
Partial Expansions for File Organizations
with an Index

DAVID B. LOMET
Wang Institute of Graduate Studies

A new way to increase file space in dynamically growing files is introduced in which substantial
improvement in file utilization can be achieved. It makes use of partial expansions in which, instead
of doubling the space associated with some part of the file, the space grows at a slower rate. Unlike
previous versions of partial expansion in which the number of buckets involved in tile growth is
increased by less than a factor of two, the new method expands file space by increasing bucket size
via “elastic buckets.” This permits partial expansions to be used with a wide range of indexed files,
including B-trees. The results of using partial expansions are analyzed, and the analysis confirmed
by a simulation study. The analysis and simulation demonstrate that the file utilization gains are
substantial and that fears of excessive insertion cost resulting from more frequent file growth are
unfounded.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management-access
methods; F/e organization; H.2.2 [Database Management]: Physical Design--access methods; H.3.2
[Information Storage and Retrieval]: Information Storage--f& organization

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: B-trees, dynamic files, indexed files, partial expansions, storage
management, storage utilization

1. INTRODUCTION

Most existing file organizations that cope well with growing files do so by
increasing the space used to contain some portion of the file by a factor of two.
Thus B-trees [l] typically grow by node splitting, in which the entries of a full
node of the tree are divided equally between the existing node and new node.
Such growth by local doubling is also a property of many of the dynamic
(extensible) file organizations [Z, 6,8,9, lo]. The result is that utilization within
the nodes (or sections) of these files varies from 50 to 100 percent with an average
utilization of approximately log (2) = .693 [8, 131. Doubling of the entire file, as
done in virtual hashing [5], leads to a similar result.

If growth could occur at a rate that is less than a factor of two, then utilization
within these growing files would be improved. One early proposal to do this [3]

This work is a revised version of the identically named IBM Research Report, RC 11240, June 1985.
Author’s address: Wang Institute of Graduate Studies, School of Information and Technology,
Tyng Road, Tyngboro, MA 01879.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0362~5915/87/0300-0065 $00.75

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987, Pages 65-84.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F12047.12049&domain=pdf&date_stamp=1987-03-01

66 ’ David B. Lomet

is embodied in the notion of what Knuth calls a B*-tree. The idea is to examine
neighbors of a full node, and to shift entries from a full node to neighbors that
still have available space. When a node and its neighbor are both full, then a new
node is added to the Bi-tree and the entries from two nodes are spread over three
nodes, the new one and the original two. The result is that utilization does not
fall below about 67 percent, and average utilization is similarly improved.

In a difficult but noteworthy paper, Martin 1121 proposed a file organization
in which local growth of an exponentially hashed file could occur at a rate less
than a factor of two. His bucket allocation scheme was complex, however, and
his method was designed to cope particularly with exponentially distributed
hashed keys. Larson [4] invented the term “partial expansion” to characterize a
growth regime in which more than one growth event is necessary in order for a
file to double, doubling being called a “full expansion.” He applied the technique
to Litwin’s linear hashing [6] by incrementally increasing the number of buckets
in a small group of buckets from two to three, and then from three to four, thus
doubling the number of buckets in two steps. His analysis showed that utilization
improved substantially. He computed results for one, two, and three partial
expansions per full expansion, and his results showed how utilization improves
for linear hashing as the number of partial expansions per full expansion
increases, as one would expect.

The potential penalty for applying the partial expansion technique to raise file
utilization has been that insertion cost is increased. The file growth process
occurs more frequently, causing data to be moved between buckets (or nodes).

With B-trees, not only does this increased data motion occur, but with three-
for-two splitting in B*-trees, each entry inserted into a full node requires an
extra disk access of the neighboring node for as long as the node is full and its
neighbor is not. The result is that not only is the insertion process more complex
when growth occurs, but it can be both more complex and more costly for many
insertions prior to growth occurring.

One would like to realize the increased utilization produced by partial expan-
sions, while avoiding excessive insertion cost. For B-trees, three-for-two splitting
is rarely used because of the extra insertion cost. However, in this paper we
propose a new form of partial expansion which minimizes this extra insertion
cost. This new technique is also applicable to a number of dynamic hashed file
organizations [2, 91, to tree index methods with multibucket nodes [8, lo], and
to the new mixed tree/hashed file organization proposed in [7]. In fact it can be
applied to almost any file in which there are multiple nodes addressed by means
of an index of almost any kind.

This paper is organized as follows: The new partial expansion technique is
described in Section 2. Section 3 analyzes the impact of partial expansions with
a single growth rate on storage utilization. Because of page size granularity,
partial expansions with unequal growth rates will be required in order to yield a
full expansion. This is analyzed in Section 4. A simulation study is described in
Section 5 which confirms the results of the analysis. The impact of partial
expansions on insertion cost is treated in Section 6. Related to insertion cost is
the size of the index, which is considered in Section 7. The paper ends with
a short discussion in Section 8.
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index 67

2. ELASTIC BUCKETS

A careful reading of the introduction reveals that file expansions have been
realized by increasing the number of buckets that are used to store the contents
of some growing subset of the key space (or hashed key space) of the file. This
shows up clearly in the discussion of three-for-two node splitting for B-trees. In
order to do partial expansions via growth in the number of buckets, the growth
process must be able to “till” a number of buckets prior to adding a bucket. The
smallest number of buckets that can be added is one, which, for B-trees with
their single bucket per node, doubles the space locally. For some hashed files,
with multiple bucket nodes, for instance, BEH hashing [9], growth can be more
finely controlled. However, partial expansions for these files require redistribut-
ing the contents of one bucket over two different buckets of a new node. This
redistribution is also required for linear hashing [4,6], which does not have nodes
in any conventional sense.

We wish to consider the mechanics of how a file might grow so as to avoid
moving large amounts of data and incurring large numbers of disk accesses. To
explain the technique being proposed, it is necessary to distinguish three different
units of disk storage, pages, nodes, and buckets, which are defined below.

(1) Page: The smallest physical unit of storage allocation on the disk. It is the
smallest unit of data that can be read from or written to the disk. All other
units are an integral number (one or more) of pages. Each page has a unique
disk address. Page size, in bytes, is usually defined by the file system.

(2) Node: The logical unit of allocation of storage on the disk. A node is a
logically contiguous set of pages that can be referenced by a single disk
address. It is the largest unit for which the file system guarantees logical
contiguity.

(3) Bucket: A logically contiguous set of pages within a node. The set of buckets
forming a node is a partition of the node. A bucket is the storage unit that
the access method, for its own purposes, is required to access in its entirety,
that is, an access method always reads an integral number of buckets.

Note that page size is determined by the file system and node size (in pages)
is made known to the file system, acting as the allocator of disk space. (In analogy
with main memory storage allocation, a page is analogous to a byte and a node
is analogous to a storage area, i.e., data structure.) Thus both of these quantities
are known to the file system. The file system attempts to map the logically
contiguous pages of a node onto physically contiguous disk pages so as to
maximize disk performance when reading some subset (perhaps all) of the node.
This will usually be accomplished by mapping a node to some part of a physical
extent or to some small number of extents, should extents be smaller than node
size. We assume that the file system is prepared to honor I/O access requests,
whose operands are expressed in terms of the triple:

(node address; offset of first page of part of node desired, size, in pages, of part).

The bucket is a storage unit defined by, and known to, the access method.
It represents some fractional part of a node. (In analogy with programming

ACM Transactions on Database Systems, Vol. 12, No. 1, March 198’7.

68 ’ David B. Lomet

languages, a bucket corresponds to a component of an allocated data structure.)
While each bucket may have a different size within a node, we expect bucket size
to typically be constant for a given node so as to permit array type addressing of
the buckets. The file system will not usually be aware of the bucket structure of
a node. The access method uses buckets analogously to the way programming
languages use scalars. That is, buckets like scalars, to be effectively used, must
be accessed in their entirety.

File growth, in the context of the file system described above, is accomplished
in two distinct ways. First (and, conventionally, as performed with B-trees),
nodes may split so that one node is replaced by two nodes and the data contained
in the original node divided between the two nodes. Second, a node may grow in
size, that is, be replaced by a single new node which is comprised of a larger
number of pages than the original node, thus providing additional room for
growth.

When a node grows, the access method is presented with the choice of either
(1) leaving the bucket size unchanged and increasing the number of buckets or
(2) leaving the number of buckets unchanged and increasing the size of the
buckets. This second alternative, which we call “elastic” buckets, is the method
advocated here.

In the remainder of this paper, the notion of elastic buckets is pursued in the
context of B-tree files. B-trees do not have multibucket nodes. Rather, each node
must be read in its entirety and hence is a single bucket node, (Elastic bucket
partial expansions can be used with multibucket nodes and will be explored in a
forthcoming paper [111.) Because of this, we will frequently use the terms bucket
and node interchangeably, since the unit of storage being referenced is the same.
If an important distinction is being made, this will be emphasized and terms will
be used with precision.

As an example, consider a B-tree with single bucket nodes in which the smallest
bucket size is two pages. When a node (bucket) overflows, instead of splitting it
into two nodes, we replace the two-page node with a three-page node. The
utilization drops to 67 percent instead of the 50 percent that splitting would
result in. When a three-page node overflows, we split it into two nodes, but these
nodes are only two-page nodes, not three-page nodes. Hence, the initial utilization
of the two new nodes is 75 percent. These two partial expansions have resulted
in a doubling of the storage used to contain records in the local key subspace.
This is thus a full expansion in two steps.

Larger numbers of partial expansions per full expansion are also possible. We
can begin with a three-page node, overflow resulting in growth to a four-page
node, which, when it overflows, grows to a five-page node. Finally, when a five-
page node overflows, it splits into two three-page nodes, completing the doubling
or full expansion in three steps.

What we wish to know is the effect of partial expansions on tile performance
characteristics. Because of the page size granularity of buckets, a full expansion
will typically be accomplished by two or more partial expansions of different
rates. In the first example above, a two-page node was replaced with a three-page
node, a growth factor of 1.5. When the three-page node split into two two-page
nodes, the growth factor was 1.33. Ideally, choosing two partial expansions per
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index l 69

full expansion, we would like the growth rate to be 1.414, that is, the square root
of two. We analyze partial expansions for both a single growth rate and for
differing growth rates. We shall see that different growth rate partial expansions
come quite close to equaling the results of ideal, single growth rate partial
expansions.

3. SINGLE GROWTH RATE PARTIAL EXPANSION

In order to analyze the performance of partial expansions, we make three
assumptions.

(1) The numbers of entries in buckets of the file are growing at a uniform rate,
that is, the percentage growth of entries in each bucket during any time
interval is the same for all buckets.

(2) The distribution of the number of buckets at any given utilization remains
constant, that is, the file is at steady state with respect to this attribute. Note
that this implies that our results apply to files that have grown to contain a
large number of buckets.

(3) Each bucket contains a large number of records. During the analysis, limits
are taken. Thus, our analysis will not be accurate for small numbers of
records per bucket. The larger the number of records, the more accurate will
our results be. This will be discussed again later in the paper.

The question that we wish to answer is, what is the average utilization of a file
in which, when a bucket reaches maximum utilization, it is replaced by a bucket
whose size is larger by some fixed percentage? The result we seek is average
utilization expressed as a fraction of the maximum utilization of any bucket. It
is apparent that in hashed files the maximum utilization may well be less than
100 percent, since buckets of a multibucket node fill unevenly, even when the
hashed keys are distributed uniformly. Even with B-trees, because buckets are
not necessarily a multiple of record size, maximum utilization will frequently not
be 100 percent. A “relative” result will remind us of this.

Let urnax be the maximum utilization of buckets of the file. Further, let R be
the growth factor of the file. That is, when a bucket’s utilization reaches k,,,
the bucket is replaced with one whose size is R times the size of the original
bucket. Equivalently, a large number of buckets with utilization of urnax can be
replaced with new buckets such that the space of the new buckets is a factor of
R larger than the space of the original buckets. Since the number of records per ’
bucket is large, the minimum utilization of a bucket will be

Various buckets will have differing utilizations. Our steady state assumption
means that the fraction of buckets at any utilization will be constant. Let these
utilizations be U,in, u,i,Ri’m, . . . , u,inR(m-l)‘me These utilizations are chosen so
that file growth by a factor of R’/” causes buckets with utilization U,i,Rifm to
become buckets with utilization u,i,R(itl)‘me Then, letting n go to infinity in the
limit gives us results for u as a continuous distribution.

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

70 l David B. Lomet

We define Ni to be the number of pages with a utilization of hi”R’m. AS the
file grows, the number of buckets at any given utilization also grows. In particular,
after an increase in number of entries by a factor of R’jm, we have

Nrw = RN:!,,

and, for 0 < i < m,

Normalizing relative to the number of buckets with utilization equal to kin,
we define ci as the ratio of the number of buckets with utilization hinRiim to
the number of buckets with utilization U,in.

Then
“eW

NO RN :!!I CO=K=l=-= new new No
Rc,-, i$$.

0

Hence, we have that

N;ld 1 -=-
N fF’ Rc,-* ’

Further,

1
c.=-=-= ’ NOW Nf;“” ci-1 j@ii = ‘i-1 Rcmwl ’

This leads to

1

with

Solving for c,-~ yields

Thus

cm-1 = (l/R)(m-‘)‘m.

ci = (l/R)““.

Knowing the normalized number of pages with any given utilization, we can
determine the total number of normalized pages NP for all utilizations. Further,
we can determine the total normalized space NS used, in number of pages, by
the data. Dividing the second quantity by the first yields average utilization. We
begin by summing the number of normalized pages, which is

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index 71

The normalized space used is
m-l m-l

NS = C CiUi = 2 i
i=O i=O 0

Dividing NS by NP yields the average utilization of the file. It is here that the
analysis most explicitly assumes a large number of entries per page, so as to
avoid dealing with record size granularity and a large number of pages. This also
yields a closed-form solution for the analysis and is similar to what was done in
[S]. Thus,

NS
&,I, = lim,- NP = lim,,, lhax

R(1 - (l/R))
m(l - (;T).

But, we have that

lim,, m(1 - (l/R)““) = log(R).

Thus,

Using this result, we can compute average file utilization for various growth
factors. We are interested in the range of 1 < R % 2, which is the range of growth
factor of interest for partial expansions.

Particular values of R are of interest for our study of partial expansions. To
determine the effect of E partial expansions on file utilization, where all partial
expansions have the same growth rate, and, when completed, the file has doubled,
requires that R = 2 l/E Average file utilization is plotted against number of partial .
expansions in Figure 1. Notice that the greatest gain in utilization, going from
.693 to 637, results when we use two partial expansions to double a file, instead
of a full expansion. Each doubling of the number of expansions needed to double
the file space halves the difference between average utilization and maximum
utilization. Thus, gains for additional partial expansions quickly become mar-
ginal. Indeed, after four partial expansions, when file utilization is .916 percent
of maximum utilization, each additional expansion increases utilization less than
2 percent.

4. UNEQUAL GROWTH RATE PARTIAL EXPANSIONS

While we might ideally like to have uniform growth rates for each partial
expansion, so as to maximize file utilization, in a real system with finite (as
opposed to infinitesimal) pages, we must deal with differing growth rates. Recall
that two-page buckets expanding to three pages, then splitting into two two-page
buckets, produce two growth rates, i and 2. In this section we wish to determine
what effect these differing growth rates have on file utilization. The same kind
of analysis is done here as in Section 3.

We begin by considering the two partial expansion case, and then will gener-
alize to an arbitrary number of partial expansions. Let R, be the growth in space

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

72 l David B. Lomet

1.0 *

0-o
-0-O

f 0.9 - .'
0'

0
.
2

/
0

50.8 -

E

5
N

/ 3 0.7 -0

5 I iI

0.6 ’ I I I I I I I
123456789

PARTIAL EXPANSIONS

Fig. 1. Utilization is plotted against the number of partial
expansions required to achieve that utilization. The growth
factor for a growth regime employing E partial expansions per
full expansion is R = 21jE.

produced by the first partial expansion, with RZ the growth produced by the
second. Further, let u,,,,,~ be the maximum utilization achieved after the first
partial expansion, and umaX2 be the maximum utilization achieved after the
second. There are corresponding values for the minimum utilizations. Then

RI = !!!!&
Knin1

and Rz = z.

Our steady state assumption requires that the fraction of buckets at any utili-
zation be constant. Since we have two growth rates for space, our utilizations
will be influenced by both the rates. Thus the utilizations that will be tracked
are Knin12 &ninl(~l)i’m, - - - f Uminl(~l)(m-*)‘m, %kG!9 - - - f kin2(rZ)“‘“, - * - 9

hi,2(rz)(n-1)‘n. Analogously to the single growth rate case, we define Ni to be
the number of pages with a utilization of Umini(rl)i’m, for 0 I i < m. Further, we
let N,,,+; be the number of pages with a utilization of Umi,z(rz)“” for 0 I j < n.
Note here that

Gn*.1
T-1 = __

kin1
and r2=z.

In addition, n and m are related. Specifically,

b.1) l/m = (r2)l/m and RIRz = rlr2.

The analysis here follows that for a single growth rate, but reflects the two
partial expansions. Thus, after an increase by a factor of (rl)llm in number of
entries, we have the following recurrence relations for pages following the first
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index l 73

partial expansion:

and, for 1 5 i .S m,

At umsXl, pages undergo the second partial expansion. Thus the second partial
expansion affects these pages, and we have

and,forlrj<n,

We again normalize these numbers relative to the number No of bin1 pages by
dividing by No. Doing this, then solving for c~+~+, and finally substituting the
result into the equations yields

for 0 I i < m; and

C,+j = R2(&)(mfiNl’w = c)(i)”

forO<j<n.
Computing the average utilization of a file undergoing two partial expansions

requires once again that we compute the normalized number of pages (capacity)
and the normalized space required by the data. Both these quantities now require
summations over both partial expansions. Thus, let NProtal denote the total
normalized number of pages and NS rota, the total normalized space required by
the data, with NPi the normalized number of pages and NSi the normalized space
required for data, both for the ith partial expansion. Then

m-1 n-1

NP~otal = NP1 + NP2 = C ci + z cm+j.
i=O j=O

After substituting for the ci and c,+j terms, doing some algebraic manipulation,
and performing the summations, we have

NP~otal = 1 - (l/RIRz)“‘“+“’

Similarly,
m-l n-1

NS~otal= NS1 + NS, = C CiUi + C Cm+jUm+j
i=O j=O

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

74 - David B. Lomet

After algebraic manipulation and summation, this results in

NS Total = kninl(m) + $
0

‘%nin2(n) = kninl(m + n)*

Finally,

NSTota,
hilt? = NPTotal =

&ninl(m + n)(l - (1/RlR2)1’m+“)

L.0 - W-l)) + (R2h)U - (llr2))1*

If we take the limit as m goes to infinity, then n will also go to infinity. Making
use of the previously used logarithm limit yields

UminllOg(RlR2)
wile =

[U - l/r4 + UWrd(l - l/4] *

Expressed in terms of the utilizations of each of the partial expansions, we
have

where

Utile = flu1 + f2u2

fj = ~~umax2~~/U~.9d(C - 1) (l/k-mxi)(ri - 1)

= md)(l;. - 1) + b-2 - 111 [(l/Umaxd(rl - 1) + Wmax2)(f2 - 111

and

Uj =
&aJOg(ri)

rj-1 ’

The quantity ufile can also be expressed as

Me =
[(l/umaxJ(rl - 1) + WUmax2k2 - Ul ’

It is possible to generalize this analysis to arbitrary numbers of partial expan-
sions. The result for k partial expansions, in terms of the utilizations for each
partial expansion, is

IZbl NSi = i fjui,

We = C;+ NPi i=l

where

and

u, = &dW(d
I ri-1 *

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index

Table I”

l 75

Utilization Utilization
E (ideal) (realizable)

1 .693 .693
2 .a37 .832
3 .&x69 .885
4 .916 ,913
5 ,932 .930
6 .943 .941
1 .951 .949
a .957 .956

* The “ideal” utilization is computed assuming a
constant growth rate for each partial expansion of
R = 211E where E is the number of partial expan-
sions. The realizable utilization is computed as-
suming growth rates of R; = (E + i)/(E + i - 1)

from i = 1 to i = E.

Alternatively, we can express the result in terms of the full expansion as

In order to compare the different growth rate partial expansions with single
growth rate partial expansions, the maximum utilizations reached for the differ-
ent partial expansions are set to the same value, that is, U,,,i = U,,xj for all
values of i and j. We then choose to do the partial expansions using the smallest
possible bucket sizes, in terms of number of pages. This choice makes the growth
rates as unequal as possible, and hence maximizes the distance from the single
growth rate case. The results for the various realizable partial expansions are
tabulated in Table I and compared with the ideal single growth rate partial
expansion involving the same number of steps. As can readily be seen, using
realizable (unequal) growth rate partial expansions has a negative impact on
utilization, but the impact is very small indeed.

5. SIMULATION STUDY FOR “SMALL” BUCKETS

A simulation study involving “small” bucket sizes was done so as to attempt to
confirm the results of the analysis. Our particular concern was that the analysis
assumed that records were infinitesimal in order to compute the recurrence and
that a limit was taken in order to produce the closed-form solution. The simula-
tion dealt with specific finite-size buckets. To approximate the uniform growth
process that the analysis assumes, keys from a uniform distribution were inserted
into a simulated B-tree tile, and the nodes were expanded or split as required by
the growth process.

Ten thousand records were inserted into the B-tree during each simulation
run. The smallest bucket size was varied from 12 to 48 records capacity. Twelve-
record buckets, or multiples of 12, were chosen so as to produce integral-size
buckets for the various partial expansions. (A smallest bucket size of 6 was also

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

76 9 David 6. Lomet

Table II”

Page size E Sim(&J Standard error Sim(u,,- = M/M + 1)

6 1 71.89 0.10 61.62
2 88.75 0.14 76.07
3 93.56 0.05 80.19

12 1 70.83 0.23 65.38
2 85.78 0.21 79.18
3 91.28 0.10 84.26
4 94.22 0.11 86.97

24 1 69.92 0.43 67.12
2 84.18 0.16 80.81
3 90.14 0.15 86.53
4 92.71 0.12 89.00

36 1 68.80 0.11 66.94
2 83.92 0.30 81.65
3 89.32 0.23 86.91
4 92.38 0.24 89.88

48 1 70.43 0.51 68.90
2 83.93 0.38 82.22
3 89.42 0.32 87.60
4 92.34 0.21 90.46

“The relative utilization for varying numbers of partial expansions, as produced by simulation.
The “Sim(u,,,,.. = . . .)” column gives the utilization assuming first that u,- = 1 and then that
u,,,.. = M/(M + 1). M is the smallest bucket’s capacity in records.

simulated, but not for four partial expansions.) The number of partial expansions
involved varied from one to four, that is, from doing conventional B-tree node
splitting to using four different bucket sizes. Four runs were taken at each setting
of the expansion and bucket size parameters. The average of the utilizations for
these four runs is presented in Table II and can be compared with the analysis
results of Table I.

It is apparent from Table II that the simulation results very closely match the
analysis results, even for a bucket size as small as 12 records. Further, and not
unexpectedly, the agreement with analysis improves as the bucket size increases.
It is interesting to note that the simulation results when maximum utilization is
1.0 were consistently better than the analysis results by a small margin, with
only one exception. The actual maximum utilization will vary between 1.0 and
M/(M + l), where A4 is the capacity of a bucket in records. Thus, these results,
both of analysis and simulation, appear to be quite robust. Given a “uniformly
growing” file, there is a high probability that the utilizations achieved will be
very close to the results reported here. Note that these bounds bracket the
analysis results very tightly, and the standard error is very small.

6. EFFECT OF PARTIAL EXPANSIONS ON INSERTION COST

Frequently, improvements in one performance attribute must be purchased with
a negative performance impact on some other attribute. This does not seem to
be the case with partial expansions. Each doubling of some part of a file will
involve a larger number of distinct file growth steps, this number being precisely
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index l 77

the number of partial expansions per full expansion. However, partial expansions
involving bucket growth are less costly than those involving node splitting. This
is analyzed below in terms of the disk accesses required for file growth.

We make the following assumptions regarding the costs of file growth:

(1) There is no disk access cost for allocating a bucket or for freeing a bucket.
Thus, our analysis assumes the bookkeeping for disk storage is done largely in
main memory. There may be the need for an occasional write of this information
onto the disk, but the number of such writes is assumed to be very small compared
to the number of allocates and frees. While this assumption is not true of all
current systems, it can be achieved without undue difficulty. It should be noted
that, if allocation and freeing of buckets requires disk access, the results reported
here will not accurately reflect either the absolute or relative costs.

(2) File growth occurs during an insertion to the same bucket that will be
expanded. Thus, extra accesses to read and write some other expanding bucket
will not be needed. This assumption will be true of B-trees and extendible hash-
ing [2], but will not necessarily be true of other hashing methods or of indexing
methods using multibucket nodes. As discussed in [9], the disk access cost for
file growth that must be added to normal insertion cost will be very low for
multibucket nodes, and so file growth costs per record will be small for all forms
of expansion.

(3) Any cost for absorbing overflow records into the expanding “primary”
bucket is not included. This analysis is essentially for B-trees. It ignores overflow
records, which are virtually inevitable for hashed files. Handling overflow records
adds substantially to file growth costs, as Larson has shown 141.

(4) The cost of updating levels of an index higher than the bottom level (the
level that references the data nodes) is insignificant. Typically, index buckets
have a fanout of 100 or more. Thus, the fraction of the time that higher index
levels need to be updated is typically less than 2 percent of the update frequency
for the bottom index level. Thus we ignore this cost. Note that this reduces the
cost for node splitting, and hence has a slightly negative impact on the relative
performance of partial expansions versus full expansions. However, the impact
is not significant.

(5) Index entries must include a field that indicates the size of the buckets
within a node. For single bucket nodes, this corresponds to having a node-size
field. The number of different bucket sizes is E, the number of partial expansions
per full expansion. Thus flog(E)1 bits are required for the size field. Given the
number of partial expansions in the useful range (2-4), only one or two bits are
required for this field. Its impact on the size of index terms will be small, and
will only affect growth frequency above the bottom level of the index, which is
already being ignored.

Given the above assumptions, which are admittedly favorable to partial expan-
sions, but nonetheless readily achievable in a B-tree organized file system, we
incur the following disk access costs for file expansion:

(1) The cost of forming the new node required of node splitting is two extra
disk accesses per bucket over the cost of a simple insertion that does not expand

ACM Transactions on Database Systems, Vol. 12, NO. 1, March 1987.

78 ’ David B. Lomet

the file. One disk access writes the new node (the write required of an insertion
in the absence of file expansion takes care of writing the old node). The second
disk access writes a new index page, which contains the newly inserted index
term for the new bucket.

(2) The cost of a partial expansion in which the size of the bucket is increased
is one disk access. This access writes a new index page, which contains the
updated index term for the expanded bucket.

The result of this is that, for multiple partial expansions per full expansion,
each of the smallest buckets has a file growth cost of two disk accesses. The cost
for each of the next larger size bucket is one disk access more than this. Hence
its total cost is three disk accesses, two to create it as a small bucket, and one
more to expand it. Each increase in bucket size adds another disk access to the
cost of that size bucket. If we let bi be the number of buckets in the ith partial
expansion and E be the number of partial expansions, then the total cost of
having grown the tile is

Cos& = f (2 + i - l)bi.
i=l

To determine the expansion cost per record, we divide our expansion cost by
the number of records in the file. This is

Thus

Records = uel,NPr,tilPagesize.

CostE 1
Records =

5 (1 + i)bi
ufilePagesize i=l NProtal ’

For our realizable partial expansions, when i > 1, we expand bucket size by one
page each time a bucket fills up. Then

R-E+i-l
E+i-2’

When i = 1, this is the case where we have split our largest bucket into two of
our smallest buckets, yielding

2E R=-
2E - 1’

Then the number of buckets in each partial expansion is

bi =
NPi NPi

bucketsizei = E + i - 1 ’

where bucketsizei is the number of pages per bucket of the ith partial expansion.
Thus

Cos& 1 -=
Record fz l+i fit

uGl,Pagesize i=l E + i - 1

where, as before, fi = NPi/NPr,hl.
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index 79

Finally, we wish to normalize the cost, so that the cost is a function of the
number of partial expansions and is not confused by the absolute size of the
buckets. Thus, instead of the cost of expansion per record, we wish to compute
the cost of expansion per smallest bucket in the partial expansions. The cost per
record must thus be multiplied by the capacity of the smallest bucket, which,
since the number of pages in the smallest bucket equals the number of partial
expansions, is Pagesize x E. We then have

Cos& E 5 l+i f,

Smallbucket = uf,l, iZl E + i - 1 ‘*

This result is an attribute of the file expansion process and does not depend on
bucket size. Cost per record is found by dividing by the capacity, in records of
the smallest bucket. Since our normalized cost per full small bucket is constant,
by the analysis, we can see that increasing smallest bucket size will result directly
in a reduction in the expansion cost per insertion.

We can also derive the expansion costs discussed above from our simulation.
As before, our results are the average of four runs. It should be noted that, while
utilization changes little from run to run, the fraction for the buckets of various
sizes changes more substantially. Nonetheless, the average is in generally good
agreement with the analysis. This leads to expansion cost per small bucket being
in good agreement with the analysis. The results for both analysis and simulation
are reported in Table III.

The interesting thing to note concerning the results in Table III is that the
cost of inserting a full small bucket of records into a file is least with two partial
expansions. The cost of the original B-tree bucket splitting is 20 percent higher.
In fact, while the costs for higher numbers of partial expansions increase, these
costs do not exceed the B-tree bucket splitting cost until there are five partial
expansions per full expansion. These results should not be too surprising. Each
set of partial expansions has a smallest bucket size that equals the full expansion
bucket size. Thus all other buckets in the higher order partial expansions are
larger than this. Hence there are fewer of them. Thus, even though their costs
are higher, their higher capacities and higher utilizations result in an overall
savings.

So long as the number of records per smallest bucket is sufficiently large (e.g.,
10 records), the cost that file expansion adds to insertion cost will be modest. At
10 records per bucket, the insertion cost, without file growth, is typically about
three disk accesses, two to access the bucket via the index and one to write it
back with the new record inserted. (We assume that all but the bottom level of
the index and the data records themselves are held in main memory.) At 10
records per bucket, file growth adds less than 10 percent to the cost of insertion
until the number of partial expansions exceeds five. The file growth cost is less
than 20 percent for up to eight partial expansions.

7. INDEX SIZE IMPLICATIONS

The reduced insertion cost is a consequence of the reduced number of buckets
required for the file. This reduced number of buckets is also of interest because
it is directly proportional to the number of index entries for the file, and hence

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

80 l David 8. Lomet

Table III”

E E/E = 1 (E + U/E (E + WE (E + 3)/E cost

1 1.00 (1.00) 2.89 (2.87)
2 0.40 (0.43) 0.60 (0.57) 2.41 (2.38)
3 0.26 (0.26) 0.43 (0.38) 0.32 (0.36) 2.52 (2.52)
4 0.19 (0.18) 0.33 (0.29) 0.26 (0.27) 0.22 (0.27) 2.78 (2.69)

“The file growth cost, in number of disk accesses required for each full smallest bucket (Cost), is
shown. Also shown is the relative abundance of different size buckets. The column headed by
(E + i)/E gives the number of buckets whose size, relative to the smallest bucket, is given by the
expression. The results shown are from the analysis and, in parentheses, from the simulation with
page size of 48 records.

the index size. This reduction in index size can result in either increased
performance from a fixed-size buffer for containing index pages, or decreased
index page buffer size for constant performance. The reduction in number of
buckets is a result of two factors, increased bucket utilization and increased
average bucket size. We determine the relative number of buckets produced by a
partial expansion regime as a fraction of the buckets produced by a full expansion.

Let Records be the number of records inserted into the file, UE be the utilization
achieved for a file undergoing E partial expansions per full expansion. Then the
total number of pages is

NPTOME =

Records
uEPagesize *

Let Sizes,i be the relative size of a bucket in the ith partial expansion in a regime
with E partial expansions, where Sizes, = 1. Then the number of buckets of this
size is

NBE i = fE,EF.
E4

The total number of buckets is

NBE = 5 NBw = Records 5 fE,i
i=l +Pagesize i=l SizeE,i ’

where fE,j is the fraction of pages in a partial expansion regime of E partial
expansions in the ith partial expansion. Dividing this by NBr, which is the
number of buckets from a full expansion, and which is

NB = Records
1 ulPagesize ’

yields

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index l 81

The first term is the factor in the bucket number reduction due to improved
storage utilization, while the second term is the factor due to increased average
bucket size. The expansion ratio for the ith partial expansion is

fori>land

E+i-1
r..xi = E + i _ 2

2E
Q3.i = 2E _ 1 ,

and the relative size of its buckets is

SiZeE,i =
E+i-1

E ’

Finally, from our previous analysis, and assuming all buckets have the same
maximum utilization, we have

4n&g(2)
uE = Cf-1 (rE,i - 1)

and

-1
fEyi = py& - 1) *

Then, substituting and performing algebraic manipulation yield

NBE E E -=
NBI E(2E - 1) +i i=z (E + i - l)(E + i - 2) ’

Mathematical induction can be used to show that this is

NBE E -=-
NBI 2E - 1’

The results for various partial expansion regimes are presented in Table IV.
The ratio of buckets for a partial expansion regime versus a full expansion, as
determined by the analysis, is presented. In parentheses are the ranges of bucket
ratios encountered in the simulation study. As before, the agreement between
analysis and simulation is quite good. Also given are the factors in this reduction
that can be attributed to improved utilization and to increased average bucket
size.

Note, in Table IV, that the limit of possible reduction in number of buckets is
also presented. The important point in presenting the limit is that it demonstrates
that most of the possible reduction is achieved when E = 2, that is, two-thirds of
the total possible gain. Further, very little is to be gained from regimes employing
more than four partial expansions.

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

82 ’ David B. Lomet

Table Iv”

E Ratio Utilization Bucket size

1 1.000 1.000 1.000

2 0.667 (0.658-0.677) 0.833 0.800
3 0.600 (0.594-0.610) 0.783 0.766
4 0.571 (0.563-0.574) -0.760 0.752
Inf 0.500 0.693 0.721

’ The ratio of number of buckets resulting from partial expansions to the number of buckets produced
by node splitting (i.e., a full expansion) is given in the “Ratio” column, first the results of analysis,
then the range observed during the simulation runs. The factors in this ratio attributable to the
differences in utilization and to the differences in bucket size are also given. The relative number of
buckets is equal to the relative number of index terms for the various partial expansions.

8. DISCUSSION

The notion of elastic buckets, that is, buckets that come in a number of sizes and
that permit file space growth to occur at a rate that is less than a factor of two,
permits the use of partial expansions with most indexed files in a completely
straightforward way. Disk space allocation is somewhat more complicated than
with single-size buckets, but is readily provided. However, if disk allocation is
not done carefully, external storage fragmentation can result in substantially
lower effective disk utilization. The analysis and simulation that have been done
have treated files without overflow records, of which B-trees are the prime
example.

For B-trees, the case for performing partial expansions is compelling. Improved
utilization and insertion performance and reduced index size are all positive
results of using two or three partial expansions per full expansion. These two
regimes achieve most of the benefits that partial expansions can yield, while
minimizing the extra potential cost of disk management. Two partial expansions
per full expansion yield almost half of the utilization gain that is possible,
14 percentage points (to 83 percent from 69 percent) of a total of 31 percentage
points. Going to three partial expansions results in a total gain of 19 percentage
points to 88 percent, or almost two-thirds of the total potential gain.

The smaller number of buckets required when partial expansions are employed
has two results. First, in terms of insertion cost, the two-partial expansion regime
is best, with a file growth cost that is about 15 percent less than the full expansion
cost. The insertion cost impact is not adverse until we reach five partial expan-
sions. Second, the amount of space needed by the index is decreased. The two
partial expansion regime requires only two-thirds of the index terms of full
expansions, which is two-thirds of the gain achievable using the partial expansion
technique. Going to three partial expansions results in six-tenths of the index
terms of full expansions, four-fifths of the potential gain possible.

Larson [4] has demonstrated the gains to be achieved from partial expansions
for one hashing technique. However, each hashing technique will necessitate a
separate analysis. The existence of overflow records adds a substantial extra cost
to file growth and hence to insertion cost. However, as Larson demonstrates,
partial expansions appear to provide a favorable trade-off between utilization
and search performance gains versus increased insertion cost, particularly as
ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

Partial Expansions for File Organizations with an Index l 83

bucket size increases. Again, the trend is toward smaller gains and larger insertion
cost penalties as the number of partial expansions is increased past three. Elastic
buckets reduce the shuffling of records between buckets. This reduces the need
to either recompute the hashed key value or to store the hashed key value with
its associated record. This reduction in algorithmic complexity is difficult to
quantify but is no less real.

One final caveat is that the analysis and simulation results for partial expan-
sions are derived assuming a “uniformly growing” file. The results for the full
expansion case are derived in the same way. While this seems to be a reasonable
assumption, in that usually the initial records added are a fair sample of the
records that will be subsequently inserted, not all files grow in this fashion.
However, no growth technique is likely to be optimum for all possible file growth
scenarios. Further, partial expansions place a lower bound on utilization that is
better than the lower bound produced by full expansions. Instead of 50 percent
utilization, a two partial expansion regime will have a minimum utilization
of 67 percent, while three partial expansions will have a minimum utilization of
75 percent. (Both these minimums are for the largest growth factor expansion
needed to realize a particular number of partial expansions.)

Note. After this report was in essentially finished form, we learned from
Georges Gardarin, Patrick Valduriez, and Yann Viemont at the 1985 SIGMOD
Conference that INRIA’s SABRE system uses a form of elastic bucket partial
expansion. The problem they were solving arose because node splitting in SABRE
is done digitally, based on a binary “signature.” This leads to an unequal division
of the contents of a node. Their multipage nodes permit the node splitting to
likewise be an unequal division, approximately proportional to the division of
the data. The new smaller nodes are then permitted to increase in size so that
this process can be repeated.

REFERENCES

1. BAYER, R., AND MCCREIGHT, E. M. Organization and maintenance of large ordered indices.
Acta Znf. I, 3 (1972), 173-189.

2. FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H. R. Extendible hashing-A fast
access method for dynamic files. ACM Trans. Database Syst. 4,3 (Sept. 1979), 315-344.

3. KNUTH, D. The Art of Computer Programming. Vol. 3, Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973.

4. LARSON, P. Linear hashing with partial expansions. In Proceedings of the 6th Conference on
Very Large Data Bases (Montreal). 1980, pp. 224-232.

5. LITWIN, W. Virtual hashing: A dynamically changing hashing. In Proceedings of the 4th
Conference on Very Large Data Bases (Berlin). 1978, pp. 517-523.

6. LITWIN, W. Linear hashing: A new tool for tile and table addressing. In Proceedings of the 6th
Conference on Very Large Data Bases (Montreal). 1980, pp. 212-223.

7. LITWIN, W., AND LOMET, D. The bounded disorder access method. In Proceedings of the 2nd
Conference on Data Engineering (Los Angeles). 1986, pp. 38-48.

8. LOMET, D. B. Digital B-trees. In Proceedings of the 7th Znternutionul Conference on Very Lurge
Data Bases (Cannes). 1981, pp. 333-344.

9. LOMET, D. B. Bounded index exponential hashing. ACM Trans. Database Syst. 8,l (Mar. 1983),
136-165.

10. LOMET, D. B. A high performance, universal, key associative access method. In Proceedings of
the ACM SZGMOD Conference on Management of Data (San Jose, Calif.). 1983, ACM, New York,
pp. 120-133.

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

84 l David 6. Lomet

11. LOMET, D. B. A simple bounded disorder file organization with good performance. Tech. Rep.
TR-86-13 (submitted for publication), Wang Institute (Sept. 1986).

12. MARTIN, G. Spiral storage: Incrementally augmentable hash addressed storage. Theory of
Comput. Rep. 27, Univ. of Warwick, Coventry.

13. YAO, A. C. -C. Random 3-2 trees. Acta Zf. 9 (1978), 159-170.

Received September 1985; revised June 1986; accepted June 1986

ACM Transactions on Database Systems, Vol. 12, No. 1, March 1987.

