Implementation of multilinear operators in REDUCE and applications in mathematics

Marcel Roelofs Peter K.H. Gragert
University of Twente, Department of Applied Mathematics
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: roelofs@math.utwente.nl

Abstract

In this paper we introduce and implement a concept for dealing with mathematical bases of linear spaces and mappings (multi)linear with respect to such bases, in REDUCE (cf. [1]). Using this concept we give some examples how to implement some well known (multi)linear mappings in mathematics with very little effort. Moreover we implement a procedure operatorcoeff similar to the standard REDUCE procedure coeff, but now for linear spaces instead of polynomial rings.

1. INTRODUCTION

A concept of utmost importance in mathematics is the notion of a linear space, i.e., a space which is supplied with a basis, such that any of its elements can be uniquely written as a linear combination of basis elements. Moreover, linear spaces admit (multi)linear mappings which are completely determined by their action on basis elements. More specifically, if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of a linear space $E, x_{1}, \ldots, x_{m} \in E$ are given by

$$
x_{j}=\sum_{i=0}^{n} x_{j}^{i} e_{i} \quad(j=1, \ldots, m)
$$

and $P: E^{m} \rightarrow F$ is a (multi)linear mapping from E to some linear space F then

$$
P\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{m}=1}^{n} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} P\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)
$$

In spite of its importance REDUCE has no extensive facilities for linear spaces or (multi)linear mappings. In fact, the only possibility is to declare an operator to be linear. Linear operators, however, can only be linear in one argument, and, moreover, must act on very specific linear spaces, namely polynomial rings in one variable. Also other computer algebra system such as Maple or Mathematica only have facilities similar to the linear statement in REDUCE and lack facilities for multilinear operators.

In this paper we will introduce a concept for the representation of more general linear spaces in REDUCE, set up an environment for general multilinear mappings on such linear spaces, and, fi-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1991 ACM 0-89791-437-6/91/0006/0390...\$1.50
nally, implement a procedure operatorcoeff which acts similar to the standard REDUCE procedure coeff but now for linear spaces in our context instead of just polynomial rings.

The paper is organised as follows. In section 2 we will explain the main ideas behind the concept, after which we will implement the main procedure split.f which finds all basis elements in a standard form together with their coefficients. In section 3 we will implement multilinear operators and the procedure operatorcoeff using splitf. In section 4 we will give some examples how multilinear operators can be used to implement some well known (multi)linear mappings in mathematics.
Finally appendix A contains the source of some essential procedures, whereas appendix B contains the source of one of the examples. Both appendices were taken directly from the RWEB sources describing the programs, i.e., files containing a mixture of documentation and pieces of program. Such a file can either be turned into a TEX file with all pieces of program formatted nicely, or into a source file by removing the documentation and putting all pieces of program into the correct order. WEB was originally developed by Knuth to document his $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ program (cf. [2]), but later adapted by Ramsey to suit any Algol like language (cf. [3], anonymous ftp: princeton.edu: ftp/pub/spiderweb.tar.2). Using Ramsey's system we produced a version of WEB suitable for REDUCE and rlisp sources, called RWEB, and which is available by anonymous ftp at utmfu0.math.utwente.nl: ftp/pub/RWEB.

2. LINEAR SPACES AND ANALYSIS OF STANDARD FORMS

We will represent linear spaces in REDUCE by giving its basis as a set of elements of some algebraic operator. For instance, the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ from the previous section could be represented by a set of operator elements $E(1), \ldots, E(n)$. It may even be convenient to use more operators to give a basis. We will see an example of this in section 4.

Using this representation we can represent all kinds of linear spaces in a more or less natural way, whereas still all basis elements can be recognized at once, namely as operator elements of a certain operator. A basis element $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ of a polynamial ring in n variables x_{1}, \ldots, x_{n}, for instance, could be represented by an operator element $P\left(i_{1}, \ldots, i_{n}\right)$ in this way.

In fact, mostly we are not only interested in pure linear spaces, but also in the part of an expression independent of any basis element, which we will from now on denote by the "independent part" of the expression. We can look at it as an extension of the original basis with an additional basis element, namely 1 .

Using this convention for basis elements the main problem for the implementation of multilinear operators and the procedure op-

<standard quotient>	$::=$	(<numerator>.<denominator>)
<numerator $>$	$::=$	<standard form>
<denominator>	$::=$	<standard form>
<standard form>	$::=$	nil \mid <domain element $>\mid$ (<leading term $>$. <reductum>)
<leading term>	$::=$	(<leading power>. <leading coefficient>)
<reductum>	$::=$	<standard form>
<leading power>	$::=$	(<main variable>. <leading degree>)
<leading coefficient>	$::=$	<standard form>
<main variable>	$::=$	<identifier> \|<operator element>
<leading degree>	$::=$	<integer>
<operator element>	$::=$	(<operator name>) \|(<operator name><arguments>)
<operator name>	$::=$	<identifier>

Table 1: Syntax of standard quotients.
eratorcoeff is how to find all basis elements and their coefficients in an algebraic expression, as well as the independent part. For the solution to this problem we recall that algebraic expressions in REDUCE are stored as standard quotients which essentially satisfy the syntax of table 1, which is valid if the switch exp is on (which is the initial setting) and where we have left out the parts that are of no particular interest to us. If the switch exp is off, a main variable may also be some other algebraic expression in prefix notation. It can be easily checked that this setting will not be useful in our case and even may lead to invalid results using the algorithm described below. Therefore we require \exp to be on.

Since we can divide all coefficients of basis elements and the independent part by the denominator of the algebraic expression at the end of the evaluation, it is clear that for our purposes we only need to analyse numerators of algebraic expressions, which are standard forms. Due to the recursive definition of a standard form, we can readily deduce an algorithm to find all of its basis elements and their coefficients as well as the independent part.

For this suppose that we have to analyse a standard form F which is a $\operatorname{sum} \sum_{i} T_{i}$ of standard terms T_{i}, whereas each T_{i} is the product of a leading power P_{i} and a leading coefficient C_{i} and has V_{i} as its main variable. Further suppose that we want to deliver a list L containing the independent part of F together with all basis elements and their coefficients, where oplist is the list of operators, elements of which are allowed as basis elements. It may be clear that this can be done by checking all terms T_{i} separately. Our algorithm for analysing a term T_{2} essentially consists of distinguishing the following 4 cases:

1. T_{i} is nil. This term will not contribute, so we have to take no action.
2. T_{i} is a domain element, in particular is not an operator element of one of the operators on oplist, hence it must be added to the independent part of F. We can check if T_{i} is a domain element by using the REDUCE procedure domainp.
3. V_{i} is an operator element of one of the operators on oplist, hence if V_{i} occurs linearly in T_{i}, i.e., the leading degree is 1 and C_{i} does not contain other operator elements of operators on oplist, we have to update L, i.e., if V_{i} already occurs in L as a basis element we have to add C_{i} to its coefficient, otherwise we have to add V_{i} as a basis element to L with coefficient C_{i}. If V_{i} does not occur linearly we can stop with an error message.
4. V_{i} is not an operator element of one of the operators on oplist (i.e., it is an identifier or an operator element of some other operator). In this case we can recursively examine C_{i} for the occurence of basis elements, if we keep in mind that the
coefficients of basis elements found there have to be multiplied with the additional factor P_{2}.

The actions described above are implemented in the (recursive) proceduresplit.f(form,oplist fact, $k c$ _list), where form is the standard form to be analysed. The third argument fact is a factor (as in case 4) with which the coefficient of some basis element found has to be multiplied. It is clear that is has to be initialized to 1 at top level. The fourth argument $k c$ list is a dotted pair, the car of which is the independent part, the $c d r$ the a list of basis elements with coefficients, being build up so far. Hence $k c$ list has to be initialized to nil . nil. The RWEB source of split_f can be found in appendix A.

3. IMPLEMENTATION OF MULTILINEAR OPERATORS AND THE PROCEDURE OPERATORCOEFF

Algebraic expressions offered to REDUCE have to be evaluated. This evaluation is mainly taken care of by the procedure simp, which simplifies a given expression to a canonical standard quotient (cf. $[1,4])$. One of the ways in which one can influence the process of simplification is by specifying a procedure that has to take care of the simplication of some specific algebraic operator.

By using this fact and using the procedure split.f of the previous section we can easily outline the actions necessary for the simplification of multilinear operators: find the basis elements together with their coefficients of all arguments of the operator and return the sum of all possible combinations of basis elements. More specifically we will introduce the concept of multilinearity in REDUCE by implementing a simplification procedure simp_multilinear for multilinear operators. So, an algebraic operator P will be multilinear if its simpfn is simp_multilinear.

Due to the nature of simplification procedures simp multilinear must return a standard quotient and, moreover, this standard quotient will not be simplified again, so all monomial operator elements of P formed during the process have to be simplified before adding them to the standard quotient. Simply applying the standard REDUCE simplification procedure simp to these monomial operator elements would be unwise, since P is multilinear, i.e., P 's simpfn is simp multilinear, and in this way we will get in an infinite loop. For ordinary cases applying the procedure simpiden, which checks if an operator element has a value and if so, returns this value as a standard quotient, otherwise the operator element itself, will suffice. But since we intend to use multilinear operators in special packages, where monomial operator elements may have to be simplified in a special way, we will add to each multilinear operator the property resimpfn which is the procedure to be used for the simplification of monomial operator elements.

With this information we can outline the two steps which together constitute the essential parts of simp-multilinear.

If we get a multilinear expression to be simplified by the simplification function simp_multilinear we must in the first place analyse all arguments using split.f, in order to split them into a list of basis elements with their coefficients. At the same time we have to keep record of the product of the denominators of all arguments, since the analysis of the arguments is performed on standard forms, and eventually the entire result has to be divided by this product of denominators. These actions are implemented in the (recursive) procedure split_arguments(arg_list,oplist,splitted_list), where arg_list is the list of arguments of the multilinear expression to be analysed and oplist the list of operators, elements of which are allowed as basis elements. The third argument and final result splitted list is a dotted pair, the car of which is the product of denominators of all arguments treated so far and the $c d r$ is the list of splitted arguments in reverse order.

If we define a component of an argument as the independent part or a basis element together with its coefficient, an argument splitted by split.f may be looked at as a list of components and the result of the procedure split_arguments essentially as a stack of component lists completed with the product of denominators. From this stack we are to build a sum of monomial operator elements. We will do this with help of the (mutually recursive) procedures process_arg_stack and process.comp - list, which will described right away. However, before this, we will describe their arguments. In all procedures the argument arg_stack will be a stack of component lists, the car of which has to be treated next, comp list the current component list to be treated, op name the name of the multilinear operator and arg list the list of arguments being build up for the current monomial operator element which has to be multiplied with a factor fact.

The procedure processarg_stack(arg_stack,op_name,arg_list, fact) takes the following actions:

1. If arg stack is empty this means that the argument list arg list we are building is complete, i.e., does not contain any more arguments, so we can apply the resimpfn to the monomial operator element obtained in this way and return its value multiplied with the factor fact.
2. If the argument stack is notempty, we can extend the argument list with all components of the top of the stack and sum the results obtained by applying process_arg stack to the rest of the stack. This is done by calling the procedure process.comp - list.

The procedure process comp_list returns the sum of applying process independent part and processcomponents to the current component list.

Following our definition of multilinearity the procedure process independent part will multiply fact with the independent part and add 1 to the argument list. If, however, there is no independent part, the argument list obtained by adding the independent part would contain a zero, so due to the multilinearity such a term would not contribute, in which case the procedure can return nil . 1 .

The procedure process components returns the sum of applying process_arg_stack to the remaining arg_stack with arg_list extended with the basis element of a component and fact multiplied with its coefficient for each component.

The RWEB source of all procedures described above can be found in appendix A.
With the procedures explained above, the simplification procedure simp_multilinear can be described at once:

1. Apply the procedure split_arguments to the list of arguments of the multilinear operator to get a stack of component lists, as well as the product of the denominators of the arguments.
2. Apply process_arg_stack to the stack obtained in 1 . to get the sum of simplified monomial operator elements.
3. Return the result of 2 . divided by the product of denominators.

As a last step we have to implement a multilinear statement satisfying the syntax
multilinear P(operator | list of operators [,resimp. proc.]);
as to declare P a multilinear operator, where the first argument is the operator or list of operators allowed as basis elements and the optional second argument is the name of the procedure used for the simplification of the resulting monomial operator elements. If the second argument is missing we will take simpiden as the default resimplification procedure.

The actions necessary to declare P multilinear are the following:

1. assign the property simpfn to P with value simp_multilinear.
2. assign the property resimpfn to P with value simpiden if there is no resimplification procedure specified, otherwise the specified one.
3. flag P as full. An operator that is flagged full will have its operatorname also passed to its simplification procedure, otherwise only the arguments of the operator are passed.
4. assign the property oplist to P with value the list of operators allowed as basis elements.

A second and much simpler application of the procedure split f is the procedure operatorcoeff, which is the counterpart for linear bases (in our concept) of the standard REDUCE procedure coeff. Due to the possibly more dimensional or sparse nature of the arguments of the operator elements, the result of applying operatorcoeff to some algebraic expression cannot, contrary to coeff, be only an algebraic list containing coefficients of basis elements, but should also give information about the basis element to which each coefficient belongs.

Therefore, if X is an algebraic expression linear w.r.t. operator elements of some specified operators P_{1}, \ldots, P_{n}, applying operatorcoeff to X w.r.t. the operators P_{1}, \ldots, P_{n} will return an algebraic list containing:

1. as the first element of the list the part of X not linearly depending on operator elements of one of the operators P_{1}, \ldots, P_{n}.
2. followed by zero or more algebraic lists containing a basis element with its coefficient.

The implementation of operator coeff with help of split.f is essentially a matter of dividing all occuring coefficients by the denominator of the expression being analysed and replacing ordinary lists by algebraic lists.

As the implementation of the multilinear statement and the procedure operatorcoeff are rather straightforward we will not give these explicitly.

4. EXAMPLES OF APPLICATION IN MATHEMATICS

As a first example we shall introduce the ordinary tensor product as a multilinear operator in REDUCE. For this suppose that we use the operator X to represent the basis elements of some linear space E and let @ denote the tensor product. Then the declarations

$$
\begin{aligned}
& \text { multilinear @(X); } \\
& \text { infux@; } \\
& \text { precendence@,idifference; }
\end{aligned}
$$

will turn @ into a multilinear infix operator, i.e., a tensor product w.r.t. E. The last statement is meant to take care that @ takes precedenceover the ordinary multiplication, so that expressions like
$X(1) * 3 @ X(2)$ will be simplified to $3 *(X(1) @ X(2))$ instead of $3 * X(1) *(1 @ X(2))$, which is also possible according to our definition of multilinearity.

From this point of view its is also very easy to define symmetric and alternating tensor products. First of all this can be done by specifying a resimplification procedure in the multilinear declaration that takes care of the symmetrization or antisymmetrization, respectively, but in this special case there is second, much simpler, solution, namely by declaring @ to be symmetric or antisymmetric. In doing so, the standard resimplification procedure simpiden will take care of the necessary actions. So we see that only four simple statements suffice to define a symmetric tensor algebra or an exterior algebra in REDUCE.

Our second example is the implementation of the two most important building stones for Hirota's bilinear formalism, which is used frequently in mathematical physics, in REDUCE (cf. [5]). These are tensor products, defined above, and operators like D_{x} defined by

$$
D_{x}(f \otimes g)=f_{x} \otimes g-f \otimes g_{x}
$$

where f and g are functions depending on x, subscripts denoting differentation. If we use the operator F to represent functions and the operator $D X$ to represent D_{x}, the most simple scheme for implementing Hirota's bilinear formalism is the set of statements

```
multilinear @({F,DF}); infix@;precendence@,idifference;
mulilinear DX(@,simpdx);
```

where the procedure simpdx is defined by

> lisp procedure simpdx exprn;
> begin scalar argl,arg2;
> arg1:=caddr exprn; arg $2:=$ cadddr exprn;
> return subtrsq(simpiden list('!@,list('df,arg1,'x),arg2),
> simpidenlist('!@,arg1,list('df,arg2,'x)));
end;
In this way $D X(D X(F(1) @ F(2)))$ will be correctly simplified to $D F(F(1), X, 2) @ F(2)-2 * D F(F(1), X) @ D F(F(2), X)+F(1) @$ $D F(F(2), X, 2)$. It should however be noted that more sophisticated use of Hirota's formalism may require a somewhat more complicated setup.

A third example is the implementation of heighest weight modules of the Virasoro algebra, an important object in physics, in REDUCE (see e.g. [6]). This example is completely worked out in appendix B.

Further examples include the implementation of a package for computations in free Lie (super)algebras and a package for the computation of cohomology of Lie (super)algebras, both of which have been written at our site and make essential use of the concept of multilinear operators (cf. [7]).

5. CONCLUSIONS

At the cost of representing various kinds of expressions as operator elements of some operator, the procedures described in this paper offer a fast and flexible way to implement multilinear operators on these expressions and decompose algebraic expressions into various components.

Moreover simplification of multilinear operators is reasonably efficient. For instance, the simplification of linear operators, implemented with help of multilinear operators, will be executed 2 to 3 times as fast as the simplification of similar linear operators, as implemented in REDUCE.

The procedures described in this paper, are part of a package (which we call the TOOLS package) containing all kinds of procedures facilitating the use of algebraic operators in REDUCE. This package is available by E-mail at the address given on the first page.

Finally, the method of analysing standard forms applied in the procedure split_f can easily be adapted to generalize coeff for the decomposition of algebraic expressions in polynomial rings of more than one variable (actually such a procedure is also part of the TOOLS package).

ACKNOWLEDGEMENTS

The first author would like to thank Gerhard Post for the numerous fruitful discussions on the use of REDUCE in mathematics, which brought about many of the useful ideas.

REFERENCES

[1] A.C. Hearn, "REDUCE 2: A system and Language for Algebraic Manipulation", Proceedings SYMSAM 2 (S.R. Petrick, ed.), 128-133. New York: ACM (1971).
[2] D.E. Knuth, "Literate Programming", The Computer Joumal 27:2 (1984), 97-111.
[3] N. Ramsey, "Literate Programming: Weaving a LanguageIndependent WEB", Comm. of the ACM 32 (1989), 1051-1055.
[4] J. Moses, "Algebraic Simplification: A Guide for the Perplexed", ProceedingsS YMSAM 2 (S.R. Petrick, ed.), 282-304. New York: ACM (1971).
[5] R. Hirota, "Direct Methods in Soliton Theory", in Solitons, 157-176. Berlin: Springer (1980).
[6] V.G. Kac and A.K. Raina,"Bombay Lectures onHighest Weight Representations of Infinite Dimensional Lie Algebras". Singapore: World Scientific (1987).
[7] G.H.M. Roelofs, "The LIESUPER package for REDUCE", memorandum (to appear), Dept. of Appl. Math., University of Twente (1991).

APPENDIX A：RWEB SOURCE OF SOME ESSENTIAL PROCEDURES

1．In this RWEB file we shall give the full implementation of some of the procedures described in section 2 and 3．First of all we will give the source of the main procedure split．f ，which is underlying all other procedures．Following its description in section 2 we need not explain very much anymore．Recall that the factor fact is a standard form and that $k c$ list is the component list being build so far，i．e．is the result and has to be returned if the current standard form is analysed．

```
lisp procedure split f(form,oplist,fact, kc^list);
```

 if null form then \(k c\) _list
 else
 if domainp form then
 addf(multf(fact,form), car kc_list) . cdr kc list
 else <Examine mvar, \(l c\) and red for basis elements 2\(\rangle \$\)
 2．The remaining part of split f corresponds to points 3 and 4 of section 2.

```
\(\langle\) Examine mvar, \(l c\) and red for basis elements 2\(\rangle \equiv\)
if \(\rightarrow\) atom mvar form \(\wedge\) member (car mvar form, oplist) then
        if \(\neg\) ldeg form \(=1 \vee\) get_first_kernel(lc form, oplist) then
            rederr "SPLIT_F: expression not linear"
        else split_f(red form, oplist, fact,
                update \(-k c \_l i s t\left(k c \_l i s t\right.\), mvar form,
                mulff(fact, lc form)))
else split-f(red form, oplist, fact,
            split-f (lc form, oplist,
            multf (fact, !*p2f lpow form), kc_list))
```

This code is used in section 1.

3．For convenience we will write a surrounding procedure split form，which can be called at top level and initializes the third and fourth argument of split＿f．
lisp procedure split＿form（form，oplist）；
split f（form，oplist，1，nil ．nil）\＄
4．For updating the $k c$ list as efficient as possible we need an assoc－like procedure list＿assoc．If applied to an association list L ， this procedure returns the remainder of L ，the car of which would be the result of assoc applied to L ．

```
lisp procedure \(l\) list_assoc(car_exprn, a_list);
    if null a_list then a_list
    else
        if caar alist \(=\) car_exprn then \(a \_\)list
        else list_assoc(car_exprn,cdr a_list)\$
```

5．In order to update the $k c$ list we first have to find out if the kernel w．r．t．which we update the list，is already occuring on it．If so，we have to adjust its coefficient，otherwise we can cons the kernel and coefficient in front of the list．Adjusting a coefficient is performed by using the procedures list＿assoc and rplaca in order to avoid rebuilding of the entire list．The reader should verify that rplaca cannot do any harm in this application，since it is replacing a list．

```
lisp procedure update_kc_list(kc_list, kernel, coefficient);
    (if restlist then
        \(\ll r p l a c a\left(r e s t \_l i s t\right.\), caar rest_list.
            addf(cdar rest List, coefficient)); \(k c\) list \(\gg\)
        else car kc_list . (kernel . coefficient) . cdr kc』list)
            where rest \(\_\)list \(=l i s t \_a s s o c\left(k e r n e l, c d r k c \_l i s t\right) \$\)
```

6．Next we will give the essential procedures for the imple－ mentation of the procedure simp＿multilinear：split＿arguments， process＿arg＿stack and processcomplist，the description of which can be found in section 3 ．

We start with the implementation of the procedure split＿arguments．Notice that the arguments of arg＿list need to be simplified，since split＿arguments is called from within a simplifica－ tion procedure．
lisp procedure split＿arguments（arg＿list，oplist，splitted＿list）；
if null arg＿list then splitted＿list
else split＿arguments（cdr arg＿list，oplist， multf（denr first＿arg，car splitted＿list）．
split＿form（numr first＿arg，oplist）．cdr splitted＿list）
where first＿arg $=$ simp！＊car arg \perp list $\$$
7．For convenience we will write a surrounding procedure split＿operator，in order to hide the last two arguments of split＿arguments．Recall that the list of operators allowed basis elements is stored as the property oplist of the multilinear operator considered．
lisp procedure split＿operator u ；
split＿arguments（cdr u，get（car u，＇oplist）， 1. nil）\＄
8．The procedures process＿arg＿stack and process＿comp Iist are also thoroughly described in section 3，so there is no need to give too much explanation here neither．Notice，however，that the coefficients of any component and hence also fact are given as standard forms．As the result is a standard quotient we have to convert fact into a standard quotient using ！＊f2q．
lisp procedure process＿arg＿stack（arg＿stack， op＿name，arg＿list，fact）；
if null arg＿stack then multsq（！＊f2q fact， apply $1\left(\right.$ get（op＿name，＇resimp＿fn），op＿name ．arg list $\left.^{\prime}\right)$ ）
else process＿comp Iist（car arg＿stack， cdr arg＿stack，op＿name，arg＿list，fact）\＄

9．Processing the component list consists of processing the inde－ pendent part and all the components．
lisp procedure process．comp＿list（comp List，arg＿stack， op＿name，arg 1 list，fact）；
addsq（processindependent part（car complist， arg＿stack，op＿name，arg 」ist，fact）， processcomponents（cdr complist， arg＿stack，op＿name，arg」ist，fact））\＄

10．Following our description of multilinearity，processing the independent part of an argument boils down to multiplying fact with it and adding the argument 1 to arg list．If，however，the independent part is nil，we can return nil immediately．
lisp procedure process independent part（independent part， arg＿stack，op＿name，arg Iist，fact）；
if null independent part then nil ． 1
else process＿arg＿stack（arg＿stack，op＿name，
1．arg list，mulff（fact，independent part））\＄
11. The procedure processcomponents has to process the comp list until there are no more components of the argument being processed.

```
lisp procedure processcomponents(comp _ist, arg_stack,
                    op_name, arg_list,fact);
if null comp list then nil . 1
else addsq(process components(cdr comp 」ist,
arg_stack, op_name, arg_list,fact),
process_arg_stack(arg_stack, op_name,
caar complist . arg list,
mulff(fact, cdar comp list)))\$
```

12. To hide the auxiliary arguments of process_arg_stack we will write a surrounding procedure build_sum for it. Recall that arg list and fact have to be initialized to nil and 1, respectively.

lisp procedure build_sum(op_name, arg_stack);

process_arg_stack(arg_stack, op_name, nil, 1)\$
13. With the procedures written above, the simplification function simp_multilinear can be written at once. We recall that the result of split_arguments is a dotted pair, the car of which is the product of the denominators of all arguments, the $c d r$ the list of splitted arguments, an argument stack. Moreover, notice that we are sure that the car of u is the name of the operator, since we flagged this operator full.

> lisp procedure simp_multilinear u;
> quotsq(build_sum(car u, cdr splitted_list), !*f2q car splitted_list)
> where splitted_list $=$ split_operator $u \$$

APPENDIX B: VERMA MODULES OF THE VIRASORO ALGEBRA

1. The Virasoro algebra W is given by a basis $\{z\} \cup\left\{e_{i} \mid i \in \mathbb{Z}\right\}$ and relations

$$
\begin{equation*}
\left[z, e_{i}\right]=0 \quad \text { and } \quad\left[e_{i}, e_{j}\right]=(j-i) e_{i+\jmath}+\frac{1}{12}\left(j^{3}-j\right) \delta_{i,-j} z \tag{1}
\end{equation*}
$$

A Verma module $V_{h, c}$ of W is a heighest weight module of W with heighest weight vector v such that

$$
\begin{equation*}
e_{0} \cdot v=h v, \quad z \cdot v=c v, \quad e_{i} \cdot v=0 \quad(i<0) \tag{2}
\end{equation*}
$$

and the action of $e_{i} e_{j}$ equals

$$
\begin{equation*}
e_{i} e_{j}=\left[e_{i}, e_{j}\right]+e_{j} e_{i} \tag{3}
\end{equation*}
$$

One can proof that a basis of $V_{h, c}$ is given by

$$
\left\{v_{i_{1} . . i_{k}}=e_{i_{1}} \cdots e_{i_{k}} \cdot v \mid k \in \mathbb{N}, 0<i_{1} \leq \ldots \leq i_{k}\right\}
$$

The main problem of working with Verma modules is how to write an element $e_{j} \cdot v_{i_{1} \ldots i_{k}}$ as a sum of basis elements using the rules described above, since the number of terms tends to explode rather quickly. In this file we will give an implementation of Verma modules of the Virasoro algebra in REDUCE.
2. For this purpose we represent the basis elements $v_{i_{1} \ldots i_{k}}$ of $V_{h, c}$ as the algebraic operator elements $v\left(i_{1}, \ldots, i_{k}\right)$ (in this way the heighest weight vector v will be represented by the operator element $v())$. The basis elements $e_{i}(i \in \mathbb{Z})$ and z of the Virasoro algebra are represented by the operator elements $x(i)$ and $c(0)$, respectively. Finally, the action - will be represented by an algebraic operator @. The reader can easily verify that the solution to the problem posed in the first section is the implementation of an appropriate simplification procedure for the action @.

The first thing to be noticed is the bilinearity of the action @ w.r.t. the operators x, c and v. Therefore we will declare the operator @ to be multilinear using the multilinear statement of the TOOLS package. The argument simp_Virasoro_action is the name of the simplification procedure for the monomial action.

Moreover we declare @ to be an infix operator with precedence after the operator idifference and we flag @ as right in order to facilitate multiple action.

```
algebraic ;
multilinear!@({x,c,v},simp_Virasoro_action);
infux!@;precedence(!@,idifference);
```

lisp flag('(!@), 'right)\$
3. At top level the action of a basis element x of the Virasoro algebra on a basis element v of the Verma module is rather simple: if $x=c(0)$ the action is just $c v$ due to the fact that $c(0)$ is central, otherwise we must compute the action as a sum of basis elements using rules (1), (2) and (3). This last step is performed by the procedure merge_Virasoro_action, which will be described in the next section. Notice that we expect the values of c and h to be stored in the algebraic variables c and h.

```
lisp procedure simp_Virasoro_action u;
    (if \negmember(car x,'(c x))\vee carv}v\not='v the
        rederr("VIRASORO: invalid arguments")
    else if car x = 'c then multsq(mksq('c,1), simp v)
        else merge_Virasoro_action(cdr x,cdrv))
            where }x=\operatorname{cadr}u,v=caddr u
```

4. If we have to compute the action of an element $x=x(i)$ on an element $v=v\left(j_{1}, \ldots, j_{k}\right)$ we have to take into account the following points:
a. if $i<0$ or $i=0$ then we have to switch i over all of the j 's using rule (3), i.e.

$$
\begin{aligned}
x(i) @ v\left(j_{1}, j_{2}, \ldots\right)= & x\left(j_{1}\right) @\left(x(i) @ v\left(j_{2}, \ldots\right)\right)+ \\
& {\left[x(i), x\left(j_{1}\right)\right] @ v\left(j_{2}, \ldots\right) }
\end{aligned}
$$

etc. since $x(i) @ v()=0$ or $x(i) @ v()=h v()$, respectively.
b. if $i>0$ and $i>j_{1}$ we have to switch i and j_{1} using rule (3) in order to get a basis element of the Verma module.
The recursive procedure merge_Virasoro_action(action_stack, basis element) essentially takes care of the points raised above and computes, for action_stack $=$ ' $\left(i_{1} \ldots i_{l}\right)$ and basis_element $=$ ' $\left(j_{1} \ldots j_{k}\right)$, the action $x\left(i_{i}\right) @ \cdots @ x\left(i_{1}\right) @ v\left(j_{1}, \ldots, j_{k}\right)$ as a sum of basis elements (in standard quotient form) in the following way (with $i=i_{1}, j=j_{1}$):

1. if action_stack is empty then return ' v. basis_element as a standard quotient.
2. if basis_element is empty then return

$$
- \text { nil if } i<0,
$$

- $h * m e r g e _V i r a s o r o _a c t i o n\left(c d r ~ a c t i o n _s t a c k, ~\right.$ basis_element) if $i=0$
- merge_Virasoroaction(cdr action_stack, i. basis_element) if $i>0$.

3. if $i<0, i=0$ or $i>0$ and $j<i$ then return
merge_Virasoro_action(i .j.cdr action_stack, cdr basis_element) + merge_Virasoro_action $($ $[x(i), x(j)] \cdot$ cdr action_stack, cdr basis_element $)$

If $[x(i), x(j)]$ contains the central element $c(0)$, it can be removed from the action_stack and applied directly to the $c d r$ of basis_element, since $c(0)$ commutes with all $x(i)$, yield-
 basis.element $)$. Notice that $c(0)$ may only occur in the commutator for $i<0$.
4. if $i>0$ and $j>i$ then return merge_Virasoro_action(cdr action_stack, i . basis_element)
lisp procedure merge_Virasoro_action(action_stack, basis_element);
if null action_stack then $m k s q(' v$. basis_element , 1) else if null basis_element then

〈Return result for empty basis.element 5〉
else (if $i<0 \vee i=0 \vee(i>0 \wedge j<i)$ then
\langle Cases for $i<0 \vee i=0 \vee(i>0 \wedge j<i) 6\rangle$
else merge_Virasoro_action (
cdr action_stack, i. basis_element))
where $i=$ car action_stack, $j=$ car basis_element $\$$
5. Recall that we expected the values of h and c to be stored in the algebraic variables h and c.
\langle Return result for empty basis_element 5$\rangle \equiv$ (if $i=0$ then multsq($m k s q(' h, 1)$,
merge_Virasoro_action(cdr action_stack, basis_element)) else if $i>0$ then merge_Virasoro_action(cdr action_stack, i . basis_element)) where $i=$ car action_stack
This code is used in section 4.
6. The central term of the commutator $\left(j^{3}-j\right) \delta_{i,-j} z / 12$ need only be added if $i=-j \wedge j \neq 1$.
\langle Cases for $i<0 \vee i=0 \vee(i>0 \wedge j<i) 6\rangle \equiv$ addsq(merge_Virasoro_action(
$i . j$. cdr action_stack, cdr basis_element), adds $q($ mults $q((j-i)$. 1, merge_Virasoro_action $($
$(i+j) . c d r$ action_stack, cdr basis_element) $)$,
if $i=-j \wedge j \neq 1$ then
mults $q\left(m k s q\left({ }^{\prime} c, 1\right), m u l t s q((j \uparrow 3-j) .12\right.$, merge_Virasoro_action(cdr action_stack, cdr basis_element))) else nil . 1))
This code is used in section 4.

