
A Deductive Database of the Groups of Order Dividing 128

Abstract

Greg Butler, Sridhar S. Iyer, and Susan H. Ley

Basser Department of Computer Science

University of Sydney

Sydney NSW7 2006 Australia

This paper describes the design and il~lplen~cllt~~tic~ll of

a deductive database for the 2668 groups of oN.Icr 2’1,

(n < 7). The system was implemented in NU-Prolog, a

Prolog system with built-in functions for creating and

using deductive databases. In addition to the database,

a simple query language was written. This ena.blcs

database users to access the data using a simpler and

more familiar set-theoretic syntax than that provided

by the Prolog interpreter.

Introduction

The work described here is a feasibility st,ucly of the

application of deductive database technology to nla.the-

matical information for eventual integration with a col N-

puter algebra system. To the best of our knowledge, it

is the first deductive database for group theory.

Cayley, version 4, designed by Butler aucl (lan-

non(1989), is a proposed knowledge-based system for

modern algebra. The proposal integrates the existing
powerful algorithm base of Cayley (see Cannon, 1 t)84)

with modest deductive facilities and large sophisticated

databases of groups and related algebraic structures.

The motivation for these changes inclucles the need to

provide facilities for a knowledge-based system, and to

allow sets to be defined by properties. The database

queries in Cayley are modelled on the set constructors

which allow a set to be defined by properties or CO])CIi-

tions.

For example, a mathematician might ask

Determine all the groups of order 128 u~l!icl!

have a centre of order ~, a wilpotelt.cy C1(ISS of

3’, and precisely 12 e!ements of order 8.

Permission to copy without fee all or part of this material is

granted provided that tha copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of tha Association for Computing

Machinary. To copy otharwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 0-89791 -437 -6/911000610210$ 1.50

In Cayley, version 4, if the user language variable twogps

referrecl to the database then the query would be

s := { G in twogps I order(G) eq 128

and order(centre(G)) eq 4

and nilpotency class(G) eq 3

and #{ x in G I order(z) eq 8 } eq 12 };

In our Prolog cleductive database, the query would be

s := { G in twogps I order(G) eq 128

and order(centre(G)) eq 4

and nilpotency class(G) eq 3

#elements order(G,8) eq 12 };

Furthermore, the query could be generalized to deter-

mine those groups of order 128 where the number of el-

ements of order 8 is the product of the nilpotency class

and the order of the centre.

s := { G in twogps I order(G) eq 128 and

#elements order(G,8) eq (order(centre(G)) *

nilpotency class(G)) };

The rationale for such a knowledge-based system comes

from three sources. Firstly, there is the growing num-

ber of libraries or catalogues of groups classified by vari-

ous properties. A common task of an algebraist is to

seek examples and counterexamples to conjectures from

amongst these catalogues. Therefore, database facili-
ties are required. Secondly, there haa always been the

desire to fully u~ilise the user’s knowledge of a prob-

lem. To date only the algorithmic knowledge has been

applied in the solution of a problem. Thirdly, the in-

ternal planning of computations inside Cayley in order
to guarantee that prerequisite data is available for each

step of a calculation has become increasingly complex.

It is felt that a rule-based planner running on an in-

ference engine would help control the complexity of the

task. This suggested we consider deductive databases.

The overall project is investigating the technology of

Prolog deductive databases as an appropriate method

of providing the database and inference engine facilities

in Cayley. There are (at least) two dimensions which we

210

http://crossmark.crossref.org/dialog/?doi=10.1145%2F120694.120725&domain=pdf&date_stamp=1991-06-01

need to investigate. One is the complcxi t y and variety

of algebraic objects, and the other is the SIIeer volume

of data that is available. The first is investigatcci by

Butler and Iyer(l 990), who are constructing a cla(abase

and knowledge base of the 56 simple groups of order less

than one million. The project described here consiclws

the second dimension in that it is the prototype for a

database of the 58,760 groups of order dividing 256.

The final databaae will have well over 1,000,000 pieces

of information.

We chose a set of data that already existed as a Cayley

library (Newman and O’Brien, 1989) and a Pascal file

management system (James, Newman, O’Brien, 1990).

The collection is large, but homogeneous in that, the

information can readily be encoded as (small) integers.

The

●

●

●

●

●

major aims of this database project are

To examine the appropriateness of Prolog to repre-
sent the data.

To examine the appropriateness of Prolog as a

query language.

To provide a convenient interface between the user

and the database system.

To examine the feasibility of translating the Cayley
set-theoretic database query language into Prolog

queries.

To examine the performance of the Prolog

database.

The project is implemented in NU-Prolog (Thom and

Zobels, 1987; Thorn and Naish, 1983) because of its de-

ductive database facilities, its availability, and our con~-

tact with its authors at the University of Melbourne.

It has a built-in database system and a definite clause

grammar processor that can be used for implementing

query languages.

Background on Computer Alge-

bra

Computer algebra and computer algcb~a systc] lls (SW

Buchberger, Collins, Loos, 1982) have bccu pri[l]arily

concerned with algorithms and data structures for alge-

braic objects such as polynomials, power series, gro[ll>!;,

and fields. Gradually, the importance of td~c user la] i-

guage, particularly its expressibility arid extensibility,

has become evident. Modern languages such M Scratch-
pad of Jenks(1984), and the language proposed by Cal-

met and Lugiez(1987) have strong typing, gcucric a.l:~-

stract data types (or categories) with inherital]cc Mld

enrichment, and type inference. However, little atten-

tion has been paid to the information storage and re-

trieval aspects of the problem domain.

Modern algebra has a long history of classification and

cataloging of examples. There is a growing number of

lists or ca.talogucs of groups classified by various prop-

erties. For example,

●

●

●

●

●

●

●

the Hall and Senior(1964) catalogue of the 2-groups

of order up to 64,

the list of primitive permutation groups of small

degree by Sims(1970),

the character tables of the simple groups of order

less than one million by McKay (1979),

the Atlas of Conway, Curtis, Norton, Parker and

Wilson(1985) of the sporadic simple groups,

the list of groups of order 128 compiled by James,

Newman, and O’Brien(1990),

the list of groups of order 256 compiled by

O’Brien(1988), and

the perfect groups of order up to one million (Holt

and Plesken, 1989).

Furthermore, many of these catalogues are available on-
line through file management systems of limited sophis-

tication. For example,

● Cayley has had libraries of examples (accessible by

file name) since 1975;

● the character tables of the Atlas are on the com-

puter at Cambridge (UK); and

Q the CAS system of Neubiiser, Pahlings, and

Plcsken(1$84) has files containing the character ta-
bles of an extensive collection of groups.

The literature also contains parametric descriptions of

(some) properties of groups, such as the Lie groups,

which be]o]lg to infinite families. Typical parameters

arc d a.ncl q where the underlying vector space is a

{Ldi]l]cnsional vector space over GF(cjI). The proper-

ties inclllcle mat,rix or permutation generators, presen-

ta.t ions, and character tables. Caylcy has built-in func-

tious Ivhich return instances of the groups and their def-

initions by presentations or generators. Similarly CAS

can create an instance of a character table from the

kuown parametric descriptions.

\Vhile some projects (see Worboys, 1988) have the aim of
creating databases of groups, they have only created file

management systems. Their query languages are much

too limited to be considered databases.

211

Background on Prolog and De-

ductive Databases

Deductive databases are datab.ascs with the ability to

make deductions from the facts and rules they contain.

They usually consist of large amounts of data allcl a

small number of rules which allow other facts to be de-

duced. Lloyd(1983) provides an introcluct,ion to dcd uc-

tive databases in Prolog, and some of their features.
The major differences between an ordinary Prolog pro-

gram, containing both facts and rules, and a deduct-

ive database is a practical one. A deductive database

contains large number of facts, usually too many to l~e

stored in main memory, and only a relatively small num-

ber of rules. Lloyd considers the problenls of query op-

timization and clause indexing that this causes. The

clause indexing problem is reduced t,o one of an cfricicnt,

partial-match retrieval scheme.

Thorn and Naish(1983) describe a deductive dat,abasc

system implemented using MU-Prolog, a predecessor

of NU-Prolog which was used for this project. ~(1.

Prolog utilizes superimposed code words for clause in-

dexing. The idea behind superimposed coding is tl~at

each record (of the database) is described by a codt:

word. Each field of the record generates a stri]lg of

bits set to either one or zero depending on the WI] uc

of the field. After a code word has been generatml for

each field they are or-ecf (or superimposed) to forlu tile

code word of the record. Ramamohanarao and Shcp-
herd(1986) give a detailed description of a form of su-

perimposed coding which is suitable for dcaliug with

large databases of Prolog clauses. This is the mcthocl

implemented in NU-Prolog.

Definite clause grammars (Pereira ancl Warren, 1980)

are generalizations of context free grammars and arc

suitable for natural language processing. They provide

context-dependency; allow arbitrary t,rce structilrcs i o

be built up during the course of parsing; and al Io;v cou -

ditions to be

System

inclucled in the grammar rules.

Overview

The database may be viewed as a database wi [h ouc

of two query languages. The first is just the laug~lagc
of Prolog which directly accesses the relations ill the

database. The second is a set-theoretic query]anguage

modelled on the set constructors of Cayley. A help facili-

ty is provided to inform users about the Prolog rclatio]]s

-their names and attributes- and about, the functio]ls

and operators of the set-theoretic language. As IllOSt

users will access the database only occasional Iy, such a

help facility is important,.

The relations are stored on disc and retrieved using su-

perimposed coding to solve the partial match retrieval

problcm. Our database is not dynamic so we use static

superimposed coding (SIMC).

The set-theoretic query language is parsed into a Pro-

log goal. The grammar of the language is specified by

a definite clause grammar (DCG) with actions to gen-

erate the appropriate Prolog goal. Hence, the parser is

a Prolog program, which is the compiled form of the

DCG.

The overall architecture of our database is shown in Fig-

ure 1.

The Data

Each group G in the database is denoted by an identifier

Order#Nuntber, which indicates that G is the Number-

th group of order Order in the list compiled by James,

Newman, and O’Brien. A group of order 2n may be

defined by a power-commutator presentation (pep) of
the form

k=i+l

an 2 = identity,

n

k=j+l

(an, ai) = identity, 1 s i < n)

The exponents e(i, j, k) are either O or 1. There are

(n+ l)(n – l)n/6 exponents. The sequence of exponents

e(i, j, k), 1 < i ~ j < k < n may be regarded as the

binary representation of an integer. For n = 7, the

integer may be as large as 256 – 1. In order to constrain

the integer clata in the database to be within the limits

of the Prolog system, the integer is decomposed into

1 digits taken base 214. These 4 small integers are a
co]npact encoding of the pep. For similar reasons, we

must decompose the order of the aut.omorphism group

.4r[t(G) of G into small integers.

Tl]ere are four relations in the database:

● groupinfo/15,

s seq/9,

. nunl-of-cla.sses/4, and

● element,s-of-.order/4.

Each of the 2668 groups is represented by a set of

clauses. In total there are 20217 num-of-classes facts,

and 18228 elmnents_of_order facts. We describe each
relation below.

212

set
theoretic

query

Prolog
query

help
query

oDCG

{
/

&/

-El

parser
in – Prolog _

Prolog query

I

0data

/’

/

[II
&
\

Prolog
SIMC --

+

inference
engine interface

P
t partial

o match
retrieval

help
rules

I

Figure 1: SyslxmI Architecture

The relationThe relation

groupinfo(a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o)

was designed to hold information that is present for all

groups, and is present only once for each group. TIN:

arguments are

a#bis the group

c#d is the parent group

e#f is the central quotient

g#h is the centre

i#j is the commutator subgroup

k is the number of defining generators

1 is the nilpotency class

m is the order of Aut(a#b) div 107

n is the order of Aut(a#b) mod 107

0 is the isoclinism family number

The relation

seq(a, b, c, d, e, f, g, h, i)

cent ains exact 1y the same information as the scqucn ccs

in the Cayley library of 2-groups (see Newmau and

O’Brien, 1989). The arguments are

a#b is the group

c is the number of defining generators
d is (ogz(a), the number of pcp generators

e is the exponent-p class

f,g,h,i are integers encoding the pc.p

Elfiles

num.of.classes(a, b, c, d)

contains the information about the number of classes of

a given length in a given group. The arguments are

a#b is the group

c is the class length

d is the number of conjugacy -’----- -r

length c in the group

The relation

elements-of.order(a,

Gld.ases01

,b, c,d)

contains the information about the number of elements

of a given order in a given group. The arguments are

a#b is the group

c is tile order

d is the number of elements of
order c in the group

213

Here as an example is the data stored about 32#26, the

26-th group of order 32.

group_info(32,26,8,5,4,2,8,2 ,2,1,3,2,0,384,2)

seq(32, 26, 3, 5, 2, 4097, 5632, 0, 0)

num_of_classes(32, 26, 1, 8)

num_of_classes(32, 26, 2, 12)

num_of_classes(32, 26, 4, O)

num_of_classes(32, 26, 8, O)

elements_of_order(32, 26, 2, 3)

elements_of_order(32, 26, 4, 28)

elements_of_order(32, 26, 8, O)

elements_of-order(32, 26, 16, O)

elements-of_order(32, 26, 32, O)

There are several rules which extract attributes from

the raw facts. These are illustrated in Figure 2. Some

are simply views of the data, such as

central_quotient_of4(Ord,Num,Cord,Cnum) :-

group_info(Ord,Num, -,-,Cord,Cnum,

-9->->- 9->-,-,- ,-).

central_quotient_of(Ord,Num) :-

group_info(Ord ,Num,-,_,Cord, Cnum,

)- J-) - D- J- , - ,- , - #- ,
write(>The central quotient is : ‘),

write(Cord), write(~ # ‘), writeln(Cnum).

some are display rules, and tot.classes is an aggregation

rule summing the fourth attribute of num-of-e[enzenk.

tot_classes(Ord,Num,Ans) :-

tot_classesl(Ord,Num, l,Ans),

tot_classesl(Ord,Num,N,Ans) :-

num_of_classes(Ord,Num,N,A) ,

Ans is A + Al,

NlisN*2,

tot_classesl(Ord,Num,Nl,Al) .

tot_classesl(Ord,Num,Ord,O) .

tot_classesl(Ord,Num,N,Ans) :-

NlisN*2,
tot_classesl(Ord,Num,Nl,Ans) .

We could also have defined rulesto deduce other prop-
erties, such as being abelian or elementary abclian, as

follows:

abelian(Ord, Num) :-

num_of_classes(Ord,Num, l,Ord).

elementary_abelian(Ord, Num) :-

N is Oral- 1,

elements_of_order(Ord ,Num,2,N).

It should be noted that there are some redundancies in

the data stored for agroup. The number ofconjugacy

classes of length 1 is equal to the order of the centre, so

the fact

num_of_classes(32, 26, 1, 8)

for 32#26 is redundant. If a group has no elements
Of order 2m then it cannot have any eiements of order

2’n+l so the facts

elements_of_order(32, 26, 16, O)

elements_of-order(32, 26, 32, O)

for 32#26 are redundant. Indeed, we could have stored

only the facts elernenis.of-ord er(a, b, c, d) where d is non-

zero, and implied the zero value of the attribute from

the failure of the Prolog goaL We chose to retain these

redundancies to simplify the query processing, and to

support future plans to include them in integrity con-

straints on the database. On the other hand, it is well-

lmown that only the identity element ofa group has

order 1, and queries requesting this data would seem

rnostunliliel y,soth isfact is implicit in the database.

The Help Facility

For novice or irregular users of a system a help facility is

important. It indicates the range of information avail-

able, the Prolog predicate definitions, and the meaning

of each of the many attributes within the predicates.

The help facility is provided by two predicates:

● help/O,whichprovides an overview of the database
(see Figure 2), and

● ht4p.-on/l, which provides details of a predicate (see

Figure 3 for an example).

Both display appropriate textual information.

214

THE TWO-GROUPS DATABASE

This database contains information on groups of

order 2-n (n <= 7). The data can be accessed in

various ways. The help command provides a li:st

of the available predicates.

The

For

following predicates are available -

group/2

all_about/2

exponent_pclass/2

exponent-pclass3/3

commutator-subgp_of /2

commutator-subgp_of4/4

centre_of/2

centre_of4/4

central_quotient_of/2

central_quotient_of4/4

parent_of/2

parent_of4/4

tot_classes/3

seq/9

elements_of_order/4

num_of_classes/4

group_info/16

information on one of these predicates use

help_on(predicate name).

Figure 2: .The Help Screen

The Query Language

The users of Cayley and the database are mathemati-

cians. They are very familiar with the usual notatioas

ofset theory and algebra such as

{c2:xGSlxiseven}

which determines the squares of all even integers in ,S.

The user language of Cayley, version 4, has similar set

constructors,

{z”2:zin Sleven(x)}

and, rather than use aseparate database query sublan-

guage, the queries are based on set constructors.

The query language for the deductive database is a

slightly simplified form of that for Cayley, version 4,

The query language provides statementsto

1. name the database;

2. query the database; and

3. print solution sets.

An identifier maybe associated with adatabase usi]lg

the statement

2?- help_on(all_about).

Usage

all-about(<order>, <number>)

Description

Prints out all the information in the database

about the group. The information is printed in

the format used by the Pascal database

written by O)Brien.

Figure 3: An Example of help.on

<db.id> := database(<Prolog_database-name>);

Then thedataba.se may be queried using

<set.id> :={ <id> in<db-id> I <condition> };

to return a set of solutions of all objects that are in the

database specified and also satisfy the condition.

This solution set may be printed using the print state-

ment

print cset-id>;

The query language k described by a definite clause

grammar. The associated parser translates the query

into a Prolog goal, and performs some minor optimiza-

tion at the same time. The query language parser is

entered by calling the predicate query/O.

I?- query.

Query> d:=database(twogps);

Query> s := { g in d I centre(g) eq 4#1 and

central quotient(g) eq16#ll };

Query> prints;

[(64,102), (64,111), (64,125), (64,256)]

Figure4: Examples of the Query Language

The condition in a query consists of boolean expres-
sions. These expressions may call the functions listed in

Figure 5 as well as permissible operators. The functions

have an argument X, which is either the identifier <id>

fromthequerywhich symbolizesa general group inthe

clatabase, or aspecific group designated by its identifier

Ordcv#iVumber. The expressions follow the usual (de-

fault)precedenc eofoperators, and bracketting maybe

used to ensure the correct precedence.

215

The functions available are

#classes(X)

#classes length(X, Length)

#elements order(X, Order)

isoclinism(X)

automorphism group order(X)

central quotient(X)

parent(X)

centre(X)

commutator subgroup(X)

#defining generators(X)

order(X)

exponent pclass(X)

nilpotency class(X)

Arithmetic expressions involving functions may

appear using the operators *, /, +, -

The available connective are

not, and, or the logical operators

eq, gt, ge, lt, le the comparison operators

Figure5: The Query Language Functions and Opera-

tors

As an example of the expressibility of the query lan-

guage, the three queries in James, Newman, and

0’Brien(1990) can bestated aa

S1 := { G intwogps lorder(G) eq 128and

S2

S3

#d&lning ge~erators(G)’eq 4

and #elements order(G,8) eqO

and #elements order(G,4) gt O

and nilpotency class(G) eq3

and order(centre(G)) eq 2 };

:= { G in twogps I order(G) eq 128 and

central quotient(G) eq 16#14 and

commutator subgroup(G) eq8#5

and #classes length(G,8) eq 12
and #classes(G) ge20

and #classes(G) le 32 };

:={ Gintwogpsl order(G) eq128ancl
automorphism group order(G) eq4096

and #elements order(G,2) eq 7

and #elements order(G,16) eq32

and nilpotency class(G) eq4

and order(centre(G)) eq 8 };

Note that in the first query we must paraphrase the

condition that the exponent ofGis4, using the number

ofelements oforder 4 and 8.

There are some unnecessary limitations on the query

language. It is hoped to allow <set.id> as well as

<dbld> in the query statement so one can refine a

previous solution set. It is also hoped to allow function

applications to be nested. At present, only the order

function may have a general expression as an argument.

The other functions must have simple variables or con-

stants as arguments.

The translation process is slow- up to two minuteson

a Sun 3/60 for a moderately complicated query such as

s:= { Gin twogps I order(G) eq 128 and

#elements order(G,8) eq (order(centre(G)) *

nilpotency class(G)) };

The solutions to the Prolog goal generated by the trans-

lation process are found quickly if specific information

(intheforr no fintege rconstants)issupplied. Forex-

ample,

s := { Gin twogps [centre(G) eq 4#1 and

central quotient(G)eq 16#11 };

requires 9 seconds. However, for queries which specify

relations between attributes, as in

s:= { G intwogps I order(centre(G)) eqorder(G)/4 };

the solutions may not be found quickly. This example

requires about 4 minutes. In the latter case, all the

groups areretrieved andthen therelation is tested. We

would like to improve this aspect by refining the goal

produced by the parser. Thedatabase isstatic, andtbe

range of values and their frequency can be determined.

Knowing the range of values that an attribute can take

would allow us to refine the previous query to

s := { G in twogps I

order(G) eq 8 and order(centre(G)) eq 2

or order(G) eq 16 and order(centre(G)) eq 4
or order(G) eq 32 and order(centre(G)) eq 8

or order(G) eq 64 and order(centre(G)) eq 16

or order(G) eq 128

and order(centre(G)) eq 32 };

which recluires 4 seconds rather than 4 minutes to find

the solutions. The information on frequency of attribute

values would allow optimisation of queries through con-

junct re-ordering.

216

Conclusion

The development of the deductive database has demon-

strated

●

●

●

so,

that Prolog and superimposed coding are appropri-

ate technologies to use for this particular database;

that a familiar set-theoretic query language can lbe

provided;

that translation between the set-theoretic query

language and Prolog is practical.

in particular, an integration of the deductive

database facilities with Cayley is feasible.

The limitations of the current database, which we will

address in future work, are

●

●

●

that studies (and possible improvements) in perfcm-

mance are required. No experimentation with the

choice of parameters for superimposed coding has

been undertaken.

that translation of the query language be improved.

The functionality of the query language does not

allow nesting of function calls (other than order).

Only minimal attempts to optimize queries haa olc-

curred. The translation is slow, and a traditional

parser written in C is one solution to this problem.

that the 56,092 groups of order 256 are not in the

database yet. T~s may impose further impetus to

tune performance.

Acknowledgements: A number of people provided ex-

pertise on NU-Prolog and deductive databases - John

Shepherd, Rodney Topor, Ron Sacks-Davis - while the
data on 2-groups was generously made available by Ea-

monn O ‘Brien.

This work was supported in part by the Australian Ii.e-

search Council.

References

B. Buchberger, G.E. Collins, and R. Loos, Computer

Algebra : Symbolic and Algebraic Computation,

Springer-Verlag, Wien, 1982.

G. Butler and J.J. Cannon, Cayley, version ~ : the

user language, Symbolic and Algebraic Computa-

tion, P. Gianni (cd.), Lecture iVotes in C’omput.cr ,$’Ici-

ence 358, Springer-Verlag, Berlin, 19S9, pp.456-466.

G. Butler and S.S. Iyer, Deductive mathematical

databases - a case study, Statistical and Scientific

Database Management, Z. Michalewicz (cd.), Lec-

ture Notes in Computer Science 420, Springer-Verlag,

Berlin, 1990, pp. 50-64.

J. Cahnet and D. Lugiez, A knowledge-based system for

computer aigebra, SIGSAM Bulletin, 21, 1 (1987) 7-13.

John J. Cannon, An introduction to the group theory

language, Cayley, Computational Group Theory

M. D. Atkinson, editor, Academic Press, London, 1984,

145-183.

W.F. Clocksin and C.S. Mellish, Programming in

Prolog, Springer-Verlag, Berlin, 1981.

J .H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker,

R.A. Wilson, Atlas of Finite Groups, Clarendon

Press, Oxford, 1985.

M. Hall, Jr and J.K. Senior, The Groups of Order

2n, (n <= 6), Macmillan, New York, 1964.

D.F. Holt and W. Plesken, Perfect Groups, Oxford

University Press, 1989.

R. James, M.F. Newman, E.A. O’Brien, The groups of

order 128, J. Algebra, 129, 1 (1990) 136-158.

R.D. Jenks, A primer: 11 kegs to New SCRATCHPAD,

EUROSAM 84, J. Fitch (cd.), Lecture Notes in Com-

puter Science, 174, Springer-Verlag, 1984, 123-147.

S.H. Ley, TWOGPS : A Deductive Database for
Groups of Order 2n. Honours Thesis, University of

Syclney, 1988.

J.W. Lloyd, An introduction to deductive database sys-

tems, Australian Computer Journal 15, 2 (1983) 52-57.

J.K.S. McKay, The non-abelian simple groups G, IGI <

106 - character tables, Communications in Algebra, 7,

13 (1979) 1407-1445.

J. Neubiiser, H. Pahlings, and W. Plesken, CAS; Design

and use of a system for the handling of characters of

finite groups, Computational Group Theory M. D.

Atkinson, editor, Academic Press, London, 1984, 195-
247.

M.F. Newman and E.A. O’Brien, A Cayley library for

the groups of order dividing 128, Group Theory (Sin-

gapore, 1989), Walter de Gruyter, Berlin, New York,

1989, pp. 337-342.

E.A. O’Brien, The Groups of Order Dividing 256,

Ph.D. Thesis, Australian National University, 1988.

F.C. Periera and D.H-D. Warren, Definite clause gram-

mars for language analysis - a survey of the formalism

and a comparison with augmented transition networks,

Artificial Intelligence 13 (1980) 231-278.

K. Ramamohauarao and J. Shepherd, A superim-

posed codeword indexing scheme for very large Prolog

databases, Proceedings of the Third International Con-
ference on Logic Programming, London, 1986, pp. 569-

.576.

217

C.C. Sims, Computational methods for permutation

groups, Computational Problems in Abstract Al-

gebra, (Proceedings of a conference in Oxford, 1967),

J. Leech (cd.), Pergamon Press, Oxford, 1970, pp. 169-

183.

J.A. Thorn and L. Iiaish, The MU-Prolog deductive

database, TR 83/10, Department of Computer Science,

University of Melbourne, 1983.

J.A. Thorn and J. Zobels (eds), NU-Prolog Reference

Manual ver 1.1, TR 86/10, Department of Computer

Science, University of Melbourne, 1987.

M. F’. Worboys, Groups - a database for computational

algebra, Computers in Mathematical Research,

N.M. Stephens and M.P. Thorne (eds), Clarendon Press,

Oxford, 1988, pp.153-160.

218

