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A new way to increase file space in dynamically growing files is introduced in which substantial 
improvement in file utilization can be achieved. It makes use of partial expansions in which, instead 
of doubling the space associated with some part of the file, the space grows at a slower rate. Unlike 
previous versions of partial expansion in which the number of buckets involved in tile growth is 
increased by less than a factor of two, the new method expands file space by increasing bucket size 
via “elastic buckets.” This permits partial expansions to be used with a wide range of indexed files, 
including B-trees. The results of using partial expansions are analyzed, and the analysis confirmed 
by a simulation study. The analysis and simulation demonstrate that the file utilization gains are 
substantial and that fears of excessive insertion cost resulting from more frequent file growth are 
unfounded. 
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1. INTRODUCTION 

Most existing file organizations that cope well with growing files do so by 
increasing the space used to contain some portion of the file by a factor of two. 
Thus B-trees [l] typically grow by node splitting, in which the entries of a full 
node of the tree are divided equally between the existing node and new node. 
Such growth by local doubling is also a property of many of the dynamic 
(extensible) file organizations [Z, 6,8,9, lo]. The result is that utilization within 
the nodes (or sections) of these files varies from 50 to 100 percent with an average 
utilization of approximately log (2) = .693 [8, 131. Doubling of the entire file, as 
done in virtual hashing [5], leads to a similar result. 

If growth could occur at a rate that is less than a factor of two, then utilization 
within these growing files would be improved. One early proposal to do this [3] 
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is embodied in the notion of what Knuth calls a B*-tree. The idea is to examine 
neighbors of a full node, and to shift entries from a full node to neighbors that 
still have available space. When a node and its neighbor are both full, then a new 
node is added to the Bi-tree and the entries from two nodes are spread over three 
nodes, the new one and the original two. The result is that utilization does not 
fall below about 67 percent, and average utilization is similarly improved. 

In a difficult but noteworthy paper, Martin 1121 proposed a file organization 
in which local growth of an exponentially hashed file could occur at a rate less 
than a factor of two. His bucket allocation scheme was complex, however, and 
his method was designed to cope particularly with exponentially distributed 
hashed keys. Larson [4] invented the term “partial expansion” to characterize a 
growth regime in which more than one growth event is necessary in order for a 
file to double, doubling being called a “full expansion.” He applied the technique 
to Litwin’s linear hashing [6] by incrementally increasing the number of buckets 
in a small group of buckets from two to three, and then from three to four, thus 
doubling the number of buckets in two steps. His analysis showed that utilization 
improved substantially. He computed results for one, two, and three partial 
expansions per full expansion, and his results showed how utilization improves 
for linear hashing as the number of partial expansions per full expansion 
increases, as one would expect. 

The potential penalty for applying the partial expansion technique to raise file 
utilization has been that insertion cost is increased. The file growth process 
occurs more frequently, causing data to be moved between buckets (or nodes). 

With B-trees, not only does this increased data motion occur, but with three- 
for-two splitting in B*-trees, each entry inserted into a full node requires an 
extra disk access of the neighboring node for as long as the node is full and its 
neighbor is not. The result is that not only is the insertion process more complex 
when growth occurs, but it can be both more complex and more costly for many 
insertions prior to growth occurring. 

One would like to realize the increased utilization produced by partial expan- 
sions, while avoiding excessive insertion cost. For B-trees, three-for-two splitting 
is rarely used because of the extra insertion cost. However, in this paper we 
propose a new form of partial expansion which minimizes this extra insertion 
cost. This new technique is also applicable to a number of dynamic hashed file 
organizations [2, 91, to tree index methods with multibucket nodes [8, lo], and 
to the new mixed tree/hashed file organization proposed in [7]. In fact it can be 
applied to almost any file in which there are multiple nodes addressed by means 
of an index of almost any kind. 

This paper is organized as follows: The new partial expansion technique is 
described in Section 2. Section 3 analyzes the impact of partial expansions with 
a single growth rate on storage utilization. Because of page size granularity, 
partial expansions with unequal growth rates will be required in order to yield a 
full expansion. This is analyzed in Section 4. A simulation study is described in 
Section 5 which confirms the results of the analysis. The impact of partial 
expansions on insertion cost is treated in Section 6. Related to insertion cost is 
the size of the index, which is considered in Section 7. The paper ends with 
a short discussion in Section 8. 
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2. ELASTIC BUCKETS 

A careful reading of the introduction reveals that file expansions have been 
realized by increasing the number of buckets that are used to store the contents 
of some growing subset of the key space (or hashed key space) of the file. This 
shows up clearly in the discussion of three-for-two node splitting for B-trees. In 
order to do partial expansions via growth in the number of buckets, the growth 
process must be able to “till” a number of buckets prior to adding a bucket. The 
smallest number of buckets that can be added is one, which, for B-trees with 
their single bucket per node, doubles the space locally. For some hashed files, 
with multiple bucket nodes, for instance, BEH hashing [9], growth can be more 
finely controlled. However, partial expansions for these files require redistribut- 
ing the contents of one bucket over two different buckets of a new node. This 
redistribution is also required for linear hashing [4,6], which does not have nodes 
in any conventional sense. 

We wish to consider the mechanics of how a file might grow so as to avoid 
moving large amounts of data and incurring large numbers of disk accesses. To 
explain the technique being proposed, it is necessary to distinguish three different 
units of disk storage, pages, nodes, and buckets, which are defined below. 

(1) Page: The smallest physical unit of storage allocation on the disk. It is the 
smallest unit of data that can be read from or written to the disk. All other 
units are an integral number (one or more) of pages. Each page has a unique 
disk address. Page size, in bytes, is usually defined by the file system. 

(2) Node: The logical unit of allocation of storage on the disk. A node is a 
logically contiguous set of pages that can be referenced by a single disk 
address. It is the largest unit for which the file system guarantees logical 
contiguity. 

(3) Bucket: A logically contiguous set of pages within a node. The set of buckets 
forming a node is a partition of the node. A bucket is the storage unit that 
the access method, for its own purposes, is required to access in its entirety, 
that is, an access method always reads an integral number of buckets. 

Note that page size is determined by the file system and node size (in pages) 
is made known to the file system, acting as the allocator of disk space. (In analogy 
with main memory storage allocation, a page is analogous to a byte and a node 
is analogous to a storage area, i.e., data structure.) Thus both of these quantities 
are known to the file system. The file system attempts to map the logically 
contiguous pages of a node onto physically contiguous disk pages so as to 
maximize disk performance when reading some subset (perhaps all) of the node. 
This will usually be accomplished by mapping a node to some part of a physical 
extent or to some small number of extents, should extents be smaller than node 
size. We assume that the file system is prepared to honor I/O access requests, 
whose operands are expressed in terms of the triple: 

(node address; offset of first page of part of node desired, size, in pages, of part). 

The bucket is a storage unit defined by, and known to, the access method. 
It represents some fractional part of a node. (In analogy with programming 
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languages, a bucket corresponds to a component of an allocated data structure.) 
While each bucket may have a different size within a node, we expect bucket size 
to typically be constant for a given node so as to permit array type addressing of 
the buckets. The file system will not usually be aware of the bucket structure of 
a node. The access method uses buckets analogously to the way programming 
languages use scalars. That is, buckets like scalars, to be effectively used, must 
be accessed in their entirety. 

File growth, in the context of the file system described above, is accomplished 
in two distinct ways. First (and, conventionally, as performed with B-trees), 
nodes may split so that one node is replaced by two nodes and the data contained 
in the original node divided between the two nodes. Second, a node may grow in 
size, that is, be replaced by a single new node which is comprised of a larger 
number of pages than the original node, thus providing additional room for 
growth. 

When a node grows, the access method is presented with the choice of either 
(1) leaving the bucket size unchanged and increasing the number of buckets or 
(2) leaving the number of buckets unchanged and increasing the size of the 
buckets. This second alternative, which we call “elastic” buckets, is the method 
advocated here. 

In the remainder of this paper, the notion of elastic buckets is pursued in the 
context of B-tree files. B-trees do not have multibucket nodes. Rather, each node 
must be read in its entirety and hence is a single bucket node, (Elastic bucket 
partial expansions can be used with multibucket nodes and will be explored in a 
forthcoming paper [ 111.) Because of this, we will frequently use the terms bucket 
and node interchangeably, since the unit of storage being referenced is the same. 
If an important distinction is being made, this will be emphasized and terms will 
be used with precision. 

As an example, consider a B-tree with single bucket nodes in which the smallest 
bucket size is two pages. When a node (bucket) overflows, instead of splitting it 
into two nodes, we replace the two-page node with a three-page node. The 
utilization drops to 67 percent instead of the 50 percent that splitting would 
result in. When a three-page node overflows, we split it into two nodes, but these 
nodes are only two-page nodes, not three-page nodes. Hence, the initial utilization 
of the two new nodes is 75 percent. These two partial expansions have resulted 
in a doubling of the storage used to contain records in the local key subspace. 
This is thus a full expansion in two steps. 

Larger numbers of partial expansions per full expansion are also possible. We 
can begin with a three-page node, overflow resulting in growth to a four-page 
node, which, when it overflows, grows to a five-page node. Finally, when a five- 
page node overflows, it splits into two three-page nodes, completing the doubling 
or full expansion in three steps. 

What we wish to know is the effect of partial expansions on tile performance 
characteristics. Because of the page size granularity of buckets, a full expansion 
will typically be accomplished by two or more partial expansions of different 
rates. In the first example above, a two-page node was replaced with a three-page 
node, a growth factor of 1.5. When the three-page node split into two two-page 
nodes, the growth factor was 1.33. Ideally, choosing two partial expansions per 
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full expansion, we would like the growth rate to be 1.414, that is, the square root 
of two. We analyze partial expansions for both a single growth rate and for 
differing growth rates. We shall see that different growth rate partial expansions 
come quite close to equaling the results of ideal, single growth rate partial 
expansions. 

3. SINGLE GROWTH RATE PARTIAL EXPANSION 

In order to analyze the performance of partial expansions, we make three 
assumptions. 

(1) The numbers of entries in buckets of the file are growing at a uniform rate, 
that is, the percentage growth of entries in each bucket during any time 
interval is the same for all buckets. 

(2) The distribution of the number of buckets at any given utilization remains 
constant, that is, the file is at steady state with respect to this attribute. Note 
that this implies that our results apply to files that have grown to contain a 
large number of buckets. 

(3) Each bucket contains a large number of records. During the analysis, limits 
are taken. Thus, our analysis will not be accurate for small numbers of 
records per bucket. The larger the number of records, the more accurate will 
our results be. This will be discussed again later in the paper. 

The question that we wish to answer is, what is the average utilization of a file 
in which, when a bucket reaches maximum utilization, it is replaced by a bucket 
whose size is larger by some fixed percentage? The result we seek is average 
utilization expressed as a fraction of the maximum utilization of any bucket. It 
is apparent that in hashed files the maximum utilization may well be less than 
100 percent, since buckets of a multibucket node fill unevenly, even when the 
hashed keys are distributed uniformly. Even with B-trees, because buckets are 
not necessarily a multiple of record size, maximum utilization will frequently not 
be 100 percent. A “relative” result will remind us of this. 

Let urnax be the maximum utilization of buckets of the file. Further, let R be 
the growth factor of the file. That is, when a bucket’s utilization reaches k,,, 
the bucket is replaced with one whose size is R times the size of the original 
bucket. Equivalently, a large number of buckets with utilization of urnax can be 
replaced with new buckets such that the space of the new buckets is a factor of 
R larger than the space of the original buckets. Since the number of records per ’ 
bucket is large, the minimum utilization of a bucket will be 

Various buckets will have differing utilizations. Our steady state assumption 
means that the fraction of buckets at any utilization will be constant. Let these 
utilizations be U,in, u,i,Ri’m, . . . , u,inR(m-l)‘me These utilizations are chosen so 
that file growth by a factor of R’/” causes buckets with utilization U,i,Rifm to 
become buckets with utilization u,i,R(itl)‘me Then, letting n go to infinity in the 
limit gives us results for u as a continuous distribution. 
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We define Ni to be the number of pages with a utilization of hi”R’m. AS the 
file grows, the number of buckets at any given utilization also grows. In particular, 
after an increase in number of entries by a factor of R’jm, we have 

Nrw = RN:!,, 

and, for 0 < i < m, 

Normalizing relative to the number of buckets with utilization equal to kin, 
we define ci as the ratio of the number of buckets with utilization hinRiim to 
the number of buckets with utilization U,in. 

Then 
“eW 

NO RN :!!I CO=K=l=-= new new No 
Rc,-, i$$. 

0 

Hence, we have that 

N;ld 1 -=- 
N fF’ Rc,-* ’ 

Further, 

1 
c.=-=-= ’ NOW Nf;“” ci-1 j@ii = ‘i-1 Rcmwl ’ 

This leads to 

1 

with 

Solving for c,-~ yields 

Thus 

cm-1 = ( l/R)(m-‘)‘m. 

ci = (l/R)““. 

Knowing the normalized number of pages with any given utilization, we can 
determine the total number of normalized pages NP for all utilizations. Further, 
we can determine the total normalized space NS used, in number of pages, by 
the data. Dividing the second quantity by the first yields average utilization. We 
begin by summing the number of normalized pages, which is 
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The normalized space used is 
m-l m-l 

NS = C CiUi = 2 i 
i=O i=O 0 

Dividing NS by NP yields the average utilization of the file. It is here that the 
analysis most explicitly assumes a large number of entries per page, so as to 
avoid dealing with record size granularity and a large number of pages. This also 
yields a closed-form solution for the analysis and is similar to what was done in 
[S]. Thus, 

NS 
&,I, = lim,- NP = lim,,, lhax 

R(1 - (l/R)) 
m(l - (;T). 

But, we have that 

lim,, m(1 - (l/R)““) = log(R). 

Thus, 

Using this result, we can compute average file utilization for various growth 
factors. We are interested in the range of 1 < R % 2, which is the range of growth 
factor of interest for partial expansions. 

Particular values of R are of interest for our study of partial expansions. To 
determine the effect of E partial expansions on file utilization, where all partial 
expansions have the same growth rate, and, when completed, the file has doubled, 
requires that R = 2 l/E Average file utilization is plotted against number of partial . 
expansions in Figure 1. Notice that the greatest gain in utilization, going from 
.693 to 637, results when we use two partial expansions to double a file, instead 
of a full expansion. Each doubling of the number of expansions needed to double 
the file space halves the difference between average utilization and maximum 
utilization. Thus, gains for additional partial expansions quickly become mar- 
ginal. Indeed, after four partial expansions, when file utilization is .916 percent 
of maximum utilization, each additional expansion increases utilization less than 
2 percent. 

4. UNEQUAL GROWTH RATE PARTIAL EXPANSIONS 

While we might ideally like to have uniform growth rates for each partial 
expansion, so as to maximize file utilization, in a real system with finite (as 
opposed to infinitesimal) pages, we must deal with differing growth rates. Recall 
that two-page buckets expanding to three pages, then splitting into two two-page 
buckets, produce two growth rates, i and 2. In this section we wish to determine 
what effect these differing growth rates have on file utilization. The same kind 
of analysis is done here as in Section 3. 

We begin by considering the two partial expansion case, and then will gener- 
alize to an arbitrary number of partial expansions. Let R, be the growth in space 
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Fig. 1. Utilization is plotted against the number of partial 
expansions required to achieve that utilization. The growth 
factor for a growth regime employing E partial expansions per 
full expansion is R = 21jE. 

produced by the first partial expansion, with RZ the growth produced by the 
second. Further, let u,,,,,~ be the maximum utilization achieved after the first 
partial expansion, and umaX2 be the maximum utilization achieved after the 
second. There are corresponding values for the minimum utilizations. Then 

RI = !!!!& 
Knin1 

and Rz = z. 

Our steady state assumption requires that the fraction of buckets at any utili- 
zation be constant. Since we have two growth rates for space, our utilizations 
will be influenced by both the rates. Thus the utilizations that will be tracked 
are Knin12 . . . . &ninl(~l)i’m, - - - f Uminl(~l)(m-*)‘m, %kG!9 - - - f kin2(rZ)“‘“, - * - 9 

hi,2(rz)(n-1)‘n. Analogously to the single growth rate case, we define Ni to be 
the number of pages with a utilization of Umini(rl)i’m, for 0 I i < m. Further, we 
let N,,,+; be the number of pages with a utilization of Umi,z(rz)“” for 0 I j < n. 
Note here that 

Gn*.1 
T-1 = __ 

kin1 
and r2=z. 

In addition, n and m are related. Specifically, 

b.1) l/m = (r2)l/m and RIRz = rlr2. 

The analysis here follows that for a single growth rate, but reflects the two 
partial expansions. Thus, after an increase by a factor of (rl)llm in number of 
entries, we have the following recurrence relations for pages following the first 
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partial expansion: 

and, for 1 5 i .S m, 

At umsXl, pages undergo the second partial expansion. Thus the second partial 
expansion affects these pages, and we have 

and,forlrj<n, 

We again normalize these numbers relative to the number No of bin1 pages by 
dividing by No. Doing this, then solving for c~+~+, and finally substituting the 
result into the equations yields 

for 0 I i < m; and 

C,+j = R2(&)(mfiNl’w = c)(i)” 

forO<j<n. 
Computing the average utilization of a file undergoing two partial expansions 

requires once again that we compute the normalized number of pages (capacity) 
and the normalized space required by the data. Both these quantities now require 
summations over both partial expansions. Thus, let NProtal denote the total 
normalized number of pages and NS rota, the total normalized space required by 
the data, with NPi the normalized number of pages and NSi the normalized space 
required for data, both for the ith partial expansion. Then 

m-1 n-1 

NP~otal = NP1 + NP2 = C ci + z cm+j. 
i=O j=O 

After substituting for the ci and c,+j terms, doing some algebraic manipulation, 
and performing the summations, we have 

NP~otal = 1 - (l/RIRz)“‘“+“’ 

Similarly, 
m-l n-1 

NS~otal= NS1 + NS, = C CiUi + C Cm+jUm+j 
i=O j=O 
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After algebraic manipulation and summation, this results in 

NS Total = kninl(m) + $ 
0 

‘%nin2(n) = kninl(m + n)* 

Finally, 

NSTota, 
hilt? = NPTotal = 

&ninl(m + n)(l - (1/RlR2)1’m+“) 

L.0 - W-l)) + (R2h)U - (llr2))1* 

If we take the limit as m goes to infinity, then n will also go to infinity. Making 
use of the previously used logarithm limit yields 

UminllOg(RlR2) 
wile = 

[U - l/r4 + UWrd(l - l/4] * 

Expressed in terms of the utilizations of each of the partial expansions, we 
have 

where 

Utile = flu1 + f2u2 

fj = ~~umax2~~/U~.9d(C - 1) (l/k-mxi)(ri - 1) 

= md)(l;. - 1) + b-2 - 111 [(l/Umaxd(rl - 1) + Wmax2)(f2 - 111 

and 

Uj = 
&aJOg(ri) 

rj-1 ’ 

The quantity ufile can also be expressed as 

Me = 
[(l/umaxJ(rl - 1) + WUmax2k2 - Ul ’ 

It is possible to generalize this analysis to arbitrary numbers of partial expan- 
sions. The result for k partial expansions, in terms of the utilizations for each 
partial expansion, is 

IZbl NSi = i fjui, 

We = C;+ NPi i=l 

where 

and 

u, = &dW(d 
I ri-1 * 
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Table I” 

l 75 

Utilization Utilization 
E (ideal) (realizable) 

1 .693 .693 
2 .a37 .832 
3 .&x69 .885 
4 .916 ,913 
5 ,932 .930 
6 .943 .941 
1 .951 .949 
a .957 .956 

* The “ideal” utilization is computed assuming a 
constant growth rate for each partial expansion of 
R = 211E where E is the number of partial expan- 
sions. The realizable utilization is computed as- 
suming growth rates of R; = (E + i)/(E + i - 1) 

from i = 1 to i = E. 

Alternatively, we can express the result in terms of the full expansion as 

In order to compare the different growth rate partial expansions with single 
growth rate partial expansions, the maximum utilizations reached for the differ- 
ent partial expansions are set to the same value, that is, U,,,i = U,,xj for all 
values of i and j. We then choose to do the partial expansions using the smallest 
possible bucket sizes, in terms of number of pages. This choice makes the growth 
rates as unequal as possible, and hence maximizes the distance from the single 
growth rate case. The results for the various realizable partial expansions are 
tabulated in Table I and compared with the ideal single growth rate partial 
expansion involving the same number of steps. As can readily be seen, using 
realizable (unequal) growth rate partial expansions has a negative impact on 
utilization, but the impact is very small indeed. 

5. SIMULATION STUDY FOR “SMALL” BUCKETS 

A simulation study involving “small” bucket sizes was done so as to attempt to 
confirm the results of the analysis. Our particular concern was that the analysis 
assumed that records were infinitesimal in order to compute the recurrence and 
that a limit was taken in order to produce the closed-form solution. The simula- 
tion dealt with specific finite-size buckets. To approximate the uniform growth 
process that the analysis assumes, keys from a uniform distribution were inserted 
into a simulated B-tree tile, and the nodes were expanded or split as required by 
the growth process. 

Ten thousand records were inserted into the B-tree during each simulation 
run. The smallest bucket size was varied from 12 to 48 records capacity. Twelve- 
record buckets, or multiples of 12, were chosen so as to produce integral-size 
buckets for the various partial expansions. (A smallest bucket size of 6 was also 
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Table II” 

Page size E Sim(&J Standard error Sim(u,,- = M/M + 1) 

6 1 71.89 0.10 61.62 
2 88.75 0.14 76.07 
3 93.56 0.05 80.19 

12 1 70.83 0.23 65.38 
2 85.78 0.21 79.18 
3 91.28 0.10 84.26 
4 94.22 0.11 86.97 

24 1 69.92 0.43 67.12 
2 84.18 0.16 80.81 
3 90.14 0.15 86.53 
4 92.71 0.12 89.00 

36 1 68.80 0.11 66.94 
2 83.92 0.30 81.65 
3 89.32 0.23 86.91 
4 92.38 0.24 89.88 

48 1 70.43 0.51 68.90 
2 83.93 0.38 82.22 
3 89.42 0.32 87.60 
4 92.34 0.21 90.46 

“The relative utilization for varying numbers of partial expansions, as produced by simulation. 
The “Sim(u,,,,.. = . . .)” column gives the utilization assuming first that u,- = 1 and then that 
u,,,.. = M/(M + 1). M is the smallest bucket’s capacity in records. 

simulated, but not for four partial expansions.) The number of partial expansions 
involved varied from one to four, that is, from doing conventional B-tree node 
splitting to using four different bucket sizes. Four runs were taken at each setting 
of the expansion and bucket size parameters. The average of the utilizations for 
these four runs is presented in Table II and can be compared with the analysis 
results of Table I. 

It is apparent from Table II that the simulation results very closely match the 
analysis results, even for a bucket size as small as 12 records. Further, and not 
unexpectedly, the agreement with analysis improves as the bucket size increases. 
It is interesting to note that the simulation results when maximum utilization is 
1.0 were consistently better than the analysis results by a small margin, with 
only one exception. The actual maximum utilization will vary between 1.0 and 
M/(M + l), where A4 is the capacity of a bucket in records. Thus, these results, 
both of analysis and simulation, appear to be quite robust. Given a “uniformly 
growing” file, there is a high probability that the utilizations achieved will be 
very close to the results reported here. Note that these bounds bracket the 
analysis results very tightly, and the standard error is very small. 

6. EFFECT OF PARTIAL EXPANSIONS ON INSERTION COST 

Frequently, improvements in one performance attribute must be purchased with 
a negative performance impact on some other attribute. This does not seem to 
be the case with partial expansions. Each doubling of some part of a file will 
involve a larger number of distinct file growth steps, this number being precisely 
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the number of partial expansions per full expansion. However, partial expansions 
involving bucket growth are less costly than those involving node splitting. This 
is analyzed below in terms of the disk accesses required for file growth. 

We make the following assumptions regarding the costs of file growth: 

(1) There is no disk access cost for allocating a bucket or for freeing a bucket. 
Thus, our analysis assumes the bookkeeping for disk storage is done largely in 
main memory. There may be the need for an occasional write of this information 
onto the disk, but the number of such writes is assumed to be very small compared 
to the number of allocates and frees. While this assumption is not true of all 
current systems, it can be achieved without undue difficulty. It should be noted 
that, if allocation and freeing of buckets requires disk access, the results reported 
here will not accurately reflect either the absolute or relative costs. 

(2) File growth occurs during an insertion to the same bucket that will be 
expanded. Thus, extra accesses to read and write some other expanding bucket 
will not be needed. This assumption will be true of B-trees and extendible hash- 
ing [2], but will not necessarily be true of other hashing methods or of indexing 
methods using multibucket nodes. As discussed in [9], the disk access cost for 
file growth that must be added to normal insertion cost will be very low for 
multibucket nodes, and so file growth costs per record will be small for all forms 
of expansion. 

(3) Any cost for absorbing overflow records into the expanding “primary” 
bucket is not included. This analysis is essentially for B-trees. It ignores overflow 
records, which are virtually inevitable for hashed files. Handling overflow records 
adds substantially to file growth costs, as Larson has shown 141. 

(4) The cost of updating levels of an index higher than the bottom level (the 
level that references the data nodes) is insignificant. Typically, index buckets 
have a fanout of 100 or more. Thus, the fraction of the time that higher index 
levels need to be updated is typically less than 2 percent of the update frequency 
for the bottom index level. Thus we ignore this cost. Note that this reduces the 
cost for node splitting, and hence has a slightly negative impact on the relative 
performance of partial expansions versus full expansions. However, the impact 
is not significant. 

(5) Index entries must include a field that indicates the size of the buckets 
within a node. For single bucket nodes, this corresponds to having a node-size 
field. The number of different bucket sizes is E, the number of partial expansions 
per full expansion. Thus flog(E)1 bits are required for the size field. Given the 
number of partial expansions in the useful range (2-4), only one or two bits are 
required for this field. Its impact on the size of index terms will be small, and 
will only affect growth frequency above the bottom level of the index, which is 
already being ignored. 

Given the above assumptions, which are admittedly favorable to partial expan- 
sions, but nonetheless readily achievable in a B-tree organized file system, we 
incur the following disk access costs for file expansion: 

(1) The cost of forming the new node required of node splitting is two extra 
disk accesses per bucket over the cost of a simple insertion that does not expand 
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the file. One disk access writes the new node (the write required of an insertion 
in the absence of file expansion takes care of writing the old node). The second 
disk access writes a new index page, which contains the newly inserted index 
term for the new bucket. 

(2) The cost of a partial expansion in which the size of the bucket is increased 
is one disk access. This access writes a new index page, which contains the 
updated index term for the expanded bucket. 

The result of this is that, for multiple partial expansions per full expansion, 
each of the smallest buckets has a file growth cost of two disk accesses. The cost 
for each of the next larger size bucket is one disk access more than this. Hence 
its total cost is three disk accesses, two to create it as a small bucket, and one 
more to expand it. Each increase in bucket size adds another disk access to the 
cost of that size bucket. If we let bi be the number of buckets in the ith partial 
expansion and E be the number of partial expansions, then the total cost of 
having grown the tile is 

Cos& = f (2 + i - l)bi. 
i=l 

To determine the expansion cost per record, we divide our expansion cost by 
the number of records in the file. This is 

Thus 

Records = uel,NPr,tilPagesize. 

CostE 1 
Records = 

5 (1 + i)bi 
ufilePagesize i=l NProtal ’ 

For our realizable partial expansions, when i > 1, we expand bucket size by one 
page each time a bucket fills up. Then 

R-E+i-l 
E+i-2’ 

When i = 1, this is the case where we have split our largest bucket into two of 
our smallest buckets, yielding 

2E R=- 
2E - 1’ 

Then the number of buckets in each partial expansion is 

bi = 
NPi NPi 

bucketsizei = E + i - 1 ’ 

where bucketsizei is the number of pages per bucket of the ith partial expansion. 
Thus 

Cos& 1 -= 
Record fz l+i fit 

uGl,Pagesize i=l E + i - 1 

where, as before, fi = NPi/NPr,hl. 
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Finally, we wish to normalize the cost, so that the cost is a function of the 
number of partial expansions and is not confused by the absolute size of the 
buckets. Thus, instead of the cost of expansion per record, we wish to compute 
the cost of expansion per smallest bucket in the partial expansions. The cost per 
record must thus be multiplied by the capacity of the smallest bucket, which, 
since the number of pages in the smallest bucket equals the number of partial 
expansions, is Pagesize x E. We then have 

Cos& E 5 l+i f, 

Smallbucket = uf,l, iZl E + i - 1 ‘* 

This result is an attribute of the file expansion process and does not depend on 
bucket size. Cost per record is found by dividing by the capacity, in records of 
the smallest bucket. Since our normalized cost per full small bucket is constant, 
by the analysis, we can see that increasing smallest bucket size will result directly 
in a reduction in the expansion cost per insertion. 

We can also derive the expansion costs discussed above from our simulation. 
As before, our results are the average of four runs. It should be noted that, while 
utilization changes little from run to run, the fraction for the buckets of various 
sizes changes more substantially. Nonetheless, the average is in generally good 
agreement with the analysis. This leads to expansion cost per small bucket being 
in good agreement with the analysis. The results for both analysis and simulation 
are reported in Table III. 

The interesting thing to note concerning the results in Table III is that the 
cost of inserting a full small bucket of records into a file is least with two partial 
expansions. The cost of the original B-tree bucket splitting is 20 percent higher. 
In fact, while the costs for higher numbers of partial expansions increase, these 
costs do not exceed the B-tree bucket splitting cost until there are five partial 
expansions per full expansion. These results should not be too surprising. Each 
set of partial expansions has a smallest bucket size that equals the full expansion 
bucket size. Thus all other buckets in the higher order partial expansions are 
larger than this. Hence there are fewer of them. Thus, even though their costs 
are higher, their higher capacities and higher utilizations result in an overall 
savings. 

So long as the number of records per smallest bucket is sufficiently large (e.g., 
10 records), the cost that file expansion adds to insertion cost will be modest. At 
10 records per bucket, the insertion cost, without file growth, is typically about 
three disk accesses, two to access the bucket via the index and one to write it 
back with the new record inserted. (We assume that all but the bottom level of 
the index and the data records themselves are held in main memory.) At 10 
records per bucket, file growth adds less than 10 percent to the cost of insertion 
until the number of partial expansions exceeds five. The file growth cost is less 
than 20 percent for up to eight partial expansions. 

7. INDEX SIZE IMPLICATIONS 

The reduced insertion cost is a consequence of the reduced number of buckets 
required for the file. This reduced number of buckets is also of interest because 
it is directly proportional to the number of index entries for the file, and hence 
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Table III” 

E E/E = 1 (E + U/E (E + WE (E + 3)/E cost 

1 1.00 (1.00) 2.89 (2.87) 
2 0.40 (0.43) 0.60 (0.57) 2.41 (2.38) 
3 0.26 (0.26) 0.43 (0.38) 0.32 (0.36) 2.52 (2.52) 
4 0.19 (0.18) 0.33 (0.29) 0.26 (0.27) 0.22 (0.27) 2.78 (2.69) 

“The file growth cost, in number of disk accesses required for each full smallest bucket (Cost), is 
shown. Also shown is the relative abundance of different size buckets. The column headed by 
(E + i)/E gives the number of buckets whose size, relative to the smallest bucket, is given by the 
expression. The results shown are from the analysis and, in parentheses, from the simulation with 
page size of 48 records. 

the index size. This reduction in index size can result in either increased 
performance from a fixed-size buffer for containing index pages, or decreased 
index page buffer size for constant performance. The reduction in number of 
buckets is a result of two factors, increased bucket utilization and increased 
average bucket size. We determine the relative number of buckets produced by a 
partial expansion regime as a fraction of the buckets produced by a full expansion. 

Let Records be the number of records inserted into the file, UE be the utilization 
achieved for a file undergoing E partial expansions per full expansion. Then the 
total number of pages is 

NPTOME = 

Records 
uEPagesize * 

Let Sizes,i be the relative size of a bucket in the ith partial expansion in a regime 
with E partial expansions, where Sizes, = 1. Then the number of buckets of this 
size is 

NBE i = fE,EF. 
E4 

The total number of buckets is 

NBE = 5 NBw = Records 5 fE,i 
i=l +Pagesize i=l SizeE,i ’ 

where fE,j is the fraction of pages in a partial expansion regime of E partial 
expansions in the ith partial expansion. Dividing this by NBr, which is the 
number of buckets from a full expansion, and which is 

NB = Records 
1 ulPagesize ’ 

yields 
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The first term is the factor in the bucket number reduction due to improved 
storage utilization, while the second term is the factor due to increased average 
bucket size. The expansion ratio for the ith partial expansion is 

fori>land 

E+i-1 
r..xi = E + i _ 2 

2E 
Q3.i = 2E _ 1 , 

and the relative size of its buckets is 

SiZeE,i = 
E+i-1 

E ’ 

Finally, from our previous analysis, and assuming all buckets have the same 
maximum utilization, we have 

4n&g(2) 
uE = Cf-1 (rE,i - 1) 

and 

-1 
fEyi = py& - 1) * 

Then, substituting and performing algebraic manipulation yield 

NBE E E -= 
NBI E(2E - 1) +i i=z (E + i - l)(E + i - 2) ’ 

Mathematical induction can be used to show that this is 

NBE E -=- 
NBI 2E - 1’ 

The results for various partial expansion regimes are presented in Table IV. 
The ratio of buckets for a partial expansion regime versus a full expansion, as 
determined by the analysis, is presented. In parentheses are the ranges of bucket 
ratios encountered in the simulation study. As before, the agreement between 
analysis and simulation is quite good. Also given are the factors in this reduction 
that can be attributed to improved utilization and to increased average bucket 
size. 

Note, in Table IV, that the limit of possible reduction in number of buckets is 
also presented. The important point in presenting the limit is that it demonstrates 
that most of the possible reduction is achieved when E = 2, that is, two-thirds of 
the total possible gain. Further, very little is to be gained from regimes employing 
more than four partial expansions. 
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Table Iv” 

E Ratio Utilization Bucket size 

1 1.000 1.000 1.000 

2 0.667 (0.658-0.677) 0.833 0.800 
3 0.600 (0.594-0.610) 0.783 0.766 
4 0.571 (0.563-0.574) -0.760 0.752 
Inf 0.500 0.693 0.721 

’ The ratio of number of buckets resulting from partial expansions to the number of buckets produced 
by node splitting (i.e., a full expansion) is given in the “Ratio” column, first the results of analysis, 
then the range observed during the simulation runs. The factors in this ratio attributable to the 
differences in utilization and to the differences in bucket size are also given. The relative number of 
buckets is equal to the relative number of index terms for the various partial expansions. 

8. DISCUSSION 

The notion of elastic buckets, that is, buckets that come in a number of sizes and 
that permit file space growth to occur at a rate that is less than a factor of two, 
permits the use of partial expansions with most indexed files in a completely 
straightforward way. Disk space allocation is somewhat more complicated than 
with single-size buckets, but is readily provided. However, if disk allocation is 
not done carefully, external storage fragmentation can result in substantially 
lower effective disk utilization. The analysis and simulation that have been done 
have treated files without overflow records, of which B-trees are the prime 
example. 

For B-trees, the case for performing partial expansions is compelling. Improved 
utilization and insertion performance and reduced index size are all positive 
results of using two or three partial expansions per full expansion. These two 
regimes achieve most of the benefits that partial expansions can yield, while 
minimizing the extra potential cost of disk management. Two partial expansions 
per full expansion yield almost half of the utilization gain that is possible, 
14 percentage points (to 83 percent from 69 percent) of a total of 31 percentage 
points. Going to three partial expansions results in a total gain of 19 percentage 
points to 88 percent, or almost two-thirds of the total potential gain. 

The smaller number of buckets required when partial expansions are employed 
has two results. First, in terms of insertion cost, the two-partial expansion regime 
is best, with a file growth cost that is about 15 percent less than the full expansion 
cost. The insertion cost impact is not adverse until we reach five partial expan- 
sions. Second, the amount of space needed by the index is decreased. The two 
partial expansion regime requires only two-thirds of the index terms of full 
expansions, which is two-thirds of the gain achievable using the partial expansion 
technique. Going to three partial expansions results in six-tenths of the index 
terms of full expansions, four-fifths of the potential gain possible. 

Larson [4] has demonstrated the gains to be achieved from partial expansions 
for one hashing technique. However, each hashing technique will necessitate a 
separate analysis. The existence of overflow records adds a substantial extra cost 
to file growth and hence to insertion cost. However, as Larson demonstrates, 
partial expansions appear to provide a favorable trade-off between utilization 
and search performance gains versus increased insertion cost, particularly as 
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bucket size increases. Again, the trend is toward smaller gains and larger insertion 
cost penalties as the number of partial expansions is increased past three. Elastic 
buckets reduce the shuffling of records between buckets. This reduces the need 
to either recompute the hashed key value or to store the hashed key value with 
its associated record. This reduction in algorithmic complexity is difficult to 
quantify but is no less real. 

One final caveat is that the analysis and simulation results for partial expan- 
sions are derived assuming a “uniformly growing” file. The results for the full 
expansion case are derived in the same way. While this seems to be a reasonable 
assumption, in that usually the initial records added are a fair sample of the 
records that will be subsequently inserted, not all files grow in this fashion. 
However, no growth technique is likely to be optimum for all possible file growth 
scenarios. Further, partial expansions place a lower bound on utilization that is 
better than the lower bound produced by full expansions. Instead of 50 percent 
utilization, a two partial expansion regime will have a minimum utilization 
of 67 percent, while three partial expansions will have a minimum utilization of 
75 percent. (Both these minimums are for the largest growth factor expansion 
needed to realize a particular number of partial expansions.) 

Note. After this report was in essentially finished form, we learned from 
Georges Gardarin, Patrick Valduriez, and Yann Viemont at the 1985 SIGMOD 
Conference that INRIA’s SABRE system uses a form of elastic bucket partial 
expansion. The problem they were solving arose because node splitting in SABRE 
is done digitally, based on a binary “signature.” This leads to an unequal division 
of the contents of a node. Their multipage nodes permit the node splitting to 
likewise be an unequal division, approximately proportional to the division of 
the data. The new smaller nodes are then permitted to increase in size so that 
this process can be repeated. 
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