
Efficient Techniques for Multipolynomial Resultant Algorithms

Abstract

Dinesh Manocha and John Canny

Computer Science Division

University of California

Berkeley, CA 94720

Computational methods for manipulating sets of

polynomial equations are becoming of greater im-

portance due to the use of polynomial equations in

various applications. In some cases we need to elim-

inate variables from a given system of polynomial

equations to obtain a ‘(symbolical y smaller” system,

while in others we desire to compute the numerical

solutions of non-linear polynomial equations. Re-

cently, the techniques of Gr6bner bases and polyno-

mial continuation have received much attention as

algorithmic methods for these symbolic and numeric

applications. When it comes to practice, these meth-

ods are slow and not effective for a variety of rea-

sons. In this paper we present efficient techniques for

applying multipolynomial resultant algorithms and

show their effectiveness for manipulating system of

polynomial equations. In particular, we present ef-

ficient algorithms for computing the resultant of a

system of polynomial equations (whose coefficients

may be symbolic variables). These algorithms can

be used for interpolating polynomials from their val-

ues and expanding symbolic determinants. Moreover,

we use multipolynomial resultants for computing the

real or complex solutions of non-linear polynomial

equations. We also discuss the implementation of

these algorithms in the context of certain applic~

tions.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

o 1991 ACM 0-89791 -437 -6/91 /0006 /0086 . ..$1 .50

1 Introduction

Finding the solution to a system of non-linear poly-

nomial equations over a given field is a classical and

fundamental problem in computational algebra. This

problem arises in symbolic and numeric techniques

used to manipulate sets of polynomial equations.

Many applications in computer algebra, robotics,

geometric and solid modeling use sets of polyno-

mial equations for object representation (as a semi-

algebraic set) and for defining constraints (as an al-

gebraic set). The main operations in these appli-

cat ions can be classified into two types: simultane-

ous elimination of one or more variables from a given

set of polynomial equations to obtain a “symbolically

smaller” system and computing the numeric solutions

of a system of polynomial equations. Elimination

theory, a branch of classical algebraic geometry, in-

vestigates the condition under which sets of polyno-

mials have common roots. Its results were known at

least a century ago [Ma16; Sa1885; Wd50] and still

appear in modern treatments of algebraic geometry,

although in non-constructive form. The main result

is the construction of a single resultant polynomial of

n homogeneous polynomial equations in n unknowns,

such that the vanishing of the resultant is a necessary

and sufficient condition for the given system to have

a non-trivial solution. We call this resultant the Mul-

tipolynornial Resultant of the given system of poly-

nomial equations. The multipolynomial resultant of

the system of polynomial equations can be used for

eliminating the variables and computing the numeric

solutions of a given system of polynomial equations.

Recently the technique of Gr6bner bases has

received much attention as an algorithmic method

for determining properties of polynomial equations

[Bu85; Bu89]. Its applications include ideal member-

ship besides eliminating a set of variables or comput-

ing the numerical solutions of a system of polyno-

10ther authors have used the term multiequatioual resul-

tants [BGW88]

86

mial equations. One of the main difficulties in using

Gr6bner bases is that the method may be slow for

even small problems. In the worst case, its running

time may can be doubly exponential in the number

of variables [MM82]. Even in special cases where this

doubly exponential behavior is not observed, deriving

tight upper bounds on the method’s running time is

difficult. This behavior is also observed in practice.

For example, it is difficult to implicitize even low de-

gree parametric surfaces by using Gr6bner bases in a

reasonable amount of time and space [H090]. Fur-

thermore, issues of numerical stability make them

unattractive for computing numeric solutions of poly-

nomial equations [M090].

As far as numerical applications are concerned

the technique of polynomial continuation has gained

importance for computing the full list of geometri-

cally isolated solutions to a system of polynomial

equations. They have been used in many robotics and

engineering applications [M087; WM90]. Although

continuation methods have a solid theoretical back-

ground and a high degree of computational reliability

(in some cases), its usage is limited to applications re-

quiring all the solutions in the complex domain and

thereby making them slow for some practical applica-

tions where only real solutions are needed. In many

cases the system of polynomial equations may have a

high Bezout number (the total number of solutions in

the complex domain), but we are only interested in

the solutions in a small subset of the real domain (the

domain of interest). The continuation technique re-

quires starting with a particular system of equations

having the same Bezout number as the given system

and marching along to compute all the solutions of

the given system. It is difficult to restrict them to

computing the solutions in the domain of interest.

Multipolynomiai resultant algorithms provide

the most efficient methods (ss far ss asymptotic com-

plexity is concerned) for solving systems of poly-

nomial equations or eliminating variables [BG W88].

Their main advantage lies in the fact that the re-

sultant can always be expressed as the ratio of two

determinants and for small values of n (where n is

the number of equations), as the determinant of a

single matrix. As a result, we are able to use algo-

rithms from linear algebra and obtain tight bounds

on the running times of multipolynomial resultant

algorithms. Furthermore, in many symbolic and nu-

meric applications, we may choose not to expand the
determinants and use properties of matrices and de-

terminants to incorporate the use of resultants in the

specific applications [MC90; MC91a].

In this paper we present an interpolation based

algorithm to compute the resultant of a system

of polynomial equations to obtain a “symbolically

smaller” system. The algorithm can be used for inter-

polating polynomials from their values and expand-

ing symbolic determinants. We also describe an ef-

ficient implementation of the algorithm and present

its performance for applications like implicitization.

Moreover, we effectively use resultants for comput-

ing the numeric solutions of a system of polynomial

equations in the domain of interest. In this case,

we reduce the problem to computing eigenvalues of

a matrix. Efficient algorithms for computing eigen-

valuea are well known and their implementations are

available as part of standard packages like EISPACK

[GV89]. Furthermore, in the context of floating point

computations, the numerical accuracy of these oper-

ations is well understood. The rest of the paper is

organized as follows. In Section 2 we give a brief pre-

view of different formulations used for computing the

result ant of a system of polynomials. In Section 3,

we present an algorithm for eliminating one or more

variables from the given system of equations and ex-

press the resultant as a polynomial in the coefficients

of given equations (which maybe symbolic variables)

and finally in Section 4, we give details of the algo-

rithm used for computing the numeric solutions of a

given system of polynom-ials in the domain of inter-

est.

2 Multipolynomial Resultants

Given n homogeneous polynomial in n unknowns, the

resultant of the given system of equations is a poly-

nomial in the coefficients of the given equations. The

most familiar form of the resultant is the Sylvester’s

formulation for the csse n = 2. In this case, the

resultant can always be expressed as determinant of

a matrix. However, a single determinant formula-

tion may not exist for any arbitrary n and the most

general formulation of resultant (to the best of our

knowledge) expresses it as a ratio of two determi-

nants [Ma02; Ma21]. Many a times both the de-

terminants evaluate to zero. To compute the resul-

tant we need to perturb the equations and use lim-

iting arguments. This corresponds to computing the

characteristic polynomials of both the determinants

[Ca87]. The ratio of the two characteristic polyno-

mials is termed the Generalized Characteristic Poly-

nomial, and the result ant corresponds to its constant

term [Ca88]. If the constant term is zero, its low-
est degree term contains important information and

can be used for computing the proper components in

the presence of excess components. This formulation

has advantages for both numeric and symbolic ap-

plications [Ca88; MC90]. Many special cases, corre-

sponding to n = 2,3, 4,5,6 when the resultant can be

87

expressed aa the determinant of a matrix, are given
in [Di08; J089; M025; MC27].

3 Symbolic Elimination

In this section we present an algorithm for efficiently

computing the resultant of a system of polynomial

equations, whose coefficients may be symbolic vari-

ables. Computing the resultant involves construct-

ing the corresponding matrices from the given sys-

tem of equations and evaluating their determinants.

The entries of the matrices are polynomial functions

of the coefilcients of the polynomial equations. As

such it should be relatively easy to implement such

an algorithm within the framework of a computer al-

gebra system. However, these systems take a lot of

time for evaluating even low order symbolic determi-

nants. Consider the problem of implicitizing bicubic

parametric surface, whose implicit representation is

a degree 18 polynomial in 3 variables, say z, y and

.z. In this case, the resultant of the parametric equa-

tions correspond to a 18 x 18 determinant and each

of its entries is a linear polynomial in z, y, and z.

However, standard computer algebra systems (avail-

able on most workstations) are not able to evaluate

such determinants in a reasonable amount of time

and space [MC90]. Most of the time they run for a

long period of time and crash because of their mem-

ory limitations.

There are many reasons for the failure and bad

performance of symbolic determinant expansion al-

gorithms implemented within the framework of com-

puter algebra systems.

1.

2.

Most computer algebra systems use sparse rep-

resentation for multivariate polynomials and the

computations become slow whenever the poly-

nomials generated are dense.

The algorithms used are symbolic in nature

and perform operations like polynomial addi-

tion, multiplication on the input and the inter-
mediate expressions being generated. The arith-

metic for these symbolic operations is expensive.

For example, the cost of multiplying multivari-

ate polynomials is quadratic for most implemen-

tations. Moreover, the algorithm may gener-

ate large intermediate expressions. For example

when using straight-forward Gaussian elimina-

tion over the polynomial entry domain, it can

happen that intermediate subdeterminants are

very large polynomials while the final answer is

an expression of modest size. Furthermore, their

implementations in lisp-like environments may

3.

require a large amount of virtual memory and
thereby slowing down the computations.

These systems use exact arithmetic and repre-

sent the coefficients of intermediate expressions

as bignums. As a result, the cost of arithmetic

operations is quadratic in the coefficient size.

The coefficient size is proportional to the degree

of the intermediate polynomial expressions be-

ing generated and tends to grow exponentially

with the degree.

The bottleneck in the resultant algorithms is the

symbolic expansion of determinants. We therefore,

chose not to work within the environment of com-

puter algebra systems and rather use an algorithm

based on multivariate interpolation to compute the

symbolic determinants. As a result, the resulting al-

gorithm involves numeric computations and no in-

termediate symbolic expressions are generated. This

takes care of the problem of generating large inter-

mediate symbolic expression. However, the magni-

tude of the intermediate numbers grows and we need

to use bignum arithmetic for arithmetic operations.

As a result the cost of each arithmetic operation is

quadratic in the size of the operands. Moreover, it

imposes additional memory requirements for each in-

termediate number, which slows down the resulting

computation. To reduce the memory requirements

and cost of arithmetic operations, we perform our
computations over finite fields and use a probabilis-

tic algorithm based on chinese remainder theorem to

recover the actual coefficients. Thus, bignum arith-

metic is restricted only to the computations related

to chinese remainder theorem. The complexity of
the resulting algorithm is linear in the size of the

coefficients of the resultant. The overall algorithm

has been implemented in C++ (as opposed to using

lisp like environment) and we consider sparse as well

as dense representation for multivariate polynomials

(depending upon the application).

3.1 Multivariate Interpolation

Lets assume that each entry of the matrix is a poly-

nomialin Z1,ZZ, Xn and the matrix is of order m.
If the entries are rational functions, they can be mul-

tiplied by suitable polynomials such that each entry

oft he resulting matrix is a polynomial. Furthermore,

the coefficients of matrix entries are from a field of

characteristic zero. The main idea is to determine
the power products that occur in the determinant,

say a multivariate polynomial I’(zl, 22, ., ., Zn). Let

the maximum degree of ~i in F(xl, Z2, Zn) be di.

The di’s can be determined from the matrix entries.

F can have at most ql = (dl + l)(dz + 1) . . .(d” + 1)

88

monomials. In some cases, it is easier to compute a

bound on the total degree ‘of F. Any degree d poly-

nomial in n variables can have at most qz = C(n, d)

coefficients, where

c@d’=(n+Y)o
We represent the determinant as

F(q, zz, ..o,Zn)=clml +czmz+. ..+cqmq, (1)

where q is ~nded by ql or q2. The mi =
dl,~ (iZ,;

Z1 X2 . . .Xn”” are the distinct monomials and the

Ci are the corresponding non-zero coefficients. The

problem of determinant expansion corresponds to

computing the ci’s. By choosing different substitu-

tions for (s1, Zn) and computing the correspond-

ing F(zl, ..., Zn) (expressed as determinant of nu-

meric matrices) the problem is reduced to that of

multivariaie interpolation [BT88; Zi90]. Since there

are q variables, we need to choose q distinct substi-

tutions and solve the resulting q x q system of linear

equations. The running time of the resulting algo-

rithm is 0(q3) and takes O(q2) space. To reduce the

running time and space of the algorithm we perform

Vandermonde interpolation.

Let pl, pz, ..., pn denote distinct primes and

bi = p$’’p$” . . .p$” denote the value of the

monomial mi at (pI, pz, . . . ,Pn). Clearly, different

monomials evaluate to different values. Let ai =

F(p~, pj, . . . ,p;), i = l,q. ai’s are computed by

Guass elimination. Thus, the problem of comput-

ing ci’s is reduced to solving a Vandermonde system

system VC’ = A, where

v=

1 1 . . . 1

bl b2 . . . bk

[) ()
c1 al

C2 az
c= . ,A=. .

Cq aq

Computing each ai takes O(m3) time, where m

is the order of the matrix. As far as solving Van-

dermonde systems is concerned, simple algorithms of
time complexity O (g2) and O(g) space requirements

are known [Zi90]. In [KL88] an improved algorithm of

time complexity O(M(q)/og(q)) is presented, where

ill(q) is the time complexity of multiplying two uni-

variate polynomials of degree q. However, due to

simplicity we have implemented the O(q2) algorithm

and all the time complexities are computed with re-

spect to that. Thus, the running time of the resulting

algorithm is O(qm3 + q2) and space requirements are

O(m2 + q).

Before we use Vandermonde interpolation, the

algorithm for computing symbolic determinant needs

to know q and the mi’s corresponding to nonzero ci ‘s.

In the worst case, q may correspond to ql or q2 and

the resulting problem is that of dense interpolation

[Zi90]. The mi’s are enumerated in some order (e.g.

lexicographic) and bi’s are computed by substituting

pj for xj. However, ql or q2 tend to grow exponen-

tially with the order of the matrix, the degree of each

matrix entry and the number of variables involved.

This approach becomes unattractive when the deter-

minant is a sparse polynomial.

A sparse interpolation algorithm for such prob-

lems has been presented in [BT88]. Its time and space

complexity have been improved in [KL88].

3.1.1 Sparse Interpolation

The algorithm in [BT88] needs an upper bound

T ~ q on the number of non-zero monomials in

F(x1,. . .,xn). Given (#l, p?2,. . .,~~), it computes
dl, i d2, i

‘“’i by com-the monomial values bi = pl p2 . . . pn

puting the roots of an auxiliary polynomial G(z).

These bi’s are used for defining the coefficient ma-

t rix of the Vandermonde system.

The polynomial G(z) is defined as

9

G(z) = H(Z –bi) = .Zk +gk-lzk-l + . ..+go.

i=l

Its coefficients, gi ‘s, are computed by solving a

Toeplitz system of equations [BT88]. The Toeplitz

system is formed by computing the ai’s using the fact

G(bi) = O. Given G(z), the algorithm computes its
integer roots to compute the corresponding to bi ‘s.

The roots are computed using p-adic root finder in

[L083]. The running time of the resulting algorithm

for polynomial interpolation is (ndT3/og(n) + m3T).

The dominating step is the polynomial root finder

which takes 0(T310g(B)), where 1? is an upper bound

on the values of the roots.

This algorithm is unattractive for expanding

symbolic determinants for the following reasons:

. It is rather difficult to come up with a sharp

bound on T. We only have the choice of using

T = ql or T = q2 and the resulting problem

corresponds to dense interpolation. As a result,

bi’s can be computed directly and we do not have

to use any sparse interpolation algorithm.

89

● The algorithm is very slow in practice. An imple-

mentation of this algorithm using modular arith-

metic is described in, [KLW90]. It takes the num-

ber of variables and terms as inputs and gener-

ates a random polynomial to be used as the black

box (for computing ai ‘s). The algorithm is im-

plemented in lisp on a Sun-4. For polynomials

in 3 variables and upto 250 terms this algorithm

takes about 57,000 seconds. Furthermore, it al-

most fails to interpolate polynomials in 5 vari-

ables and having a similar bound on the number

of terms.

Thus, neither the sparse nor the dense interpo-

lation algorithms are well suited for our application.

3.1.2 Probabilistic Interpolation

[Zi90] presents a probabilistic algorithm for interpola-

tion which does not expect any information about the

non-zero terms of the polynomial being interpolated.

It expects a bound on the degree of each variable in

any monomial. Such a bound is easy to compute for

a symbolic determinant. In fact, this bound is tight.

The algorithm proceeds inductively, uses the degree

information and develops an estimate of the number

of terms as each new variable is introduced. As a re-

sult its performance is output sensitive and depends

on the actual number of terms in the polynomial. We

present a brief outline of the algorithm below. It has

been explained in detail in [Zi90].

Choose n random numbers rl, r. from the

ring used for defining the polynomial coefficients.

The algorithm proceeds inductively and introduces

a variable at each stage. Let us assume we are at

the kth stage and have interpolated a polynomial in

k variables. The resulting polynomial is of the form

Fk(zl, ..., z~) = F(31,22,z~. r~+l, m), rn)

= Cl,krnl,k + . . . + %,k%,k.

In this case, a < q. Fi represents a polynomial in i

variables xl, ..., xi.

To
compute F’~+l(zl, zfi+~) from F’~(cI, . . . , z~), it

represents Fk+l as

Fk+l(ZI,.. ., Zk+l) = F(zl,z~+l. r~+2, r~), r~)

= h.~(~~+~)mi,~ + . ..+ ha(x~+~)ma,~,

where each each hj(z~+l) is a polynomial of degree

dk+~. dk+l is a bound on the degree of xk+l in

any term of F(z1, . . .,zn). It computes hi(~k+~)

by Vandermonde interpolation. The value of each

h~(~k+l) are obtained for d~+l +- 1 values of ~k+~

(l JPk+l)Pi+l, . . . ,P$;;) as follows:

F~+l(l,..., l,d~+l, n+2,h)

= hl(#;+J + . . . + LY(p-li+l)

~k+l(p:,. ... “Pitfi+l,~k+2,...trn)

= h(d;+~)b;,k . . .hcl(d;+l)b:, k

~~+l(pf-l,..., pl,l~+~,rk +2j2, m),rn)

= hl(P-;+Jb;;l + . ..+ ha-l(d;+l)b:~l

This is a Vandermonde system of a equations in
a unknowns and can be solved for hi(~k+~). The

computation is repeated for j = O, dk+l. Given

hi(l), ~i(pk+l), ~i(P~+l), ~i(pfl+~), use Vander-
monde interpolation (for univariate polynomials) to

compute h~(%k+l). These hi(~~+l) are substituted

to represent ~k+l as a polynomial in k + 1 variables.

F~+I(XI,..., z~+l) can have at most (a*(dk+l+l)) <

q terms.

The algorithm starts with F(rl, rn) and

computes the n stages as shown above. There is a

small chance that the answer produced by the al-

gorithm is incorrect. This happens for a choice of

rl rn and can be explained in the following man-

ner. Let the stage I of the algorithm result in a poly-

nomial of the form

Fl(zl) = F(zl, rz,rn) = co+clz~+ . ..+cpzf’.

F2(z1, X2) actually is a polynomial of the form

F2(c1, x2) = F(zl, z2, r3, . . .,rn)

= hl(x2)+h2(z2)$l +h3(z2)z: + . . .+h&+l(~2)4’.

This implies

hl(r2) = CO, h2(?’2) = 0, h3(r2) = 0,.. .,hdl+l(?’2) = Co.

In practice, h2(z2) and h3(z2) maybe nonzero poly-

nomials, but for the choice of r2, where h2(r2) = (),

h3(r2) = O, the algorithm assumes them as zero poly-

nomials and proceeds. As a result the algorithm may

report fewer terms in F(zl, Zn).

Such an error is possible at each stage of the

algorithm. Let us assume that ri’s are chosen uni-
formly randomly from a set of size S, than the prob-

ability that this algorithm gives a wrong answer is

less than
nd2q2

s’
(2)

90

where d = rnaz(dl , d~) [Zi90]. This probability

bound has been used to choose ri’s from a suitable

field [MC91b]. The running time of the algorithm is

O(miqz + rn%dq).
A deterministic version of this algorithm of com-

plexity O(ndq2T+ rn3ndqZ’) is given in [Zi90] 33 well.

T is an upper bound on the number of non-zero terms

in the polynomial. In the worst case, T corresponds

to ql or q2. However, the resulting algorithm has

better complexity than sparse or dense interpolation

algorithms. Due to simplicity and time complexity of

the algorithm, we use the probabilistic version for our

implement ation. However, we give user the flexibil-

ity of imposing a bound on the probability of failure

and choose the finite fields appropriately. Further-

more, we introduce simple, randomized checks in the
algorithm to detect wrong answers

3.1.3 Modular Arithmetic

An important problem in the context of finite field

computations is getting a tight bound on the coeffi-

cients of the resulting polynomial. Since the resul-

tant can always be expressed as a ratio of determi-

nants (or a single determinant), it is possible to use

Hadamard’s bound for determinants to compute a

bound on the coefficients of the resultant [Kn81]. In

practice, we found such bounds rather loose and use

a randomized version of chinese remainder algorithm

to compute the actual bignums. The main idea is

to compute the coefficients modulo different primes,

use the chinese remainder theorem for computing the

bignum and make a check whether the bignum is the

actual coefficient of the determinant. This process

stops when the products of all the primes (used for

finite field representation) is greater than twice the

magnitude of the largest coefficient in the input. It is

possible that for a certain choice of primes, the algo-

rithm results in a wrong answer. The probability of

failure is bounded by I/p, where 1 corresponds to the

number of primes used in the during the chinese re-

mainder algorithm, p is the magnitude of the smallest

prime number used in this computation [MC91b].

The algorithm proceeds in stages. At the kth

stage a random prime number (pk) is chosen and

G~(zl,.. .,z~) = F’(z1,.. .,z~) mod w is computed

using the interpolation algorithm. Let

G~(zl,..., ~~) = cl,~ml + . ..+ Cq,kmq.

Thus, the coefficients of various Gi’s satisfy the rela-

tion

ci,l = ci mod pl

(?i,k = ci mod pk,

These ci,j’s are used for computing the bignum, ri,k

using chinese remainder theorem, and satisfying the

relations [Kn81]

ri,k mod pj = ci,j, j=l, k

While using chinese remainder theorem it is as-

sumed that ri,k are integers lying in the range

(-p’p%””pk~p’p’ ““”p’). At this stage we compare the

bignums correa~onding to the (k – 1) and k stage. If

l’i,k_l = ri,k, i=l, q

it is reasonable to assume that ri ,m = ci, i = I,qand

the algorithm terminates. The base case is k = 2.

Else we repeat the computation for the (k+l)st stage.
In general, 1+ 1 prime numbers are being used,

where / is the minimum integer satisfying the relation

‘JIcj] < PIP2 . . .Pl+l

and Icj I corresponds to the coefficient of maximum

magnitude of the resultant and pj’s are randomly

chosen primes. Thus, the algorithm is:

1.

2.

3.

Compute the ci,j’s using the probabilistic inter-

polation algorithm.

Given ci,l, ci,2, ci,j, use chinese remainder

theorem to compute ri,j for i = 1, q.

If ri,j-l = ri,j for i = l,q, then ci = rij, d=

repeat the steps given above.

3.2 Implementation

We have implemented the above algorithm in C++
on Sun-4’s. The code was ported over to an IBM

RS/6000 for performance analysis. The algorithm ex-

pects the entries of the matrix as polynomials. Given

the matrix, it computes the degree bound for each

variable by adding the degrees of that variable in var-

ious entries of the matrix. The total amount of space

required is linear in the input size and we are eaa-

ily able to run these algorithms on 8 – 16 Megabyte

machines.

We have implemented the dense as well as prob-
abilistic versions of the interpolation algorithm. It

can be easily interfaced with any computer algebra

systems. The finite fields used for computation are of
the order of 230, on the 32 bit machines. The multi-

plication instruction for operands belonging to such

fields has been implemented in the assembly language

of the given machines.

Furthermore, it is not possible to choose any

arbitrary prime for finite field computation. Let

91

V2 = (~zj) represent the elements of the second row

of the Vandermonde matrix used in the interpolation

algorithms. pk can be used as a prime for finite field

computation, if and only if all the elements of the

vector Vzk = (~ij) mod pk are distinct [MC91b].

3.3 Applications

We used this algorithm for implicitizing ratio-

nal parametric surfaces. Given a parametrization,

(z, y, z, to) = (X(s, t), Y(s, t), Z(s, t), W(s, t)), we

formulate the parametric equations

Wx(s, t) – ZI’’v(s, t) = o

wY(s, t) – yw(s, t) = o

Wz(s, t) – Zw(s, t) = o

and the problem of implicitization corresponds to

computing the resultant of the above equations,

by considering them as polynomials in s and t

[MC90]. Some experiments with the implementa-

tions of Gr6bner bases and resultants in Macsyma

414.62 on a Symbolics lisp machine (with 16MB main

memory and 120MB virtual memory) are described

in [H090]. For many cases of bicubic surfaces (whose

highest monomial is of the form s3t3), these systems

are unable to implicitize such surfaces and fail due to

insufficient virtual memory. Only a new algorithm for

basis conversion is able to implicitize such surfaces,

however it takes about 105 seconds, which would be

considered impractical for most applications [H090].

The performance of our algorithm in the con-

text of implicitization hss been presented in Table

I. Since the implicit representations are dense poly-

nomials in general, we used dense interpolation algo-

rithms [MC90]. The timings correspond to a single it-

eration over a finite field and typically 3 —4 iterations

are required. As a result, it is possible to implicitize

bicubic surfaces, on machines like IBM RS/6000, in

less than two minutes.

,
s3t3 18 1330 I 100 sec. 23 sec.

s%4 24 2925 I 430 sec. 118 sec.

Table 1: The performance of resultant algorithm for

implicitization (a single iteration over a finite field)

The algorithm has also been used for expanding

symbolic determinants. More details on its perfor-

mance have been given in [MC91b].

4 Numeric Solutions

In this section we present an algorithm to compute

the numerical solutions of a given system of polyno-

mial equations. However we are only interested in

solutions lying in a subset of the real domain.

Given n homogeneous equations in n + 1 un-
knowns, F1(zo, zl,xn). F’n(zo, zI,xn).

where the domain of variables is limited to 1 x

[a,, b,] x [az,bz] x . . . x [an, bn]. CO is the homogeniz-

ing variable and we are only interested in the affine

solutions. Let

Fo(2?o, zl,zn) = Ul)zo+ulzl+ . ..+u.xn.

be a linear polynomial and R(uo, U1, Un) be the

resultant of F., F1, Fn obtained by considering

them as polynomials in zo, ZI, zn. It is a homo-

geneous polynomial in Ui’s and its degree is equal to

the product of the degrees of Fi ‘s. R(uo, Un) is

the u-resultant of the given system of equations and

factors into linear factors of the form

crouo +Q!lul + . ..+crnun.

where (ao, crl, an) correspond to the solution of

the original system [Wd50]. However, computing

the expression R(UO, Un) and factoring into linear

factors can be a time consuming task, even for low

degree polynomials. We therefore, specialize some of

the Ui’s and reduce the problem to computing roots

of univariate polynomials in a real interval. For many

small values of n and certain combinations of the de-

grees of Fi’s, the resultant can be expressed w de-

terminant of a matrix. Otherwise the resultant can

be expressed as a ratio of two determinants and in

either case the entries of the matrices are polyno-

mials in uo, ul, un. After specialization, these

entries are univariate polynomials in U. and the prob-

lem of computing roots of the univariate polynomial

corresponding to the determinant (or ratio of deter-

minants) can be reduced to an eigenvalue problem.

Efficient algorithms for computing the eigenvalues of

matrices are given in [GV89] and good implement~
tions are available aa part of standard packages like

EISPACK and LAPACK [De89].

We assume that the original system has no solu-

tions at infinity. To circumvent this problem we can

apply a generic non-singular linear transform to the

coordinates, (zo, X1, Zn), and appropriately ad-

just the domain of the modified system of equations.

Let

~I(uo) =R(uo, u1 = l,u2=0,..., un =0)

be a polynomial of degree d. Since it corresponds to

a projection of the u-resultant, it can be factored into

92

linear factors of the form

ku*~(uiJ + a~~)(u~ + a~~) . . .(UO + a~q),

where each ali corresponds to the projection on the

xl coordinate. We are only interested in roots lying

in the interval [al, bl]. Later on we reduce this prob-

lem to computing eigenvalues of matrices. Let there

be pl such roots, L1 = (alj, CYIPI).

Similarly we compute the roots of

~2(UO)= R(UO, Ul=O, U2=l, Ua=O,..., % =0)

in the interval [az, lJ2], say L2 = (CY21, CY22,. . . . cr2Pz).
Since two projections are not enough for establish-

ing the correspondence between the projections on

U1 and U2 coordinates, we take a generic combina-

tions of these two coordinates and let

fl,2(~O) = ~(~0,~1 = h,~2 = ~2,~3 = o,..., un = O),

where kl and k2 are two positive random numbers.

Let L1,2 = (Pi, B2,.. ., ~P,,.) be its roots in the inter-
val [L-l al + k2a2, klbl + k2b2]. To establish the corre-

spondence between the projections on U1 and U2 of

the actual roots, we compute all the combinations of

the form klal + kzcrz, where al c L1 and a2 E L2

and compare them with the elements in LI,2. Since

our projection on U1 and U2 is a generic projection, it

is reasonable to assume that the exact matches cor-

respond to the projections of the roots of Fi’s on Z1

and X2 coordinates. In a similar manner, we compute

the roots of ~s(rm), ~2,3(uO),..., ~~(Uo), .fn-l,n(uO) in

the corresponding intervals, where

~~(UO) = li?(Uo, U~ = O,... jUl-l = O,U; = 1,

U;+l=O, U~=O)

.fi,j(uO) = ~(~O,ul = 0,..., ul-l ‘o,’% = ICi,...,

Uj-l=O, Uj=kj, Uj+l=O,..., Un=O)

ki and kj are random positive integers. These roots

can be used to compute the rest of the xi coordinates

of the solutions of the original system of equations.

It is possible that the resulting solution set contains

some extraneous solutions. As a result, we back sub-

stitute the roots in the original system of equations

to eliminate the extraneous roots from the solution

set. More details on the algorithm are presented in

[MC91b].

4.1 Reduction to Eigenvalue Problem

In the previous section we reduced the problem of

computing solutions of a system of multivariate poly-

nomials (in the domain of interest) to finding roots

of univariate polynomials in suitable intervals. The

univariate polynomials, like ~i (uo), are expressed as

a determinant or as a ratio of two determinants and

we are interested in roots lying in the interval [a, b].

Let us consider the case when it is expressed as a

ratio of two determinants and the corresponding ma-

trices are denoted as M(uo) and D(uo). In case,

the resultant corresponds to a determinant of a ma-

trix, Determinant(D(uO)) = 1. Each entry of M(uo)

and D(uo) is a polynomial in uo. Let its degree be

bounded by d. Depending upon the value of D(uo)

there are two possible cases:

Determinant(D(uo)) # O. Thus,

fi(uO) =
Determinant(lbf (uo))

Determinant(D(uO)) “

Let SI and Sj be the solution sets correspond-

ing to the roots of Determinant(ilf (uo)) = O

and Determinant(D(uO)) = O lying in the in-

terval [a, b], respectively. As a result, the roots

of ~i(uo) correspond to S1 \ S2. We reduce the

problem of computing S1 or S2 to an eigenvalue

problem.

Determinant(D(uo)) = O. As a result

Determinant (M(uo)) = O. We consider a non-

vanishing minor of M(uo), say Ml (uo) (of max-

imum ranks among all such minors). All the

roots of ~i (uo) are contained in the roots of

Determinant(Ml (uo)). We compute these roots

by reducing it to an eigenvalue problem.

Let us assume that kf(uo) is a matrix of order

n. Each entry of M(uo) is a polynomial of degree d

and it can therefore, be represented as

M(uo) = U$%fd + u:-lMd_l + . ..+ UOM1 + MO>

where Mi’s are matrices of order n with numeric en-

tries. Let us assume that M~ is a non-singular ma-

trix. As a result, the roots of the following equations

are equivalent

Determinant(M(uO)) = O,

Determinant(M;l) Det(M(uO)) = O.

Let

~(UO) = ti$~n + U$_l~&l + . . . + uo%fI +~o,

where

ni = M~lMi, O<i<d

and In is an n x n identity matrix. Given ~(uo),

we use Theorem 1.1 [G LR82] to construct a matrix

93

of the form 5 Conclusion

I
O In O . . . 0

0 0 In . . . 0
O=;:::;

1

, (3)

O 0 0 . . . In

–m(l ‘ml ~z . . . ~&.1

such that the eigenvalues of C correspond exactly to

the roots of Det(~(u)) = O. C’ is a numeric matrix

of order dn. If itfd is a singular matrix, techniques

to compute the roots of Det(M(u)) = O are given in

[GLR82].

4.1.1 Implementation

We used EISPACK routines for computing the eigen-

values of matrices. Many special purpose algorithms

are available for computing the eigenvalues of matri-

ces, which make use of the structure of the matrix.

As far as matrix C’ in (3) is concerned, we treat it

as a general unsymmetric matrix. We used the rou-

tine RG from EISPACK for computing the eigenval-

ues [G BDM77]. Given a general unsymmetric ma-

trix, it makes use of balancing techniques, reduces

it to upper Hessenberg form and uses the shifted

QR algorithm on the resulting matrix to compute

the eigenvalues [GV89]. The current implementation

of these routines compute all the eigenvalues. The

performance of eigenvalue computation routines for

matrices of different order (generated randomly) are

given in Table II. The timings correspond to the im-

plementation on an IBM RS/6000.

I Order of Matrix I Time in seconds

15 8631.839844 X 10-6

20 15717.63965 X 10-6

45 103343.5234 X 10-6

50 133956.2344 X 10-6

55 165395.0469 X 10-6

60 212041.2812 X 10-6

65 262103.1250 X 10-6

Table II

The performance of eigenvalue computation routines

The timings given in Table II are satisfactory

for most applications. We are currently working on

modifying the algorithms to compute the eigenvalues

lying in an interval like [a, b] and as a result, expect

a better performance.

In this paper we have presented algorithms to effi-

ciently compute the resultants of polynomial equa-

tions and using properties of matrices and determi-

nants used them to compute the roots of a system
of polynomial equations. As a result, it is possible

to perform symbolic elimination from a given set of

polynomial equations in a reasonable amount of time

and space requirements. We have used these algo-

rithms for implicitizing parametric surfaces, prob-

lems in inverse kinematics and computing the con-

figuration space for curved objects for robot motion

planning.

6 Acknowledgements

We are grateful to Prof. J. Demmel and Prof. W.

Kahan for productive discussions. This research was

supported in part by David and Lucile Packard Fel-

lowship and National Science Foundation Presiden-

tial Young Investigator Award (# IRI-8958577).

7 References

[BGW88] Bajaj, C., Garrity, T. and Warren, J. (Novem-

ber 1988) “On the applications of multi-equational

resultants”, Tech. report CSD-TR-826, Computer

Science Deptt., Purdue University.
[Bu85] Buchberger, B. (1987) “Gr6bner bases: An

algorithmic method in polynomial ideal theory”, in

Multidimensional Systems Theory, edited by N.K.

Bose, pp. 184–232, D. Reidel Publishing Co..

[Bu89] Buchberger, B. (1989) “Applications of

Gr6bner bases in non-Linear computational geome-

try”, in Geometric Reasoning, eds. D. Kapur and J.

Mundy, pp. 415–447, MIT Press.

[BT88] Ben-Or, M. and Tiwari, P. (1988) “A deter-

ministic algorithm for sparse multivariate polynomial

interpolation”, 20th Annual ACM Symp. Theory of

Comp., pp. 301-309.

[Ca87] Canny, J. F. (1987) The complexity of robot

motion pianning, ACM Doctoral Dissertation award,

MIT Press.

[Ca90] Canny, J. F. (1990) “Generalized characteris-

tic polynomials”, Journal of Symbolic Computation,

vol. 9, pp. 241–250.

[De89] Demmel, J. (1989) “LAPACK: A portable lin-

ear algebra library for supercomputers”, IEEE Con-

trol systems society workshop on computer-aided con-

trol system design, Tampa, Florida.

[Di08] Dixon, A.L. (1908) “The eliminant of three

quantics in two independent variables”, Proceedings

of London Mathematical Society, vol. 6, pp. 49–69,

94

473-492.

[GLR82] Gohberg, l., Lancaster, P. and Rodman, L.

(1982) Matriz polynomials, Academic Press, New

York.

[GV89]Golub, G. H.and Van Loan, C. F.(1989) Matrix

computations, The John Hopkins Press, Baltimore,

Maryland.

[Ho90]Hoffmann, C. (1990) “Algebraica ndnumeric

techniques for offsets and blends”, in Computation

of Curves and Surfaces, eds. W. Dahmen et. al.,

pp. 499–529, Kluwer Academic Publishers.

[J089] Jouanolou, Jean-Pierre (1989) “Le Formalism

Du R5sultant”, Department of Mathematics, Uni-

versity Louis Pasteur, France.

[KL88] Kaltofen, E. and Lakshman, Y.N. (1988) “Im-

proved sparse multivariate polynomial interpolation

algorithms’), in Lecture Notes in Computer Science,

vol. 358, pp. 467–474, Springer-Verlag.

[KLW90] Kaltofen, E., Lakshman, Y.N. and Wiley,

J. (1990) “Modular rational sparse multivariate

polynomial interpolation”, in Proceedings of L9-

SAC”90 pp. 135–140, Addison-Wesleyj Reading,

Massachusetts.

[Kn81] Knuth D. (1981) The Art of Computer

Programming, Vol II , Seminumerical Algorithms

Addison- Wesley . (

) [L083] Loos, R. 1983 “Computing rational zeros

of integral polynomials by p-adic expansion”,.

SIAM Journal on Computing, vol. 7, pp. 286–293

[Ma02] Macaulay, F. S. (May 1902) “on some formula

in elimination”, Proceedings of London Mathematical

Society, pp. 3-27.

[Ma21] Macaulay, F. S. (June 1921) “Note on the re-

sultant of a number of polynomials of the same de-

gree”, Proceedings of London Mathematical Society,

pp. 14-21.

[MC27] Morley, F. and Coble, A.B, (1927) “New re-

sults in elimination”, American Journal of Mathe-

matics, vol. 49, pp. 463–488.

[MC90] Manocha, D. and Canny, J. (1990) “Algo-

rithms for implicitizing rational parametric surfaces”,

to appear in Proceedings of IV IMA Conference on

Mathematics of Surfaces, Claredon Press, Oxford.

Also available as Tech. report UCB/CSD 90/592,

Computer Science Division, University of California,

Berkeley.

[MC91a] Manocha, D. and Canny, J. (1991) “A new

approach for surface intersection”, in Proceedings of

First ACM Symposium on Solid Modeling Founda-

tions and CAD/CAM Applications. Also avail-

able as RAMP memo. 90-1 l/ERSC 90-23, Engineer-

ing System Research Center, University of California,

Berkeley.

[MC91b] Manocha, D. and Canny, J. (1991) “Multi-

polynomial Resultant Algorithms”, Technical Re-

port, Computer Science Division, University of Cali-

fornia, Berkeley.

[Mi90] Milne, P. (1990) “On the solutions of a set of

polynomial equations”, manuscript, Department of

Computer Science, University of Bath, England.

[MM82] Mayr E. and Meyer A. (1982) “The complex-

ity of the word problem in commutative semigroups

and polynomial ideals”, Advances in Mathematics,

vol. 46, pp. 305–329.

[M025] Morley, F. (1925) “The eliminant of a net of

curves”, American Journal of Mathematics, vol. 47,

pp. 91-97.

[Mr87] Morgan, A.P. (1987) Solving polynomial sys-

tems using continuation for scientific and engineer-

ing problems, Prentice-Hall, Englewood Cliffs, New

Jersey.

[Mr90] Morgan, A.P. (1990) “Polynomial continuw

tion and its relationship to the symbolic reduction

of polynomial systems”, presented at the workshop

on Integration of Numew”c and Symbolic Computing

Methods, Saratoga Springs, New York.

[Sa1885] Salmon, G. (1885) Lessons introductory to

the modern higher algebra, G .E. Stechert & Co., New

York.

[Wd50] van der Waerden B. L. (1950) Modern algebra,

(third edition) F. Ungar Publishing Co., New York.

[WM90] Wampler, C. and Morgan, A. (1990) “Numer-

ical continuation methods for solving polynomial sys-

tems arising in kinematics”, ASME Journal on De-

sign, vol. 112, pp. 59–68.

[Zi90] Zippel, R. (1990) “Interpolating polynomials

from their values”, Journal of Symbolic Computa-

tion, vol. 9, 375-403.

95

