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Abstract

The computational bottleneck in a ray tracer using bounding volume hierarchies is often the ray intersection
routine with axis-aligned bounding boxes. We describe a version of this routine that uses IEEE numerical properties
to ensure that those tests are both robust and efficient. Sample source code is available online.

I ntroduction

Naive implementations of ray—box intersection algorithms can have numerical problems for rays that have slopes near
zero along any axis. Smits [3] pointed out that properties given in the IEEE floating point standard [1] can be used to
avoid explicit tests for these values, but did not provide the implementation details. The following is an implementation
of Smits” algorithm. It expects a box with ordered corners ni n and nax, aray r, and a valid intersection interval of
(t0, t1) tobe given. We assume that the Vect or 3 and Ray classes are implemented; their usages below should
be obvious.

cl ass Box {
public:

Box(const Vector3 &nmin, const Vector3 &max) ({
assert(mn < nmax);
bounds][ 0] mn;
bounds] 1] max;

}

bool intersect(const Ray & float t0, float tl) const;

Vect or 3 bounds|[ 2] ;

b

/'l Smits’ method
bool Box::intersect(const Ray &, float t0, float t1l) const {
float tmn, tmax, tymn, tymax, tzmn, tznmax;
if (r.direction.x() >= 0) {
tmn = (bounds[0].x() - r.origin.x()) / r.direction.x();
(bounds[1] .x() - r.origin.x()) / r.direction.x();

t max

}

el se {
tmn = (bounds[1].x() - r.origin.x()) / r.direction.x();
tmax = (bounds[O0].x() - r.origin.x()) / r.direction.x();

if (r.direction.y() >=0) {
tymin = (bounds[0].y() - r.origin.y()) / r.direction.y();
tymax = (bounds[1].y() .origin.y()) / r.direction.y();

'
=

}
el se {
tymin = (bounds[1].y() - r.origin.y()) / r.direction.y();
tymax = (bounds[0].y() - r.origin.y()) / r.direction.y();
}
if ( (tmn >tymax) || (tymin > tmax) )

return fal se;



if (tymin > tmn)
tmn = tymn;
if (tymax < tnmax)
tmax = tymax;
if (r.direction.z() >= 0) {

tzmn = (bounds[0].z() - r.origin.z()) / r.direction.z();
tzmax = (bounds[1].z() - r.origin.z()) / r.direction.z();
}
el se {
tzmn = (bounds[1].z() - r.origin.z()) / r.direction.z();
tzmax = (bounds[0].z() - r.origin.z()) / r.direction.z();
if ( (tmn >tzmax) || (tzmin > tmax) )

return fal se;
if (tzmin > tmn)
tmn =tzmn;
if (tzmax < tmax)
tmax = tznax;
return ( (tmn < tl) & (tmax > t0) );
}

Note that the reason we check the sign of each component direction is to ensure that the intervals produced are ordered
(i.e.,sothatt m n <= t max is true). This property is assumed throughout the code, and allows us to reason about
whether the computed intervals overlap. Note also that since IEEE arithmetic guarantees that a positive number divided
by zero is +oo and a negative number divided by zero is —oo, the code works for vertical and horizontal lines (see [2]
for a detailed discussion of this).

Improved Code

The code from the previous section works correctly for almost all values, but there isa problem ifr . di recti on. x()
== -0. 0 In this case, the the first i f statement will be true (-0 == 0 is true in IEEE floating point), and instead
of the resulting interval being (—oo, +00), it will be the degenerate (+o00, —o0). The same problem appears when
eitherr.direction.y() orr.direction.z() are-0.0. When such a degenerate interval is obtained, the
function will return f al se. The algorithm therefore fails to detect a valid intersection in this situation. While this
scenario may seem unlikely, negative zeroes can arise in practice, and indeed have in our applications which is how
we discovered this problem. Note how easy it is to generate a negative zero:

float u = -2.0;
float v = 0.0;
float w= wu*v; [// wis now negative zero

Many implementations of ray—box intersection replace the two divides in each i f clause with a single divide and two
multiplies:

divk = 1/ r.direction.x();
tmn = (bounds[0].x() - r.origin.x()) * divx;
tmax = (bounds[1].x() - r.origin.x()) * divx;

This is done because the two multiplies are usually faster than the single divide they replace, but it also allows a way
out of the negative zero problem. di vx captures the sign of r . di recti on. x() evenwhenitiszero: 1 / 0.0
= +ooand1 / -0.0 = —oo. The updated algorithm for the x component (y and z are analogous) is:

/'l I nproved nethod for x conponent

divk = 1/ r.direction.x();

if (divx >=0) {
tmn (bounds[0].x() - r.origin.x()) * divx;
t max (bounds[1].x() - r.origin.x()) * divx;

}

el se {



tmn
t max

(bounds[1].x() - r.origin.x()) * divx;
(bounds[0].x() - r.origin.x()) * divx;

}

Note that it is important to test the sign of di vx rather than r. di recti on. x() in order for - 0. O to be properly
detected. This does result in an efficiency penalty on some systems because the evaluation of the i f statement must
wait for the result of the divide. Nonetheless, to ensure the correctness of the ray—box test in all cases, this penalty
must be accepted. The code with a test on di vx was first presented by Smits [4]; although he did not explicitly state its
advantage for handling zeros, he was probably aware of it because the associated efficiency penalty makes it otherwise
unattractive.

Optimizing for Multiple Box Tests

Rays are often tested against numerous boxes in a ray tracer, e.g., when traversing a bounding volume hierarchy. The
above algorithm can be optimized by precomputing values that remain constant in each test. Rather than computing
divx = 1/ r.direction.x() each time aray is intersected with a box, the ray data structure can compute
and store this and other pertinent values. Storing the inverse of each component of the ray direction as well as the
boolean value associated with the tests (such as di vx >= 0) provides significant speed improvements. The new
code is fairly simple:

class Ray {
public:
Ray(Vector3 &o, Vector3 &d) {
origin = o;
direction = d;
inv_direction = Vector3(1/d.x(), 1/d.y(), 1/d.z());

sign[0] = (inv_direction.x() < 0);
sign[1] = (inv_direction.y() < 0);
sign[2] = (inv_direction.z() < 0);

}

Vector3 origin;
Vector3 direction;
Vector3 inv_direction;
int sign[3];

b

/1 Optimzed nethod
bool Box::intersect(const Ray &, float t0, float t1l) const {
float tmn, tmax, tymn, tymax, tzmn, tznmax;

tmn = (bounds[r.sign[0]].x() - r.origin.x()) * r.inv_direction.x();
tmax = (bounds[1-r.sign[0]].x() - r.origin.x()) * r.inv_direction.x();
tymin = (bounds[r.sign[1]].y() - r.origin.y()) * r.inv_direction.y();
tymax = (bounds[1-r.sign[1]].y() - r.origin.y()) * r.inv_direction.y();

if ( (tmin >tymax) || (tymn > tmax) )
return fal se;
if (tymin > tmn)
tmn = tynn;
if (tymax < tmax)
tmax = tymax;
tzmin = (bounds[r.sign[2]].z() - r.origin.z()) * r.inv_direction.z();
tzmax = (bounds[1-r.sign[2]].z() - r.origin.z()) * r.inv_direction.z();
if ( (tmn >tzmax) || (tzmin > tmax) )
return fal se;
if (tzmin > tmnin)
tmn = tzmn;
if (tzmax < tnmax)



tmax = tzmex;
return ( (tmn < tl) & (tmax > t0) );
}

We ran tests to ensure that the multi-box optimization did not incur a decrease in efficiency for the case in which a
single box or shallow bounding volume hierarchy is intersected. Our results show that the optimized method is indeed
faster for both cases. While the runtimes are dependent on processor type and scene content, we found these timings
to be typical for most scene complexities and architectures.

| Scene | Smits” method  Improved method ~ Optimized method ||
Single box - 1e8 rays 77.78s 71.39s 66.82s
1e6 triangles in BVH - 1e8 rays 1027.43s 961.23 739.21s

In both the single-box and BVH tests approximately half of the rays fired hit the test object while the other half were
near misses. The tests were performed on a Pentium4 1800 MHz processor.

Web Information

Sample C++ source code for the optimized method described above is available online at
http://ww. acmorg/jgt/WIIliansEtAl 04.
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