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ABSTRACT

The calculation of the zero dynamics of a nonlinear system is of

advantage in the design of controllers for this system. Because

the calculation is difficult to do by hand, symbolic algebra pro-

grams are used. To access the usefulness of these programs and

to solve some design problems, a MAPLE procedure, ZERODYN, is
written to calculate the zero dynamics symbolically. The procedure

can, however, not solve all problems, mainly because general sym-
bolic algebra programs have insufficient capabilities to solve sets

of nonlinear equations and partial differential equations. A realistic
analysis problem shows this.

INTRODUCTION

To fulfill the increasing requirements on the dynamic behavior of

systems, it may be necessary to control the system. In the design
process of controllers a model of the system is often used. A non-

linear model is often necessary to describe the system adequately.

Models can be characterized by structural properties. For the desi,gn
of controllers these structural properties can be used to advantage.
Their calculation for linear models is straightforward. For nonlinear
models a numerical calculation usually only gives an approximation

of the properties of the model (along a trajectory or in a working
point). Among the interesting properties of a nonlinear model, frc)m

the viewpoint of control system design, are
● controllability and observability

● the relative degree

. the zero dynamics of the model.
The linear equivalent of a model with asymptotically stable zero

dynamics is a minimum phase model. These properties play a role
in design problems for nonlinear models like

● exact linearization with state feedback
● exact tracking

. disturbance rejection
● matching of linear models

● stabilization of “minimum phase” models.
The theoretical foundation of the calculation of the relative degree

and the zero dynamics is given in, e.g., [1, 2]. Here, we discuss the

calculation of the zero dynamics of nonlinear models, with emphasis
on the implementation of the algorithms within the symbolic algebra

program MAPLE. For the symbolic calculation of controllability amd
observability for nonlinear models, see [3].

First an overview of the underlying theory will be given, fol-

lowed by a dkcussion of the actual implementation of some of the
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algorithms. Then an overview of the problems encountered follows,

based on the use of the analysis procedure ZERODYN, for problems
that are representative for some small scale industrial applications.

Finally some conclusions and recommendations are given.

THEORY OF THE ZERO DYNAMICS

The theory in [2] is the basis for the following discussion. The zero

dynamics of the nonlinear model

and

g(t) = h(x(t)) with y G $?l

is the dynamics of the submodel, which results after choosing the
inputs u~ (t) and initial condhions zo so that the outputs y(t) of

the model are O for all t.Alternatively, the zero dynamics is the
dynamics of the submodel of maximal dimension that can be made
unobservable by state feedback.

For simplicity the remaining dkcussion is restricted to a single-

input (m = 1), single-output (1 = 1) model

x = j(z) + g(x)u, y = h(z). (1)

The calculation of the zero dynamics of model (1) at x = zo

consist of two steps

. bring the model in a local normal form with a nonlinear
invertible change of coordinates z = O(z),

● extract the zero dynamics equations from this form.

First, calculate r components of@ as

q!+(x) = L;-’h(z)

where Lfh(z) = W.f(z), L$h(z) etc. are recursively defined
and r is the relative degree at ZO, i.e., the smallest r for which

LgL~-’h(z) #O, with Lg(.) = ~g(z).

Choose the remaining n – r new coordinates .Z, i = r + 1,..., n
so that C?(x) is invertible at zo. Addhionally, select [ 1] rji, z =
r+l, . . ..n so that
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The normal form in the new coordinates z is then particularly simple

il = ~2

%-1 = z.

4 = b(z) + a(.z)u

L+l = 9r+l (~)

and
y=zl

where b(z) = L~h(z), a(z) = L9L~–llz(z) and qi(z) =

LfC#Ji(Z), i = r + 1,... ,n. Use the relation

z = 0-’(,) (3)

to express b(z), a(z) and q~(z) as functions of .z.
To get y = O, choose the input u as –b(z)/a(z) and the initial

conditions xo so that zi = O, i = 1, ..., r. By definition, the
zero dynamics of the model is then given by the equations for

&-+1, ..., .%, with the coordinates .ZI,..., a set to O. With & =
[Z,,..., ,z,]’ , q = [,2,+ 1,... , Zn]‘ the zero dynamics can be written

as rj = q(<, q) = q(O, q).
For multivariable models the theory is more involved.

CALCULATION OF THE ZERO DYNAMICS

The solution of the partial differential equations (2) and of the

system of nonlinear equations(3) is the main computational problem

in the calculation of the zero dynamics. General computer algebra

programs like REDUCE, MACSYMA, MAPLE and MATHEMATICAL do

not always find a solution, although theoretically a computable

solution exists. Here MAPLE is used. The reasons for this choice
are: availability, easy programming, low run times and previous
experience. The class of problems for which a solution can be

obtained is limited. The availability of a program that can tackle
more problems will be welcomed.

The actual code of the MAPLE procedure is a straightforward
implementation of the algorithm discussed in [2] and the previous

section, although not for the general multivariable case. It is not

given here.

APPLICATION

The analysis procedure is applied to several models. The model
presented here is a mechanical system with two rotary joints [2],
the first driven by a motor and with a spring for the second joint.

The equations of this model are

[

x3

X4

f(z) =
bc(z3+z4)2 sin z2+(b+ccos VJKZ*+C2Z~ sin w cos X.Z

d–(ccm. m)z

(b+ccm Z2)(CC4+2Z3)CZ4 sin z2+(a+2cc0s z2)(cz~ sin Z2+KZ2)

–Ci+(ccosm)z 1

[
o
0

[

b
g(x) =

d – (CCOSZ2)2
-(b + CCOSZZ)

d – (CCOS Z2)2

h(z) = xl.

The model parameters are a, b, c, d and K, with d – C* >0. The
relative degree T is 2. MAPLE was unable to solve the partial differ-

ential equation (2), so a solution for q$J, @4is calculated by hand,

resulting in the following map 0, invertible for all xo

{ }
~[ ‘~l,~2=x3,~3=z2,z4=x4+(l +: CoSx2)~3 .

b

The inverse map 0-i is

{
zzb—z4b + zzccos Z3

%l=zl,xz=zs,xx=~z,xd ‘—
b }

The normal form of the system is

il = 22

i2 = b(z) + ~(Z)U

53 = q3(z)

i4 = 94(2)

with

a(z) = - (CCOS:)2 – d

q~(z) = _ z*b – z4b + ZZCCOSz3

b

and b(z) and q4 (z) too complex to print. The zero dynamics is now
given by q3 and q4 with Z1 and zz set to O

i3 = q3(z) = Z4

–Kzqb2 – (c cos .Z3)2K.Z3 + baKz3
>4 = qq(z) =

b((ccos 23)2 – d) “

This shows that the answer is not trivial, although the output

of MAPLE could be simplified further. In this calculation the only

intervention was for the solution of(2). Further analysis shows that
the zero dynamics is not asymptotically stable.

CONCLUSIONS

For simple models the general symbolic algebra program MAPLE can

calculate the zero dynamics. Human intervention may be needed.
The availability of a symbolic algebra program with more pow-

erful capabilities for solving sets of nonlinear equations and partial
differential equations should make it possible to tackle more prob-
lems. Such a program is welcome.

The ZERODYN procedure should be expanded with a calculation
of the zero dynamics for multivariable systems.
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