
Implementation of multilineal operators in

and applications in mathematics

Marcel Roelofs Peter K.H. Gragert

REDUCE

University of Twente, Department of Applied Mathematics

P.O. Box 217,7500 AE Enschede, The Netherlands

E-mail: roelofs@math.utwente.nl

ABSTRACT

In this paper we introduce and implement a concept for dealing

with mathematical bases of linear spaces and mappings (multi)linear

with respect to such bases, in REDUCE (cf. [1]). Using this con-
cept we give some examples how to implement some well known

(multi)linear mappings in mathematics with very little effort. More-
over we implement a procedure operatorcoefl similar to the stan-
dard REDUCE procedure coefl, but now for linear spaces instead
of polynomial rings.

1. INTRODUCTION

A concept of utmost importance in mathematics is the notion of a

linear space, i.e., a space which is supplied with a basis, such that

any of its elements can be uniquely written as a linear combina-

tion of basis elements. Moreover, linear spaces admit (multi)linear

mappings which are completely determined by their action on basis

elements. More specifically, if {e 1, ..., en} is a basis of a linear
space E, xl,..., Xm E E are given by

Zj=~Z$.i (j=l,...jm)

i=o

and P : Em ~ F is a (multi)linear mapping tlom E to some linear
space F then

P(zl,..., zm)=
fin”’s~i’”””~~~(e’,,e’m)
i,=l ,m=l

In spite of its importance REDUCE has no extensive facilities for
linear spaces or (multi)linear mappings. In fac~ the only possibility

is to declare an operator to be linear. Linear operators, however,
can only be linear in one argument and, moreover, must act on very

specific linear spaces, namely polynomial rings in one variable.
Also other computer algebra system such as Maple or Mathematical
only have facilities similar to the linear statement in REDUCE and
lack facilities for multilineal operators.

In this paper we will introduce a concept for the representation
of more general linear spaces in REDUCE, set up an environment
for general mullilinear mappings on such linear spaces, and, fi-

Permission to copy without fee ail or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by parmisaion of the Aaaociation for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
e 1991 ACM 0-89791 -437 -6/91 /0006 /0390 ...$1 .50

nally, implement a procedure operatorcoef which acts similar to

the standard REDUCE procedure coeff but now for linear spaces in

our context instead of just polynomial rings.

The paper is organised as follows. In section 2 we will explain the
main ideas behind the concep~ after which we will implement the

main procedure splif_f which finds all basis elements in a standard

form together with their coefficients. In section 3 we will implement
mullilinear operators and the procedure operatorcoeff using splif_f.
In section 4 we will give some examples how mu[tilinear operators
can be used to implement some well known (multi) linear mappings
in mathematics.

Finally appendix A contains the source of some essential pro-
cedures, whereas appendix B contains the source of one of the
examples. Both appendices were taken directly tlom the RWEB

sources describing the programs, i.e., files containing a mixture

of documentation and pieces of program. Such a file can ei-

ther be turned into a T~ file with all pieces of program for-
matted nicely, or into a source file by removing the documen-

tation and putting all pieces of program into the correct order.

WEB was originally developed by Knuth to document his T@

program (cf. [2]), but later adapted by Ramsey to suit any Al-
gol like language (cf. [3], anonymous ftp: princeton. edu:

f tp/pub/ spiderweb. tar. Z). Using Ramsey’s system we
produced a version of WEB suitable for REDUCE and rlisp

sources, called RWEB, and which is available by anonymous ftp at

utmfu O .math. utwente. nl : ftp/pub/RWEB.

2. LINEAR SPACES AND ANALYSIS OF STANDARD

FORMS

We will represent linear spaces in REDUCE by giving its basis as a

set of elements of some algebraic operator. For instance, the basis
{e,,..., en} tiom the previous section could be represented by a set
of operator elements E(1),... , E(n). It may even be convenient
to use more operators to give a basis. We will see an example of
this in section 4.

Using this representation we can represent all kinds of linear
spaces in a more or less natural way, whereas still all basis elements
can be recognized at once, namely as operator elements of a certain

operator. A basis element z ~* . . . x:” of a polynomial ring in n vari-
ableszl, ..., z,,, for instance, could be represented by an operator
element P(iI,... , in) in this way.

In fac~ mostly we are not only interested in pure linear spaces, but
also in the part of an expression independent of any basis elemen~
which we will horn now on denote by the “independent part” of the

expression. We can look at it as an extension of the original basis
with an additional basis elemen~ namely 1.

Using this convention for basis elements the main problem for
the implementation of mulfilinear operators and the procedure op-

390

http://crossmark.crossref.org/dialog/?doi=10.1145%2F120694.120754&domain=pdf&date_stamp=1991-06-01

<standard quotient>

<numerator>

<denominator>
<standard form>

<leading term>

<reductum>
<leading power>

<leading coefficient>

<main variable>
<leading degree>

<operator element>
<operator name>

.._..—

.._..-

.._..-

.._..—

.._..-

.._#,-

.._..—

.._..—

.._,.-

.._..-

.._..-

.._..—

(<numerator>. <denominator>)
<standard form>

<standard form>
nil I <:domain element> I (<leading term> . <reductum>)

(<leading power>. <leading coefficient>)
<standard form>

(<main variable> . <leading degree>)
<standard form>

<identifier> I <operator element>
<integer>

(<operator name>) I (<operator name> <arguments>)
<identifier>

Table 1: Syntax of standard quotients.

eratorcoeff is how to find all basis elements and their coefficients
in an algebraic expression, as well as the independent part. For

the solution to this problem we recall that algebraic expressions in

REDUCE are stored as standard quotients which essentially satisfy

the syntax of table 1, which is valid if the switch e.xp is on (which

is the initial setting) and where we have left out the parts that are of
no particulru interest to us. If the switch exp is off, a main variable

may also be some other algebraic expression in prefix notaticm. It
can be easily checked that this setting will not be useful in our case

and even may lead to invalid results using the algorithm described
below. Therefore we require exp to be on.

Since we can divide all coefficients of basis elements and the
independent part by the denominator of the algebraic expression
at the end of the evaluation, it is clear that for our purposes we

only need to analyse numerators of algebraic expressions, which
are standard forms. Due to the recursive definition of a standard
form, we can readily deduce an algorithm to find all of its basis

elements and their coefficients as well as the independent part.

For this suppose that we have to analyse a standard form F which
is a sum ~i Ti of standard terms Ti, whereas each Ti is the product

of a leading power P; and a leading coefficient C: and has Vi as

its main variable. Further suppose that we want to deliver a list L
containing the independent part of F together with all basis elements

and their coefficients, where oplist is the list of operators, elements
of which are allowed as basis elements. It may be clear that this
can be done by checking all terms Ti separately. Our algorithm

for analysing a term T, essentially consists of distinguishing the
following 4 cases:

1. Ti is nil. This term will not contribute, so we have to take no

action.

2. Ti is a domain element in particular is not an operator element

of one of the operators on oplist, hence it must be added to
the independent part of F. We can check if Ti is a domain

element by using the REDUCE procedure domainp.

3. v is an operator element of one of the operators on oplisr,
hence if K occurs linearly in Ti, i.e., the leading degree is 1
and Ci does not contain other operator elements of operators
on oplist, we haveto update L, i.e., if VI already occurs in Las

a basis element we have to add L’: to its coefficient otherwise
we have to add Vi as a basis element to L with coefficient

(71. If Vi does not occur linearly we can stop with an error
message.

4. VI is not an operator element of one of the operators on oplist

(i.e., it is an identifier or an operator element of some other
operator). In this case we can recursively examine C’i for
the occurence of basis elements, if we keep in mind that the

coefficients of basis elements found there have to be multiplied
with the additional factor P,.

The actions described above are implemented in the (recursive)
procedure split~form,oplis~ $act,kc_list), whereform is the standard

form to be analysed. The third argumentfact is a factor (as in case
4) with which the coefficient of some basis element found has to

be multiplied. It is clear that is has to be initialized to 1 at top
level. The fourth argument kcdist is a dotted pair, the car of which

is the independent parL the cdr the a list of basis elements with
coefficients, being build up so far. Hence kcJist has to be initialized

to nil . nil. The RWEB source of splil$ can be found in appendix
A.

3. IMPLEMENTATION OF MULTILINEAR OPERATORS
AND THE PROCEDURE OPERATORCOEFF

Algebraic expressions offered to REDUCE have to be evaluated.

This evaluation is mainly taken care of by the procedure sirnp, which

simplifies a given expression to a canonical standard quotient (cf.

[1,4]). One of the ways in which one can influence the process of
simplification is by specifying a procedure that has to take care of

the simplication of some specific algebraic operator.

By using this fact and using the procedure split-f of the previous
section we can easily outline the actions necessary for the simpli-

fication of multilineal operators: find the basis elements together
with their coefficients of all arguments of the operator and return the
sum of all possible combinations of basis elements. More specifi-

cally we will introduce the concept of multilinearity in REDUCE by
implementing a simplification procedure simpmultilinear for mul-

tilineal operators. So, an algebraic operator P will be multilineal

if its simpfn is simpmultilinear.

Due to the nature of simplification procedures simpmultilinear

must return a standard quotient and, moreover, this standard quo-

tient will not be simplified again, so all monomial operator elements
of P formed during the process have to be simplified before adding
them to the standard quotient. Simply applying the standard RE-

DUCE simplification procedure simp to these monomial operator
elements would be unwise, since P is multilineal, i.e., P’s simpjk

is simpmultilinear, and in this way we will get in an infinite loop.
For ordinary cases applying the procedure simpiden, which checks

if an operator element has a value and if so, returns this value as a
standard quotient, otherwise the operator element itself, will suffice.
But since we intend to use muhilinear operators in special packages,
where monomial operator elements may have to be simplified in a

special way, we will add to each multilineal operator the property
resimpjk which is the procedure to be used for the simplification of
monomial operator elements.

391

With this information we can outline the two steps which together
constitute the essential parts of simpmullilinear.

If we get a multilineal expression to be sirnplitied by the simplifi-

cation function simpmultilinear we must in the first place analyse
all arguments using split_f, in order to split them into a list of ba-

sis elements with their coefficients. At the same time we have to
keep record of the product of the denominators of all arguments,

since the analysis of the arguments is performed on standard forms,
and eventually the entire result has to be divided by this product of
denominators. These actions are implemented in the (recursive) pro-

cedure split-arguments(arglist,oplist,splitted.list), where arg.list is
the list of arguments of the multilineal expression to be analysed
and oplist the list of operators, elements of which are allowed as

basis elements. The third argument and final result splittedlist is a

dotted pair, the car of which is the product of denominators of all
arguments treated so far and the cdr is the list of splitted arguments

in reverse order.

If we define a component of an argument as the independent

part or a basis element together with its coefficient an argument
splitted by split-f may be looked at as a list of components and

the result of the procedure split.arguments essentially as a stack of
component lists completed with the product of denominators. From

this stack we are to build a sum of monomial operator elements.
We will do this with help of the (mutually recursive) procedures
processizrg>tack andprocess~omp.lis~, which will described right
away. However, before this, we will describe their arguments. In
all procedures the argument arg_stack will be a stack of component
lists, the car of which has to be treated nexL compdist the current

component list to be treated, opname the name of the multilineal

operator and argdist the list of arguments being build up for the

current monomial operator element which has to be multiplied with
a factor~act.

The procedure processdrg_stack(arg_stack,opxame,arglist,
fact) takes the following actions:

1.

2.

If arg~tack is empty this means that the argument list argJist
we &e building is complete, i.e., does not contain any more
arguments, so we can apply the resimpj% to the monomial
operator element obtained in this way and return its value
multiplied with the factor~act.

If the argument stack is not empty, we can extend the argument

list witi-all components of the-top of the stack and sum-there-
sults obtained by applying process_arg_stack to the rest of the

stack. This is done by calling the procedureprocess-complist.

The procedure process.romp4ist returns the sum of applying pro-
cess~”ndependent~ art andprocessxomponents to the current com-

ponent list.

Following our definition of multilinearity the procedure pro-
cess_independenl_part will multiply fact with the independent part
and add 1 to the argument list. If, however, there is no indepen-
dent pm the argument list obtained by adding the independentpart

would contain a zero, so due to the multilinerwity such a term would
not contribute, in which case the procedure can return nil .1.

The procedure process.components returns the sum of applying
process~rg~tack to the remaining arg~tack with arglist extended

with the basis element of a component and~act multiplied with its
coefficient for each component.

The RWEB source of all procedures described above can be
found in appendix A.

With the procedures explained above, the simplification procedure

simpmultilinear can be described at once:

1. Apply the procedure split_arguments to the list of arguments
of the multilineal operator to get a stack of component lists,

as well as the product of the denominators of the arguments.

2. Apply process~rg~tack to the stack obtained in 1. to get the
sum of simplified monomial operator elements.

3. Return the result of 2. divided by the product of denominators.

As a last step we have to implement a multilineal statement satis-
fying the syntax

mrdtilinear P(operator 1list of operators [,resimp. proc.]);

as to declare P a multilineal operator, where the rlrst argument is

the operator or list of operators allowed as basis elements and the
optional second argument is the name of the procedure used for the

simplification of the resulting monomial operator elements. If the
second argument is missing we will take simpiden as the default

resimplitication procedure.

The actions necessary to declare P multilineal are the following:

1. assign the property simpjk to P with value simpmultilinear.

2. assign the property resimpjk to P with value simpiden if there
is no resimplification procedure specified, otherwise the spec-

ified one.

3. flag P as full. An operator that is flagged full will have
its operatomame also passed to its simplification procedure,

otherwise only the arguments of the operator are passed.

4. assign the properly oplisl to P with value the list of operators
allowed as basis elements.

A second and much simpler application of the procedure splitj is the

procedure operatorcoeff, which is the counterpart for linear bases
(in our concept) of the standard REDUCE procedure coefl. Due to

the possibly more dimensional or sparse nature of the arguments of
the operator elements, the result of applying operatorcoejlo some

algebraic expression cannot contrary to coeff, be only an alge-

braic list containing coefficients of basis elements, but should also

give information about the basis element to which each coefficient
belongs.

Therefore, if X is an algebraic expression linear w.r.t. operator
elements of some specitied operators PI, ..., P~, applying opera-
torcoeflto X w.r.t. the operators PI,. ... P. will return an algebraic

list containing:

1. as the first element of the list the part of X not linearly depend-

ing on operator elements of one of the operators PI, ..., PB.

2. followed by zero or more algebraic lists containing a basis
element with its coefficient.

The implementation of operator.zoejf with help of splitj is essen-
tially a-matter of dividin”g all occuring coeffici&ts by ti-e denomi-

nator of the expression being analysed and replacing ordinary lists
by algebraic lists.

As the implementation of the multilineal statement and the pro-
cedure operatorcoeff are rather straightforward we will not give
these explicitly.

4. EXAMPLES OF APPLICATION IN MATHEMATICS

As a tirst example we shall introduce the ordinary tensor product
as a multilineal operator in REDUCE. For this suppose that we use
the operator X to represent the basis elements of some linear space

E and let@ denote the tensor product. Then the declarations

mullilinear @(X);

injix @;
precendeirce @,idt~erence;

will turn @ into a multilineal infix operator, i.e., a tensor product
w.r.t. E. The last statement is meant to take care that @ takes
precedenceover the ordinary multiplication, so that expressions like

392

X(1) * 3f@X(2) will be simplified to 3 * (X(l)@ X(2)) instead
of 3 * X(1) * (l@ X(2)), which is also possible according to our

definition of multilinearity.

From this point of view its is also very easy to define symmetric
and alternating tensor products. First of all this can be done by

specifying a resirnplification procedure in the mullilinear declara-

tion that takes care of the symmetrization or antisymmetrization,
respectively, but in this special case there is second, much simpler,

solution, namely by declaring @ to be symmetric or anlisymrneti-ic.
In doing so, the standard resimplification procedure simpiden will

take care of the necessary actions. So we see that only four simple
statements suffice to define a symmetric tensor algebra or an exterior

algebra in REDUCE.
Our second example is the implementation of the two most im-

portant building stones for Hirota’s bilinear formalism, which is
used frequently in mathematical physics, in REDUCE (cf. [5]).

These are tensor products, defined above, and operators like D.
defined by

Dz(f8g)=f.699-f892

where f and g are functions depending on x, subscripts denoting

differentation. If we use the operator F to represent functions and
the operator DX to represent D=, the most simple scheme for im-

plementing Hirota’s bilinear formalism is the set of statements

multilineal @({F~F}); injix @; precedence @ ,idz~erence;
mul~ilinear DX(@,simpdx);

where the procedure simpdx is defined by

lisp procedure simpdx exprn;

begin scalar argl,arg2;

argl :=caddr exprn; arg2 :=cadddr exprn;

return subtrsq(simpiden list(’!@,list(’djargl ,’x),arg2),

simpiden list(’!@,argl,list(’dfarg2,’x)));
end;

In this way DX(DX(F’(1)@)F(2))) will be correctly simplified
to DF(F(l)X,2)@F(2) – 2*DF(F(l)~)@DF(F(2)~) + F(l)@

DF(F(2)X,2). It should however be noted that more sophisticated
use of Huota’s formalism may require a somewhat more compli-

cated setup.

A third example is the implementation of heighest weight mod-

ules of the Virasoro algebra, an important object in physics, in

REDUCE (see e.g. [6]). This example is completely worked out in

appendix B.

Further examples include the implementation of a package for

computations in free Lie (super) algebras and a package for the

computation of cohomology of Lie (super) algebras, both of which

have been written at our site and make essential use of the concept
of multilineur operators (cf. [7]).

5. CONCLUSIONS

At the cost of representing various kinds of expressions as operator
elements of some operator, the procedures described in this paper

offer a fast and flexible way to implement mrthilinear operators on

these expressions and decompose algebraic expressions into various

components<

Moreover simplification of multilineal operators is reasonably

efficient. For instance, the simplification of linear operators, im-
plemented with help of multilineal operators, will be executed 2 to
3 times as fast as the simplification of similar linear operators, as
implemented in REDUCE.

The procedures described in this paper, are part of a package
(which we call the TOOLS package) containing all kinds of proce-
dures facilitating the use of algebraic operators in REDUCE. This
package is available by E-mail at the address given on the first page.

Finally, the method of analysing standard forms applied in the
procedure split-f can easily be adapted to generalize coeff for the

decomposition of algebraic expressions in polynomial rings of more

than one variable (actually such a procedure is also part of the

TOOLS package).

ACKNOWLEDGEMENTS

The first author would like to thank Gerhard Post for the numerous
fruitful discussions on the use of REDUCE in mathematics, which

brought about many of the useful ideas.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A.C. Hearn, “REDUCE 2: A system and Language for Alge-

braic Manipulation”, Proceedings SYMSAM 2 (S ,R. Petrick,
cd.), 128-133. New York: ACM (1971).

D.E. Knuth, “Literate Programming”, The Computer Journal
27:2 (1984), 97-111.

N. Ramsey, “Literate Programming: Weaving a Language-
Independent WEB”, Comm. of the ACM32 (1989), 1051-1055.

J. Moses, “Algebraic Simplification: A Guide for the Per-

plexed”, Proceedings SYMSAM2 (S.R. Petrick, cd.), 282–304.
New York: ACM (1971).

R. Hirota, “Direct Methods in Soliton Theory”, in SoMons,

157-176. Berlin: Springer (1980).

V.G. Kac and A.K. Raina, “Bombay Lectures on Highest Weight

Representations of Infinite Dimensional Lie Algebras”. Singa-

pore: World Scientific (1987).

G.H.M. Roelofs, “The LXESUPER package for REDUCE,

memorandum (to appear), Dept. of Appl. Math., University
of Twente (1991).

393

APPENDIX A: RWEB SOURCE OF SOME ESSENTIAL
PROCEDURES

1. Inthis RWEBftle weshallgive the fullimplementation of some
of theprocedures described insection2and3. First ofall we will
give the source of the main procedure split..f, which is underlying
allotherprocedures. Following itsdescnption insection2 we need

notexplain very much anymore. Recall that the factor~act isa
standard form and that kc_Zist is the component list being build so

far, i.e. is the result and has to be returned if the current standard
form is analysed.

lisp procedure split~form, oplist, fact, kc-Zist);

if null form then kclist

else
if domainp form then

addf (multf (fact, form), car kcdist) cdr kcdist

else (Examine mvar, lC and red for basis elements 2)$

2. The remaining part of split] corresponds to points 3 and 4 of

section 2.

(Examine mvar, lC and red for basis elemen@ 2) =
if ~atorn VWar form II member(car mvar form, oplisl) then

if -ddeg form = 1 V get_jirst&ernel(lc form, oplist) then
rederr “SPLIT_F: expression not linear”

else split$(red form, oplist, fact,
updatehclist (kc-list, mvar form,

multf ~act, lc form)))
else split_f(red form, oplist, fact,

split-f(lc form, oplist,
multf(fact, !*p2f lpow form), kclist))

This code is used in section 1.

3. For convenience we will write a surrounding procedure
split~orm, which can be called at top level and initializes the third

and fourth argument of split_f.

liip procedure split~ormform, oplist);

spliLf~orm, oplist, 1, nil . nil)$

4. For updating the kc..list as efficient as possible we need an

assoc-like procedure list.assoc. If applied to an association list L,
this procedure returns the remainder of L, the car of which would

be the result of assoc applied to L.

lisp procedure list.assoc(car_exprn, a-list);
if null alist then aJist

else
if caar alist = car~xprn then aJist

else list-assoc(carzxprn, cdr aJist)$

5. In order to update the kc.list we first have to find out if the

kernel w.r.t. which we update the lis~ is already occuring on it. If
so, we have to adjust its coefficient, otherwise we can cons the
kernel and coefficient in front of the list. Adjusting a coefficient is
performed by using the procedures list-assoc and rplaca in order

to avoid rebuilding of the entire list. The reader should verify that

;pl@&M cannot do any harm in this application, since it is replacing

lisp procedure update_kcJist (kcJist, kernel, coefficient);
(if restlist then

< rplaca(restlist, caar resllist ,
addf (cdar restdist, coejicient)); kcJist >>

else car kc.list . (kernel . coefficient) cdr kc_list)
where restlist = list.assoc(kernel, cdr kclist)$

6. Next we will give the essential procedures for the itnple-
mentation of the procedure simpmultilinear: split~rguments,

processw-g~tack and process~omplist, the description of which
can be found in section 3.

We strut with the implementation of the procedure
splitarguments. Notice that the arguments of argJist need to be
simplified, since split_arguments is called from within a simplifica-
tion procedure.

lisp procedure split_arguments(argJist, oplist, splitteddist);

if null arglist then splittedlist
else split-arguments (cdr argJist, oplist,

mrdtf (denr jirstarg, car splittedlist) .
splitJorm (numr jirst.arg, oplist) . cdr splittedlist)

where first-arg = simp!* car arglist$

7. For convenience we will write a surrounding procedure
splitflperator, in order to hide the last two arguments of
split~rguments. Recall that the list of operators allowed basis
elements is stored as the property oplist of the multilineal operator
considered.

lisp procedure split-operator u;
split_arguments(cdr u, get(car u, ‘oplist), 1. nil)$

8. The procedures processdrg-stack and process_complist are
also thoroughly described in section 3, so there is no need to

give too much explanation here neither. Notice, however, that
the coefficients of any component and hence also fact are given
as standard forms. As the result is a standard quotient we have to
convertfact into a standard quotient using !*j2q.

lisp procedure processxrg~tack(argstack,

opname, argJist, fact);
if null arg~tack then multsq(!*@q fact,

applyl (@(opname, ‘resimp&)j opname . arglist))
else process~omplist (car arg~tack,

cdr arg~tack, opname, arglist, fact)$

9. Processing the component list consists of processing the inde-

pendent part and all the components.

lisp procedure processsomp.list (compdist, arg-stack,
opname, arg_list, fact);

addsq(process~’ndependent.part (car complist,
arg_stack, opnarne, arg.list, fact),

process~omponents(cdr complist,
arg_.rtack, opname, arglist, fact))$

10. Following our description of multilinearity, processing the
independent part of an argument boils down to multiplying fact

with itand adding the WgUIW311t 1 to argdist. If, however, the

independent part is nil, we can return nil immediately.

lisp procedure processindependent_part(independentpart,

arg~tack, opname, arg_list, fact);
if null independentqart then nil 1
else process~rg~tack(arg_stack, opxame,

1. arglist, multffact, independent_part))$

394

11. The procedure processsomponents has to process the
compdist until there are no more components of the argument being

processed.

lisp procedure process~omponents(complist, arg~tack,

opname, arg-list, fact);

if null compJist then nil .1

else addsq(processxomponents(cdr comp-list,
arg~tack, opaame, arglist, fact),
process~rg~tack(arg>tack, op.mame,

caar complist . arglist,
multf~act, cdar compJist)))$

12. To hide the auxiliary arguments of process~rg~tack we will

write a surrounding procedure buildfium for it. Recall that arg-Zist
and fact have to be initialized to nil and 1, respectively.

lisp procedure build~um(opname, arg~tack);
process~rg-.rtack(arg~tack, opmame, nil, 1)$

13. With the procedures written above, the simplification function

simpnudtilinear can be written at once. We recall that the result
of split-arguments is a dotted pair, the car of which is the product
of the denominators of all arguments, the cdr the list of splitted
arguments, an argument stack. Moreover, notice that we are sure

that the car of u is the name of the operator, since we flaggecl this
operator full.

lisp procedure simpmultilinear u;

quotsq(build~um(car u, cdr splittedlist),

!*j2q car splittedlist)

where splitted_fist = split.operator u !$

APPENDIX B: VERMA MODULES OF THE VIRASORO
ALGEBRA

1. The Virasoro algebra W is given by a basis {z} U {e: I i E Z}
and relations

[z,ei]=o and [e;, e;]= (j-~)ei+j+~(j3-j)~i, -jz.(1)

A Verma module Vh,c of W is a heighest weight module of W with

heighest weight vector v such that

eo. v=hv, Z.v=cv, (31.?j=(t (2< o) (2)

and the action of e i ej equals

eiej = [el,ej]+ eje:.

One can proof that a basis Of Via,. iS giVen by

{O;,,ik=e,l... e: Vlk CN10<21<l~ik}~i k}.

(3)

2. For this purpose we represent the basis elements V:l.,.ik Of Vh,c

as the algebraic operator elements v (ii, ..., ik) (in this way the

heighest weight vector v will be represented by the operator element
V()). The basis elements ei (i c Z) and z of the Virasoro algebra

are represented by the operator elements x(i) and c(0), respectively.

Finally, the action . will be represented by an algebraic operator

@. The reader can easily verify that the solution to the problem
posed in the first section is the implementation of an appropriate

simplification procedure for the action @.
The first thing to be noticed is the bilinearity of the action @ w.r.t.

the operators z, c and v. Therefore we will declare the operator@
to be multilineal using the multilineal statement of the TOOLS
package. The argument simp_Virasoro~ction is the name of the
simplification procedure for the monomial action.

Moreover we declare@ to be an infix operator with precedence
after the operator indifference and we flag @ as righr in order to

facilitate multiple action.

algebraic;
mul(ilinear !@ ({x, c, v}, simp_VirasoroAclion);
injix !@; precedence!@, indifference);

lispjag(’(!@), ‘right)$

3. At top level the action of a basis element z of the Virasoro
algebra on a basis element v of the Verma module is rather simple:
if z = c(0) the action is just cv due to the fact that c(0) is central,
otherwise we must compnte the action as a sum of basis elements
using rules (l), (2) and (3). This last step is performed by the

procedure merge-Virasoro~ction, which will be described in the

next section. Notice that we expect the values of c and h to be

stored in the algebraic variables c and h.

lisp procedure simp-Virasoro~ction u;

(if mmember(car x, ‘(c x)) V car v # ‘v then
rederr(”VIRASORO: invalid arguments”)

else if car x = ‘c then multsq(mksq(’c, 1), simp v)
else merge-Virasoro~ction(cdr x, cdr v))

where x = cadr u, v = caddr U$

The main problem of working with Verrna modules is how to write
an element e~ . vi, ...i~ as a sum of basis elements using the rules

described above, since the number of terms tends to explode rather
quickly. In this file we will give an implementation of Verma
modules of the Virasoro algebra in REDUCE.

395

4. If we have to compute the action of an element z = Z(Z) on
an element v = v(jl, . . . , j~) we have to take into account the
following points:

a. if s’ <0 or i = O then we have to switch i over all of the jl’s
using rule (3), i.e.

W) @MjI, j2,...) = x(jl~(x(i) @v(j2,.. .)) +

[M), XOI)1@v(j2,...)

etc. since z(2)@vo = O or z(s’)@vo = hvo, respectively.

b. if i >0 and i > jl we have to switch i and jl using rule (3)

in order to get a basis element of the Verrna module.

The recursive procedure rnerge.Virasoro_action(action-.rtack,
basis~lement) essentially takes care of the points raised above
and computes, for action~tack = ‘(ii . . . zt) and basis~lement =

‘(jl . . . j~), the action z(it)@ . ..@z(il)@u(jl , j~) asasum

of basis elements (in standard quotient form) in the following way
(with 2 = il, j = jI):

1.

2.

3.

4.

if action-stack is empty then return ‘v . basis~lement as a
standard quotient.

if basis-element is empty then return

nil if 2<0,

- h *merge-Virasoro_action(cdr action_stack,
basis-element) if i = O

- merge _lOrasoro~ction (cdr aclion-stack,
i . basis-element) if i >0.

ifi<O, i= Oori>Oandj< ithenretum

merge.%rasoro.action(i . j . cdr aciion>tack,

cdr basis-element) + mergeSfirasoro_ aclion(
[x(i), x(j)] . cdr action~tack, cdr basis~lement)

If [z (i), z(j)] contains the central element c(0), it can be re-
moved from the actiorustack and applied directly to the cdr

of basis~lement, since c(0) commutes with all x(i), yield-

ing a term c*merge_Virasoro&ction(cdr actionxtack, cdr
basiszlement). Notice that c(0) may only occur in the com-

mutator for i <0.

if i > 0 and I > i then return mer~e.Virasoro~ction(cdr
ac~ion-stack, i“. basis-element) “

lisp procedure merge.Virasoro~ction(action~tack,
basis~lement);

if null action~tack then mksq(’v . basis-element, 1)

else if null basis ~lement then
(Return result for empty basis-element 5)

else(ifi<OVi =OV(i>OAj<i)then
(Cases fori<OVi =OV(i>OAj<i)6)

else merge.~rasoro-action(

cdr actionstack, i . basis-element))
where i = car action~tack,

j = car basisdement$

5. Recall that we expected the values of h and c to be stored in the
algebraic variables h and c.

(Return result for empty basis-element 5) s
(if i = O then multsq(mksq(’h, 1),

merge-virasoro~ction(cdr action-stack, basis clement))

else if i >0 then merge.V7rasoro_action(
cdr action~tack, i . basis~lement))

where i = car action~tack

This code is used in section 4.

6. The central term of the commutator (j3 – j)$i,-j Z/ 12 need
only beaddedifi = –jAj # 1.

(cases fori<OV i=0V(i>0Aj<i)6)s
addsq(merge-1%-asoro ~ction(

i . j . cdr actionstack, cdr basis~lement),

addsq(multsq((j – i) . 1, mergeJ@asorodction(
(i+ j). cdr action~tack, cdr basis~lement)),

ifi=–j Aj#l then

mrdtsq(mksq(’c, 1), mulisq(~T3 –j) .12,

merge-.virasoro-action(cdr action-stack,
cdr basis<lement))) else nil . 1))

This code is used in section 4.

396

