population of organisms distributing itself uniformly across
an area. Specifically, imagine a population of pioneers spreading
West and colonizing America. In order to settle the entire country
as quickly as possible, a good rule is for each male-female pair to
spread out as much as possible away from their neighbors, until the
encroachment on them is roughly equal in all directions, and only
then to homestead and have children. If the encroachment from
neighbors is low, then each pair can claim more land (be greedier),
but when neighbors are pressing in, each pair must relinquish land.
Early pioneers travel great distances and claim huge tracts of land,
while later generations move less and divide up successively smaller
shares until the desired density is achieved.

These ideas can be applied to particle behavior. To achieve uni-
form densities quickly, and maintain them as the surface moves or
deforms, we will allow each particle to have its own repulsion ra-
diusσ i , and to decide independently when it should fission or die.
A particle’s radius should grow when all of the forces on it are small
and it should shrink when the forces on it are big. For a particle
near equilibrium, birth and death occur when the density is too low
or too high, respectively. We now quantify these principles.

Similar to the simple repulsion scheme, we define the energy of
particlei due to particlej as:

Ei j = α exp
(
− |r

i j |2
2(σ i)2

)
Note that the global parameterσ has been replaced by the local
parameterσ i , so thatEi j 6= E ji in general.

The energy at particlei is defined as:

Ei =
n∑

j=1

(Ei j + E ji)

The repulsion force and desired velocity is again proportional to the

gradient of energy with respect to position:

P i = −(σ i)2Ei
pi = (σ i)2

n∑
j=1

(r i j

(σ i)2
Ei j − r i j

(σ j)2
E ji
)

(9)

The time-varying repulsion radii will be controlled differentially.
We want the radius to grow when the energy is too low and to
shrink when the energy is too high. This can be done indirectly by
controlling the energies.

As stated earlier, our energy measure is scale-invariant. That is,
if all surfaces and samples are scaled (pi andσ i), theEi will remain
constant. Therefore, to ensure that neighboring particles repel each
other, we can simply drive all of their energies to a global desired
energy level,Ê. To arrive at a value for̂E, we consider an ideal
hexagonal close-packing, which is the best uniform sampling pattern
for a planar surface. In this configuration, allσ i should be equal,
and the distance between nearest neighbors should be roughly 2σ
to guarantee strong repulsion forces. Since each particle has six
nearest neighbors in this configuration, the desired energy should be
roughly Ê = 6α exp

(−(2σ)2/(2σ 2)
) = 6e−2α ≈ .8α.

The portion of a particle’s repulsion energy that is directly affected
by a change in its own repulsion radius is:

Di =
n∑

j=1

Ei j

To keepDi near the desired value, we use the linear feedback equa-
tion:

Ḋi = −ρ(Di − Ê) (10)

whereρ is the feedback constant.
The change to the repulsion radius of a particle that will yield

this change in energy can be derived with the chain rule:Ḋi =
Di
σ i σ̇

i +∑ j Di
p j · ṗ j , neglecting the latter terms, thus:

σ̇ i = Ḋi

Di
σ i

(11)

The rule above works fine for particles that are exerting some force on
their neighbors, but it causes infinite radius change when a particle
is alone in a sparsely sampled region of a surface (or is the first
particle), whereDi = Di

σ i = 0. In such cases we want the radius
to grow, but not catastrophically, so we modify equation 11:

σ̇ i = Ḋi

Di
σ i + β

(12)

for someβ. The change in energy with respect to a change in radius
is:

Di
σ i = 1

(σ i)3

n∑
j=1

|r i j |2Ei j (13)

Using equations 9, 12, 10, and 13 to control particle positions and
repulsion radii will do a good job of moving particles into sparse
regions quickly, but their radii might become very large, and hence
the density might remain too low.

4.4 Adaptive Fission/Death
To achieve uniform density it is necessary that large-radius par-

ticles fission. Likewise, particles that are overcrowded should be
considered for death.

We use the following criteria to control birth and death of parti-
cles: A particle is fissioned iff:

c©1994 ACM 5 Computer Graphics, Proc. SIGGRPAH ’94.

Figure 1: This sequence illustrates the adaptive repulsion and fis-
sioning mechanism. The topmost image shows a deliberately poor
sampling of a blobby cylinder produced using simple repulsion: the
cylinder was rapidly stretched, leaving the sample points behind.
The remaining images, from top to bottom, show the recovery of
good sampling when adaptive repulsion is enabled. The particles
at the frontier increase their radii of repulsion, rapidly filling the
voids. As the particles slow down, they fission, restoring the de-
sired sampling density. This process takes about four seconds on an
SGI Crimson.

• the particle is near equilibrium,|ṗi | < γσ i , and
• either the particle’s repulsion radius is huge (σ i > σmax), or

it is adequately energized and its radius is above the desired
radius (Di > ν Ê andσ i > σ̂).

Fission splits a single particle in two. The two particles are given
initial radii ofσ i /

√
2 and a desired velocity that is a random direction

scaled by a fraction ofσ i . A particle dies iff:
• the particle is near equilibrium,|ṗi | < γσ i , and
• the particle’s repulsion radius is too small,σ i < δσ̂ , and
• the following biased randomized test succeeds:R> σ i /(δσ̂),

whereR is a uniform random number between 0 and 1.
The death criteria are made stochastic to prevent mass suicide in
overcrowded regions.

This combination of adaptive repulsion, fissioning, and death
is much more responsive to changes in the surface shape than the
simple repulsion scheme.

5 Implementation and Results
The techniques described above have been implemented in about

3700 lines of C++ code. Particular implicit function classes are
derived from a generic implicit function base class. Adding a new
implicit function to the system is easy, requiring only the imple-
mentation of functionsF , Fx, Fq, and bounding box. Each of these
exceptFq is standard in any system employing implicit functions.

For example, we define the blobby sphere implicit function to be
the sum of Gaussians of the distance to each ofk center points [8].
The parameter vectorq consists of 4k+ 1 parameters: a biasb plus
four parameters for each sphere (a center 3-vectorci and standard
deviationsi). Thus,

q = [b, c1, s1, c2, s2, . . . , ck, sk]

If we define

gi (x) = exp
(
−|x− ci |2

(si)2

)
then the functions needed by the system are

F(x) = b−
k∑

i=1

gi (x)

Fx(x) = 2
∑

i

x− ci

(si)2
gi (x)

Fq(x) = [Fb, Fc1, Fs1, Fc2, Fs2, . . . , Fck , Fsk]

where
Fb(x) = 1

Fci (x) = −2
x− ci

(si)2
gi (x)

Fsi (x) = −2
|x− ci |2
(si)3

gi (x)

If we assume thatgi (x) = 0 beyond a radius of 3si , then a con-
servative bounding box for blobby spheres is the bounding box of
non-blobby spheres with centersci and radii 3si .

We have also implemented spheres and blobby cylinders. A
blobby cylinder function is defined to be the sum of Gaussians of
the distance to each of several line segments. A system ofk blobby
cylinders has 7k + 1 parameters: a bias plus seven parameters for
each cylinder (two endpoints and a standard deviation).

It is often useful to freeze some of these parameters to a fixed
value so that they will not be modified during interaction. This is

c©1994 ACM 6 Computer Graphics, Proc. SIGGRPAH ’94.

done simply by leaving them out of theq and Fq vectors. To get
blobs of equal radii, for instance, one would omit allsi .

The system starts up with a single floater positioned arbitrarily
in the bounding box of the surface and then begins the physical
simulation by repeating the following differential step:
• The user interface setsdesiredcontrol point velocitiesP i . Sta-

tionary control points of course have zero desired velocity,
while control points being dragged by the user have desired
velocities that are calculated as a function of cursor position.
• SetQ, thedesiredvalues for the time derivatives of the surface

parameters. These are typically set to zero to minimize para-
metric change in the surface, but they could also be calculated
to attract the surface toward a default shape.
• Compute the actual surface parameter changes,q̇, as con-

strained by the control point velocities, using equations 7 and
8.
• Compute repulsion forces between floaters to set their desired

velocitiesP i , using equation 9.
• Compute actual floater velocities, as constrained by the

already-computed surface time derivatives, using equation 5.
(When the gradientFx is near zero, however, the surface is lo-
cally ill-defined, and it is best to leave such floaters motionless,
i.e., ṗi = 0.)
• Compute the change to floater repulsion radii,σ̇ i , using equa-

tions 12, 10, and 13.
• Update the positions of the control points and floaters using

Euler’s method, that is:pi (t + 1t) = pi (t) + 1t ṗi (t), and
similar formulas to update the surface parametersq from q̇,
and the floater repulsion radiiσ i from σ̇ i .
• Test each floater for possible fission/death.
• Redisplay the floaters and control points as disks tangent to

the surface, with normal given byFx and (for floaters) radius
proportional toσ i .

Using the mouse, the user can pick a control point and move it in
a plane perpendicular to the view direction. Pulling control pointi
sets the desired control point velocityP i . Since the velocities feed
into the constrained optimization solution, which in turn feeds into
a numerical differential equation solver, some care must be taken to
ensure that control point motions are reasonably smooth and well
behaved, which they might not be if positions were set directly by
polling the pointing device. A simple solution which works well is to
make the velocity of the dragged particle proportional to the vector
from the point to the 3-D cursor position. This in effect provides
spring coupling between the cursor and the control point. Although
the control point can lag behind the cursor as a result, performance
is brisk enough that the lag is barely noticeable. Similar dragging
schemes are described in [14,31]. The user can also create and delete
control points and adjust the desired repulsion radiusσ̂ through a
slider.

The matrix in equation 7 is symmetric and in general positive
definite. It thus lends itself to solution by Cholesky decomposition
[23], which is easy to implement, robust and efficient. However, the
matrix can become singular if inconsistent or redundant constraints
are applied, that is if the number of constraints exceedsm, or if
some of theFi

q’s are linear combinations of others. While the
former condition is easy to detect by counting, the latter is not.
The problem of singularities can be circumvented by using a least-
squares technique, or singular value decomposition [23].

The system is fast enough to run at interactive rates. Letm be
the number of degrees of freedom of the implicit surface, letn be
the number of control points, and letr be the number of floaters.
The most expensive parts of the algorithm are the computation of
then×n matrix of equation 7, which has costO(mn2), the solution

of the linear system, which has costO(n3), the computation of re-
pulsion forces between all pairs of floaters, which currently has cost
O(r 2), and the display of the floaters, which has costO(r) (with a
large constant). Our current system does not handle overconstrained
surfaces, som ≥ n, thus the total asymptotic cost of the algorithm
is O(mn2 + r 2) per iteration.

We have run simulations as complex asm= 56,n = 10,r = 500.
Above r = 250 floaters, theO(r 2) repulsion cost has dominated,
but this could easily be optimized using spatial data structures. For
smaller numbers of floaters (r < 150), our system runs at interactive
rates (10 Hz or faster on a Silicon Graphics workstation with 100
MHz processor).

The following parameter settings are recommended (whered is
surface diameter):

PARAMETER MEANING
1t = .03 time step
φ = ρ = 15 feedback coefficients to keep

particles from drifting off sur-
face, and keep particles ener-
gized, respectively

α = 6 repulsion amplitude
Ê = .8α desired energy
β = 10 to prevent divide-by-zero
σ̂ = d/4 or less desired repulsion radius (user-

controllable)
σmax= max(d

2 ,1.5σ̂) maximum repulsion radius (note
that this changes over time)

γ = 4 equilibrium speed (multiple of
σ i)

ν = .2 fraction ofÊ, for fissioning
δ = .7 fraction ofσ̂ , for death

Most of these parameters can be set once and forgotten. The only
parameter that a user would typically need to control is the desired
repulsion radius,̂σ .

Overall, the method meets our goals, it is fast, and it has proven
to be very robust. It has recovered from even violent user interaction
causing very rapid shape change. The adaptive sampling, fission,
and death techniques seem to be well tuned and to work well to-
gether, as we have not seen the system oscillate, diverge, or die with
the current parameter settings. During interaction,σ̂ is the only
parameter that needs to be varied.

Another result of this work is that we have discovered thatimplicit
surfaces are slippery: when you attempt to move them using control
points they often slip out of your grasp.

6 Conclusions
In this paper we have presented a new particle-based method for

sampling and control of implicit surfaces. It is capable of support-
ing real-time rendering and direct manipulation of surfaces. Our
control method is not limited to algebraic surfaces as many previous
techniques are; it allows fast control of general procedural implicit
functions through control points on the surface. We have presented
a dynamic sampling and rendering method for implicit surfaces that
samples a changing surface more quickly than existing methods.
The use of constraint methods allows particles to follow the surface
as it changes, and to do this more rapidly and accurately than with
penalty methods. Our algorithms for adaptive repulsion, fission, and
death of particles are capable of generating good sampling patterns
much more quickly than earlier repulsion schemes, and they sample
the surface well even during rapid shape changes.

c©1994 ACM 7 Computer Graphics, Proc. SIGGRPAH ’94.

Figure 2: This sequence illustrates the construction of a shape com-
posed of blobby cylinders. The shape was created by direct manip-
ulation of control points using the mouse. In the topmost image, all
three cylinder primitives are superimposed. Each subsequent image
represents the result of a single mouse motion.

There are a number of directions for future research.
We intend to investigate other uses for the samplings we obtain.

One of these is the calculation of surface integrals for area, volume,
or surface fairness measures such as those described in [19,30].
Another is the creation of polygon meshes.

To polygonize a surface within the framework presented here it
is necessary to infer topology from the sample points. This is more
difficult than finding a polygonization from a set of samples on a
grid in 3-D, as in marching cubes algorithms, where an approximate
topology is suggested by the signs of the samples and by the topol-
ogy of the grid itself. Delaunay triangulation in 2-D or 3-D is one
possible way to extract topology [12,27]. A more robust alternative
would employ Lipschitz conditions and interval arithmetic [26]. To
preserve the basic advantages of our method, we would require a
polygonization algorithm that allows efficient dynamic updates as
the surface changes.

Although we developed it to sample implicit surfaces, our adap-
tive repulsion scheme can be applied to meshing or sampling of
parametric surfaces as well: each floater would be defined by its
position in the surface’s 2-D parameter space, rather than position
in 3-D space.

Several performance and numerical issues remain to be addressed.
As we tackle more complex models, we could exploit sparsity in
F ’s dependence onq. Notably, with local bases such as blobby
models, the dependence ofF on faraway elements is negligible.
An additional numerical issue is the handling of singular constraint
matrices, due to overdetermined or dependent constraints. Excellent
results can be obtained using least-squares techniques.

An additional area of investigation is the use of local criteria,
notably surface curvature, to control sampling density. Surface cur-
vature can be measured directly, at the cost of taking additional
derivatives ofF . Since this places a considerable extra burden on
the implementor of implicit primitives, an alternative is to estimate
curvature at each floater based on positions and normals of nearby
points. Having established a desired density at each point, based
on curvature or any other criterion, relatively simple modifications
to the adaptive repulsion scheme will yield the desired nonuniform
density. Another possible density criterion is the user’s focus of
interest, e.g. the neighborhood of a control point being dragged.

Finally, there is room for considerable further work in interactive
sculpting of implicit surfaces. Dragging one control point at a time
can be somewhat limiting given the slippery behavior of the surface.
However, the basic control-point machinery developed here could be
used to build more complex sculpting tools that influence multiple
surface points in coordinated ways.

Acknowledgements
The authors wish to thank Scott Draves and Sebastian Grassia for

their contributions to this work. This research was supported in part
by a Science and Technology Center Grant from the National Science
Foundation, #BIR-8920118, by an NSF High Performance Comput-
ing and Communications Grant, #BIR-9217091, by the Engineering
Design Research Center, an NSF Engineering Research Center at
Carnegie Mellon University, by Apple Computer, Inc, and by an
equipment grant from Silicon Graphics, Inc. The second author
was supported by NSF Young Investigator Award #CCR-9357763.

References
[1] Chandrajit Bajaj, Insung Ihm, and Joe Warren. Higher-order

interpolation and least-squares approximation using implicit

c©1994 ACM 8 Computer Graphics, Proc. SIGGRPAH ’94.

algebraic surfaces.ACM Trans. on Graphics, 12(4):327–347,
Oct. 1993.

[2] David Baraff. Analytical methods for dynamic simulation of
non-penetrating rigid bodies.Computer Graphics, 23(3):223–
232, July 1989.

[3] David Baraff. Curved surfaces and coherence for non-
penetrating rigid body simulation. Computer Graphics,
24(4):19–28, August 1990.

[4] David Baraff and Andrew Witkin. Dynamic simulation of non-
penetrating flexible bodies.Computer Graphics, 26(2):303–
308, 1992. Proc. Siggraph ’92.

[5] Ronen Barzel and Alan H. Barr. A modeling system based on
dynamic constaints.Computer Graphics, 22:179–188, 1988.

[6] J. Baumgarte. Stabilization of constraints and integrals of
motion in dynamical systems.Computer Methods in Applied
Mechanics, 1972.

[7] Thaddeus Beier. Practical uses for implicit surfaces in an-
imation. In Modeling, Visualizing, and Animating Implicit
Surfaces (SIGGRAPH ’93 Course Notes), pages 20.1–20.10.
1993.

[8] James F. Blinn. A generalization of algebraic surface drawing.
ACM Trans. on Graphics, 1(3):235–256, July 1982.

[9] Jules Bloomenthal. Polygonization of implicit surfaces.Com-
puter Aided Geometric Design, 5:341–355, 1988.

[10] Jules Bloomenthal. An implicit surface polygonizer. In Paul
Heckbert, editor,Graphics Gems IV, pages 324–350. Aca-
demic Press, Boston, 1994.

[11] Jules Bloomenthal and Brian Wyvill. Interactive techniques
for implicit modeling. Computer Graphics (1990 Symp. on
Interactive 3D Graphics), 24(2):109–116, 1990.

[12] Luiz Henrique de Figueiredo, Jonas de Miranda Gomes,
Demetri Terzopoulos, and Luiz Velho. Physically-based meth-
ods for polygonization of implicit surfaces. InGraphics Inter-
face ’92, pages 250–257, May 1992.

[13] Phillip Gill, Walter Murray, and Margret Wright.Practical
Optimization. Academic Press, New York, NY, 1981.

[14] Michael Gleicher and Andrew Witkin. Through-the-lens cam-
era control.Computer Graphics, 26(2):331–340, 1992. Proc.
Siggraph ’92.

[15] Herbert Goldstein.Classical Mechanics. Addision Wesley,
Reading, MA, 1950.

[16] Huges Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Mesh optimization. InSIGGRAPH 93
Proceedings, pages 19–26, July 1993.

[17] David J. Jevans, Brian Wyvill, and Geoff Wyvill. Speeding up
3-D animation for simulation. InProc. MAPCON IV (Multi
and Array Processors), pages 94–100, Jan. 1988.

[18] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3D surface reconstruction algorithm.Com-
puter Graphics (SIGGRAPH ’87 Proceedings), 21(4):163–
170, July 1987.

[19] Henry Moreton and Carlo S´equin. Functional minimization
for fair surface design.Computer Graphics, 26(2):167–176,
1992. Proc. Siggraph ’92.

[20] Shigeru Muraki. Volumetric shape description of range data
using “blobby model”.Computer Graphics (SIGGRAPH ’91
Proceedings), 25(4):227–235, July 1991.

[21] Paul Ning and Jules Bloomenthal. An evaluation of implicit
surface tilers. Computer Graphics and Applications, pages
33–41, Nov. 1993.

[22] Vaughan Pratt. Direct least-squares fitting of algebraic sur-
faces. Computer Graphics (SIGGRAPH ’87 Proceedings),
21(4):145–152, July 1987.

[23] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling. Numerical Recipes in C. Cambridge University Press,
Cambridge, England, 1988.

[24] A. Ricci. A constructive geometry for computer graphics.
Computer Journal, 16(2):157–160, May 1973.

[25] T. Sederberg. Piecewise algebraic surface patches.Computer
Aided Geometric Design, 2(1-3):53–60, 1985.

[26] John M. Snyder.Generative Modeling for Computer Graphics
and CAD. Academic Press, Boston, 1992.

[27] Richard Szeliski and David Tonnesen. Surface modeling with
oriented particle systems.Computer Graphics (SIGGRAPH
’92 Proceedings), 26(2):185–194, July 1992.

[28] Greg Turk. Generating textures on arbitrary surfaces using
reaction-diffusion.Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), 25(4):289–298, July 1991.

[29] Greg Turk. Re-tiling polygonal surfaces.Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):55–64, July 1992.

[30] William Welch and Andrew Witkin. Variational surface mod-
eling. Computer Graphics, 26(2):157–166, 1992. Proc. Sig-
graph ’92.

[31] Andrew Witkin, Michael Gleicher, and William Welch. In-
teractive dynamics.Computer Graphics, 24(2):11–21, March
1990. Proc. 1990 Symposium on 3-D Interactive Graphics.

[32] Andrew Witkin and William Welch. Fast animation and control
of non-rigid structures.Computer Graphics, 24(4):243–252,
July 1990. Proc. Siggraph ’90.

[33] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Data struc-
ture for soft objects. The Visual Computer, 2(4):227–234,
1986.

c©1994 ACM 9 Computer Graphics, Proc. SIGGRPAH ’94.

