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Abstract

The data f70w adequacy criteria, originally proposed

for a simple language and Pascal, have been

substantially modified to provide more thorough

analysis for code wifh exfensive use of pointers and

complex control sirucfures, such as code frequently

writ fen in the C language. A prototype fool, TACTIC,

has been builf fo exiracf clef-use associations from C

programs, and fo defermine whefher test sets are

adequafe with respect to the new criteria. TACTIC

successfully analyzes data flow of individual functions
in C programs with single-level poinfer references.

1 Introduction

Test set adequacy assessment based on data flow

analysis has been proposed by several authors [5,

7, 9, 12, 13], and at least two systems have been

implemented. Rapps and Weyuker [12, 13]

introduced a family of test set adequacy criteria

known as the data flow criteria. Their original

theory used a simple language which did not
include pointers, structured variables, or

subroutine calls.
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The theory was later extended to Pascal [3], and

implemented in the ASSET system [2, 4]. Laski

has implemented the STAD system [6], to assess

context fesfing as described in [7].

Although ASSET handles almost any

syntactically correct Pascal program, it uses a

simplistic model of pointer and array references,

and of interprocedural data flow, In this paper

we modify the theory of data flow testing in

order to deal specifically with pointer references,

while retaining the underlying philosophy of the

original theory. We use C as our working
language, and describe a prototype version of a

data flow test adequacy tool called TACTIC (Test

Analysis and Coverage Tool, Intended for C).

The purpose of this paper is to explain the

extended theory of data flow testing, and to

describe the current version of TACTIC. We do

not describe the details of the data flow analysis

or aliasing algorithms used in TACTIC.

2 Data Flow-Based Test Adequacy

The motivation behind data flow-based
adequacy assessment is to check whether test
cases exercise program paths along which data

flows. If a variable is assigned a value at some

point in a program, and no path using that value
is ever exercised, it is unlikely that a faulty

assignment would be detected.
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The data flow criteria require that a program’s

test data cause the traversal of subpaths from a

variable definition (an occurrence at which the

variable is given a value) to either some or all of

its uses (occurrences at which the variable’s value

is referenced). A definition (in the remainder of

the paper, this will be called a clef) and use

connected by such a subpath is a clef-use

association (the concept will be defined formally

later in the paper).

The calculation of clefs and uses is complicated

by the use of indirect references, aliases, and

procedure calls, since the actual storage
referenced by a given identifier may not be

determinable at compile time. Previous data flow

testing work has either ignored pointers and

interprocedural flow, or has made simplifying

assumptions about their behavior. This can result

in either over- or under-estimation (or both) of

clef-use associations. For example, ASSET

assumes that a Pascal pointer reference is distinct
from the actual storage it is referencing, and

makes no attempt to connect two pointers that
might be referencing the same storage. As a

result, ASSET can err in two opposite directions

in clef-use analysis. On the one hand, some

potential clef-use associations are not detected

because the def and the use are not of the same

syntactic object, even though they are related
through a pointer reference. On the other hand, a

path from a def to a use of a given variable might

contain an intervening assignment that kills the

original clef. If the intervening assignment is to an

alias of the variable, ASSET would not consider it
a def of the variable, and incorrectly declare the

existence of an association.

Another type of mistake is made by systems that

analyze the semantics of pointers, but perform

overly conservative alias analysis. This approach

would generate many spurious clef-use

associations relating clefs and uses that, during

execution, could never actually represent the

same storage.

3 The Data Flow Criteria for
Languages with Pointers

3.1 Static Analysis and Def-Use
Associations

The goal of data flow-based evaluation of test

adequacy remains the same, whether or not the

programming language has pointers: to

determine if test cases exercise clefs, uses, and the

paths connecting them. However, static analysis

cannot always determine the precise set of def-

use associations that exist in a program with

pointers. Objects of the C language’s

fundamental arithmetic types (including char,
int, float, and double) can be referred to by two

types of occurrences:

1. a program variable occurrence is any occurrence

of a variable whose type is one of the arith-

metic types.

2. a pointer re)erence occurrence is a dereferenced

expression of type pointer, such as *p or
*(p + 4).

In addition to these types of occurrences that

refer to storage, we are interested in occurrences

of pointer variables themselves:

3. a pointer variable occurrence is an occurrence of

a variable of type pointer.

Notice that *p includes both a pointer variable

occurrence and a pointer reference occurrence.

Occurrences are classified by the role they play in

the program. An occurrence is a use if execution

of the code containing the occurrence causes the

memory location referred to by the occurrence to

be read. An occurrence is a def if execution of the

code containing the occurrence causes the

memory location to be written. The constructs

permitted in C sometimes lead to clefs and uses

appearing in unusual places. For example, the
parenthesized expression in if (a=b+c ) is

simultaneously an assignment statement and a
predicate. The occurrence of a is both a def and a

use. In the implicit assignment x++, x is both a
use and a clef. Any occurrence of a variable or

pointer in a function argument is a use.
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The extensive use of pointers in many programs

written in C creates numerous situations in which

static analysis cannot determine a unique object

that a pointer will reference at run-time. The

following definitions distinguish between

situations in which there may or may not be

ambiguity.

Defn 1: The alias set of a pointer expression at

a program point is the set of all program

variables that the expression could refer to at

that point, as determined by static analysis of

the code.

Defn 2: A def (or use) occurrence is a definite

def (respectively, definite use) of vanable V
if static analysis determines that the object

being defined (respectively, used) is
unambiguously the program variable V. (This

includes the case that the occurrence is a

pointer reference whose alias set contains a

single program variable V.)

Defn 3: A def (or use) occurrence is a possible

def (respectively, possible use) of program

variable V if the occurrence is a pointer
reference whose alias set contains more than

one element, one of which is V. Note that a

definite def (respectively, use) is not a

possible def (respectively, use).

For convenience, we will sometimes refer to a

possible or definite def of an object as a def of

that object. Similarly, we will sometimes refer to a

possible or definite use of an object as a use of

that object.

Note two implications of the above definitions:
first, by defining alias sets at a program point, we

accept some imprecision in alias computation

that might be avoidable with path-sensitive alias

computation. Second, the ideal concept of an
alias set is not necessarily realized by an
implemented algorithm for the computation of

aliases. If an alias algorithm overestimates alias

sets, then the set of possible clefs is enlarged, and

a variable may appear in an alias set in which it
really does not belong. The effect for TACTIC will

be evident later in this section, when we define

clef-use associations.

We will sometimes refer to an occurrence of a
dereferenced pointer *p as a use or a def of *p,

when in fact it is the location in memory to which

p is pointing that is being used or defined. Any

occurrence of a pointer vanable p inside a

dereferenced expression is a definite use of p,

since the value of p must be read to calculate the

location that *p refers to. Thus, *p and * (p+5)

are definite uses of p. An assignment to a pointer

variable p, as in the statement p = &x;, is a def

of p (as it would be if p were an ordinary

variable), but not a def of *p. The statement

*P = 17; contains a def of *p, clefs of the

variables in p’s alias set, and a use of p. The

construct while (*s++ = *t++) contains uses

of t and s, clefs of t and s, uses of *t and its

aliases, clefs of *s and its aliases, and finally, in

the predicate, uses of *s and its aliases.

We use a fine-grained form of the program’s

control flow graph to define clef-use associations.

The graph consists of one node for each non-

control statement, such as an assignment

statement, and appropriate nodes to model the

flow of each control statement. There is an edge

from node nl to node n2 provided it is possible

for n2 to be executed immediately after nl.

Expressions containing certain C constructs must

be represented by several nodes to assure that all
flows of control are captured. For example, the if

statement

if (a?b:c) D;

else E;

is represented by the graph shown below. An if

statement with an ordinary predicate would be
represented as a single node with two exiting

edges, but the conditional expression predicate

requires one node for each of a, b, and c. .
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Defn 4: A path in a control flow graph is a

finite sequence of nodes (nl,...,nj), j >2, such

that there is an edge from ni to ni+l, i=l,...,l-l.

A path is loop-free if all its nodes are distinct.

A path is simple if it is either loop-free, or if

the first j-1 nodes in the path are all distinct,

and nj is the same node as nl.

A clef-use association is supposed to link a place
in the program where a variable is defined with a

place where that same def is used. For this to

occur, there must be some path from the def

location to the use location on which the variable

is not redefined. Such a path is a de/-cknr path. To

define clef-use associations in the presence of

pointers, we need a notion of clef-clear path that

covers the situation where a variable def might be

killed by an assignment to an alias of the variable.
Because of aliasing, static analysis may not be

able to determine if a given variable will be

defined (at runtime) along a path. We need to

distinguish between paths where we know that a

given variable is not redefined, and paths where

there is a possibility that the variable is not
redefined.

Recall that a def of *p is considered to be a

possible def of each of the elements in its alias set,
unless the alias set contains a single program

variable V. In that case it is a definite def of V.

Defn 5: A path (n, kl,...,$, m), j > 0 is a

definite clef-clear path from node n to node

m w.r.t. a variable V provided there are no

clefs (definite or possible) of V in the sequence

between n and m.

Defn 6: A path (n, kl,...,$, m), j ~ O is a

possible clef-clear path from node n to node
m w.r.t. variable V provided there are no

definite clefs of V on any node in the sequence

between n and m, and there is at least one
possible def of V in the sequence between n

and m.

The unqualified term def-ckar path refers to either

a possible clef-clear path or a definite clef-clear

path.

We now define a clef-use association in general,

and then distinguish four types of associations,

based on the knowledge obtainable statically

about the clef, the use, and paths from the def to

the use.

Defn ‘Z A clef-use association w.r.t. V is a

triple (n,m,V) where

a) n contains a (definite or possible) def of V,

b) m contains a (definite or possible) use of

v,
c) there is at least one (definite or possible)

simple, clef-clear path w.r.t. V from n to

m.

The following four types of clef-use associations

form the basis for the definition of our criteria in

the next section. They are specializations of Defn
7

Defn 8; A clef-use association is strong if n has

a definite def of V, m has a definite use of V,

and every clef-clear path from n to m is

definite clef-clear w.r.t. V.

Defn 9: A clef-use association is firm if n has a

definite def of V, m has a definite use of V, at
least one path from n to m is definite clef-clear

w.r.t. V, and at least one path from n to m is

possible clef-clear w.r.t. V.

Defn 10 A clef-use association is weak if n has

a definite def of V, m has a definite use of V,

and no path from n to m is definite clef-clear

w.r.t. V.

Defn 11: A clef-use association is very weak if

either the def or the use or both are possible
instead of definite.

We shall sometimes refer to a clef-use association

simply as an association. Notice that the

definitions of strong, firm, weak and very weak

associations partition the set of associations into

four disjoint classes,

In a strong association, the def and the use are
both of the same variable, there is at least one
known clef-clear path from the def to the use, and
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all paths from the def to the use are

unambiguously either clef-clear or not clef-clear

with respect to the defined variable.

Finn associations differ from strong ones in that

there is at least one path from the def to the use

whose clef-clearness cannot be ascertained at

compile time, in addition to at least one path that

is known to be clef-clear.

In a weak association, none of the clef-to-use paths

can be determined at compile time to be
unambiguously clef-clear, but the def and use are

still known to be of the same variable.

Finally in a very weak association, either or both

of the def and the use are indirect references that

could correspond to more than one specific

variable, and might not be the same.

The concept of an association defined above

always relates to a program variable, i.e., to a

variable that refers to specific storage. However,
in one type of situation, it is also convenient to
have a concept of association with respect to a

pointer reference *p, These cases exist when a def

of *p is followed by a use of *p, the alias sets at

the def and use sites are identical, and there is at

least one path from the def to the use on which

there is no def of any of the aliased variables, of

*p, or of p.

Defn 12: A clef-use association w.r.t. a pointer
reference *p is a triple (n,m,*p), where

a)

b)

c)

d)

n contains a def of *p,

m contains a use of *p,

the alias set of *p at n contains at least

two elements, and is equal to the alias set

of *p at m,

there is at least one simtie ~ath from n to
m that is clef-clear w.r.t~ ev~ry variable V
in the alias set of *p, and clef-clear w.r.t. p.

Note that the prohibition of clefs of any variable
in *p’s alias set implies that there can be no clefs

along the path of a dereferenced pointer *q

whose alias set at the point of definition includes

some element also in *p’s alias set.

Pointer reference associations are intended to

model data flow via a pointer reference that can

be analyzed statically even though it is not

possible to determine which particular program

variable is actually being referenced. Note that

whenever a pointer reference association exists,

there also exist very weak associations w.r.t. each

variable in the pointer’s alias set.

proc(conditionl,condition2)

int conditionl,condition2;

{
int x, y, z, *p;

24: z = 17;

25: x = 13;

26: if (condition) {

28: p = &y;

29: “p= z;

}

else (

35: if (condition)

36: p = &x;

37 else

38: p = &z;

40: “p=7+z;

42: y = 53;
43: p = &x;

}
49: X=x+y+z;

50: *p=*p+5;

51: y=x+y;

Figure 1. Example C Program

Figure 1 shows a simple C program that is

intended to illustrate the concepts defined above.

The program has been constructed to contain

examples of most types of clef-use associations. A

control flow graph for the program appears in
Figure 2.

The def of z at line 24 participates in three

associations: (24,29,z) and (24,40,z) are strong,

while (24,49,z) is firm. The latter is firm (rather
than strong) because both paths leading from the

false branch of condition pass through the

statement 40: *P = 7+2; . Since the aliases of
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+

24: Z = 17;
25: X = 13;

TRUE

TRUE

36: p = &X; 38: p = &Z;

+

28: p = &y; 40: *p=7+z;

29: ‘p= Z; ~ 42: y = 53;

43: p = &x;

49: X=x+y+z;

50: “p= *p+ 5;

51: y=x+y;

1

Figure 2. Control Flow Graph for C Program

*P at thk point are {x,z), that statement is a The latter two associations point up one of the

possible de~ of z, making these paths possible
clef-clear paths w.r.t. z. The association is
therefore firm instead of strong. Note that the

path segments in question (<24, 25,26,35,36,40,

42,43,49> and c24, 25,26,35,38,40,42,43, 49>)

are both possible clef-clear, even though the
former does not include a redefinition of z and

the latter does (at statement 40). The reason for

this is that alias information is entirely associated

with a point rather than a path, and at statement
40 the alias set is {x, z}.

The def of y at line 42 participates in three

associations. (42,49,y) is strong, since the path

from the def to the use is clef-clear with respect to
y, (42,51,y) is weak, since the only path from the

def to the use passes through statement 50, where

y is included in the alias set of *p. Finally,

(42,50,y) is a very weak association, since the use

in line 50 is a possible use of y, as an alias of *p.

. .
inaccuracies that results from computing aliases

at program points. Path sensitive static analysis

could show that *p can never actually be

pointing toy along the path c42,43,49,50>. Thus
the association (42,51,y) is “strong” in the sense

that during execution the def of y at line 42 will

always reach line 51. Furthermore, (42,50,y) is a

spurious association since whenever 50 is
reached from 42, p is pointing to x. (29,51,y) is a

different type of spurious association. Here the
problem is that p is pointing toy along the path

c29,49,50,51 >. Although line 29 includes a def of

y, that def is killed at statement 50, and never
reaches 51. Static analysis computes that the

aliases of *p at line 50 are {x,y}, and hence

concludes that c29,49,50,51 > is possible clef-clear

w.r.t. y,

A complete list of the clef-use associations in the

program is shown below.
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Strong Associations

(24,29,z) (24,40,z) (29,49,y) (42,49,y)

(28,29,p) (28,50,p) (36,40,p) (38,40,p)

(43/50,p)

Firm Associations

(24,49,z) (25,49,x)

Weak Associations

(29,51,y) (42,51,y) (49,51,x)

Very Weak Associations

(29,50,y) (42,50,y) (50,51,y) (40,49,2)

(40,49,X) (49,50,X) (50,51,X)

3.2 Run-Time Analysis and the Test

Adequacy Criteria

We emphasize here that the definitions of def-

clear path, clef-use association, and the strengths

of associations are based entirely on static
characteristics of the program. The strength of an

association depends on whether the def and the

use can be unambiguously determined at

compile-time to be a specific variable, and on
statically derived information about the paths
from def to use. At run-time, the critical issue is
to determine which of the statically-defined def-

use associations are covered or exercised when

the program is executed on a test set.

Defn 13: A clef-use association (n,m,V) is said

to have been exercised by a test case t if

1. execution oft causes control to arrive at node

n where a value is assigned to the variable V,

2. control eventually reaches node m, where V is

referenced and its value is used in a computa-

tion or predicate evaluation, and

3. the value of V is not modified in any statement

executed after the value is assigned to V in n
until the value is used in m.

A set of def-use associations is said to have been

exercised by a test set T provided that every def-

use association in the set is exercised by at least

one member of T.

To define the criteria, we also need the concept of

a test case exercising a def

Defn 14: A def of variable V at node n is

exercised by test case t if t exercises some
clef-use association (n,m,V), i.e., if there exists

some node m such that (n,m,V) is a clef-use

association, and t exercises that association.

We now define the criteria. For all-clefs, there will

be only one type of criterion, while for all-uses,

there will be 4 types, corresponding to the four

types of clef-use associations.

Defn 15 Test set T satisfies the all-definitions

(all-clefs) criterion for program P if for each
def d in the program, d is exercised by some t
in T.

Defn 16 Test set T satisfies, respectively,

strong all-uses, firm all-uses, weak all-uses,
or very weak all-uses for program P if,

respectively, every strong, firm, weak, or very

weak clef-use association in P is exercised by
T.

Note that since the four types of clef-use

associations are disjoint, satisfaction of the four

types of criteria are independent. For example, it

is conceivable for a test set to satisfy strong and

very-weak all-uses, while not satisfying firm and

weak all-uses.

3.3 Evaluating Thoroughness of Tests

Static analysis of a C program produces a list of
clef-use associations that must be satisfied during

test execution for the program to be considered

adequately tested. However, all types of

associations are not of equal importance for

thorough testing. The essential rationale for using

data flow coverage to assess the adequacy of test

cases is the belief that thorough program testing

requires seeing the effect of the value produced

by each computation.
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In a typical use of TACTIC, the tester would first

check to see whether strong all-uses is satisfied. If
so, and depending on available resources, the

tester would move “down” the criteria checking

the satisfaction of the next strongest type of

association until either all criteria were satisfied,

or testing resources were expended. In this way,

the most important associations are given

preferential treatment in the sense that if it is not

possible to exercise all associations, then the ones

that represent definite flows of data must be

exercised, while the ones which only represent

potential flows may remain unexercised.

Strong and firm associations express a

guaranteed relationship between def and use: a

quantity is definitely defined, definitely used,

and there is a definite (syntactic) clef-clear path

from the def to the use. Failure to execute a strong

or firm association indicates either that all def-

clear paths are infeasible, or that the test set really
lacks data that could expose a potential fault.

Weak and very weak associations express
relationships that correspond to a potential def-

use association. Hence failure to execute one of

these associations is a less severe criticism of the

quality of a test set. There are two possibilities
when a test set fails to execute a given weak or

very weak association. First, it may be that none

of the paths from the def to the use was executed.

Second, it may be that one or more of the paths

was executed, but that the potential clef-use

association did not occur, i.e., either the path was
not clef-clear, or the executed def and the

executed use were not of the same variable (in the

case of a very weak association). In the first

situation, the test set has a real deficiency; the

clef-use association never had a chance to be

executed. In the second situation, although the

association has not been exercised, and hence the
criterion not satisfied, at least the code connecting

the def and use has been exercised.

For the program of Figure 1, inputs are simply

pairs of Boolean values. The test set
T = {(1,0), (0,0), (0,1)} exercises all paths in the

flow graph, and also satisfies strong, firm, and
weak all-uses. Although every path in proc is
feasible, the very weak association (42,50,y) can

never be exercised. This association exists

because the aliases of *p at line 50 are x and y,
making *p a possible use of both x and y.
However, when control reaches line 50 on the

path <42,43,49,50>, p is pointing to x, so (42,50,y)

is not realized. As already mentioned in Section

3.1, this is a spurious association, generated

because aliases are computed at individual lines

in the program.

This example shows that a test set that exercises

every path in a program does not necessarily

exercise every clef-use association, in contrast to

the original theory, where a test set exercising all

paths is guaranteed to exercise every association.

In practice, test set adequacy is assessed by

looking at coverage results of all four types of

criteria, giving greatest weight to the strong and

firm associations, somewhat less to the weak

associations, and least to the very weak. If a given

test set fails to exercise many (or in some cases

any) strong or firm associations, the tester should

consider this important evidence that either more

testing is needed, or that analysis should be done

to determine whether or not the unexecuted

strong and firm associations are in fact

unexecutable. If only very weak associations

remain unexecuted, the tester may decide to stop

testing, since the remaining associations may be

spurious.

4 The TACTIC System

TACTIC currently runs on SUN 4 workstations.

The system consists of three main components: a

pre-execufion analyzer that performs data flow

analysis on the source code, calculates clef-use

associations, and instruments the tested program;

an execution monifor that traces the program’s

execution, records paths, and checks off exercised
clef-use associations; and the external user

inte~ace.

4.1 Pre-Execution Analysis

Pre-execution analysis starts with a C souxe file,

and produces two results: clef-use association
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information based on static data flow analysis of

the code, and a traceable object module. Three

separate processing steps are applied to the
source code. Initially source-to-source

transformations are performed that replace the

original C code with code that is more amenable

to static analysis. The output of this step is used

by both of the following steps. The

transformations facilitate the static analysis, and

permit more accurate tracing and reporting of

clefs and uses in the executed program. They are

implemented in the Program Transformation

Toolkit of the Maintainer’s Assistant [1]

developed at Siemens research laboratories. The

transformations first convert the soume program

to an abstract syntax tree representation, then

transfom the tree, and finally convert the

transformed tree back into source code.

The second processing step is the static analysis

that identifies clefs, uses, and clef-use

associations. The algorithms for calculating def-

use associations perform program-point-specific

alias computations, for one level of pointer

indirection. The current version of TACTIC (July

1991) does not calculate interprocedural

associations. We intend to add this capability

shortly, based on the algorithms for aliasing and

reaching definitions described in [11].

Instrumentation is accomplished by compiling

the transformed source program with the GNU-
Emacs C compiler (GCC), using the AE option

[8]. This compilation produces a traceable object
module with hooks that allow the AE tool to

recover memory addresses referenced during

execution. The addresses are used by the TACTIC

run-time monitor to detect the exercise of def-use

associations.

4.2 Execution Monitoring

Because TACTIC monitors indirect reference def-

use associations, its run-time monitoring is quite

different from that done by the ASSET system. In

ASSET, covering a clef-use association means that

one of a set of path segments is exercised. Hence,
an association can be verified by instrumenting a

program’s basic blocks with probes, and noting at

run-time whether or not the blocks that make up

one of the necessary segments are executed.

However, for all the new pointer criteria except

strong all-uses, such block instrumentation is not

sufficient. The firm and weak all-uses criteria can

be satisfied by the execution of a path between

the def and the use that is possible clef-clear,

provided the def is not killed on the path. Since

some executions of a path segment may kill the

clef, while others do not, merely checking

whether a path segment is executed is not

enough. It is also necessary to check whether the

def remains alive at the use site. For very weak

associations, it is also necessary to check at run-

time whether the def and the use actually

represent the same variable.

During execution, the GCC-compiled program is

traced under control of AE. References to

memory generated by a read or write operation

are monitored by AE, and mapped into
references to source program variables or pointer

references, and their occurrences on specific lines

of the program. When a write and a read

operation are found to refer to the same memory

object, and there is no intervening write, then a

clef-use association has been exercised, and is
marked off in the list of static associations.

In addition to dynamic checking of indirect

references for inter-block associations, TACTIC

also analyzes and checks for infra-block clef-use

associations. In ASSET, intra-block associations

are not analyzed, since all the code within a block

is executed whenever the block is entered, and

the meaning of indirect references is the same at
run-time as at compile-time. However, with the

analysis of pointer aliases, situations can occur in

which a block is executed but a particular
association within the block is not exercised. For

example, consider the program of Figure 1. At
line 50, the alias set of *p is {x,y}. The def of *p

generates the two very weak associations

(50,51,x) and (50,51,y). Since at line 50, p will be
pointing at x for some inputs, and at y for others,
a given test case will exercise either one or the

other of the associations, even though both

statements 50 and 51 are always executed. A
related situation can occur for a weak association

if it is based on exactly one possible clef-clear
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path that is contained entirely within a single

block. Such a path contains a possible def of the

variable of the association; if the def actually

redefines the variable during an execution of the

block, then that execution does not exercise the

association. This is another example

demonstrating that a test set exercising all paths

does not necessarily exercise all associations.

4.3 User Interface

The TACTIC interface is designed to present
maximum information about the progress of

program testing, using the data flow criteria as
adequacy criteria. It provides a simple interface

for executing the test program either on

individual test cases supplied from the keyboard,

or on test cases from a file.

Since data flow adequacy is defined in terms of
execution of certain control flow paths, a

graphical view of the program is provided to

help the tester visualize the extent of coverage

achieved, determine the locations of unexe~ised
clef-use associations, and derive test cases to

exercise them. Figure 3 shows the TACTIC screen

after a file called conditions. c, containing the

three functions main, compute, and weather-

report, has been loaded by TACTIC. The

displayed graph shows the program’s top level,

namely the three procedures and the control flow

that connects them. At the left of the screen are
four scrollable windows showing, respectively

strong, firm, weak, and very weak clef-use

associations. This information can be shown for

the entire program currently loaded (as in Figure

3), or can be restricted to associations from just

one function of the program.
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Figure 3. TACTIC Screen Initial Program Load
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+
rcbr 81mbrella = “dm”t td.. e’;

+
if (m!+eratUrm ; m)

witrella . ‘tie”;

wthar = ‘_.cold.;

weather = ‘cold”!

The pop-up menu below the control flow graph

allows the user to control the level of detail of the

displayed graph. Selecting a single node and

applying Expand “opens up” the selected node,
by replacing it with the complete lowest level
control flow it contains. An example of this is

shown in Figure 4, in which the weathet-
zeport node has been expanded. The Expand-

one-level operation replaces a node with all its

top-level control structures. It is also possible to

remove detail from the displayed graph;

applying the Contracf operation to a set of nodes
that previously resulted from an Expand collects
the selected nodes back into a single node.

Figure 4 also shows how TACTIC maps from the

list of clef-use associations to the control flow
graph. The user has selected the clef-use

association (weather 6 40) from the Strong

window, and asked TACTIC to locate that

association in the graph. As a result, the boxes

containing the code that defines and uses weather

are highlighted. If the user requests a display of a
clef-use association when a control flow graph is
too large to fit completely on the screen, TACTIC

attempts to move the graph so that the def and

use nodes are both visible.

In addition to displaying static properties of the

tested code, TACTIC provides an interactive

interface for running test cases and displaying
the results. Figure 5 shows the run-test pop-up

menu just after the test case (85,10,0,75) has been

supplied to the program. The test argument box

allows the user to type inputs that are read from

“standard in”. When the test case is executed, the

control path that it follows is highlighted in the

graph, at whatever level of abstraction is



currently displayed. The user can at any time

request that the graph be cleared of all displayed

paths, or that the path followed by any
previously executed test case be highlighted. It is

also possible to display the cumulative path

coverage of test cases, thus giving a quick visual

overview of the extent of code coverage achieved

by the tests.

Figure 5 also illustrates how TACTIC displays

clef-use coverage information. When the test case
runs, clef-use associations that are exercised are

boxed. When the criterion in effect is all-clefs, the

exercise of any clef-use association involving a
given def results in the boxing of all associations

that involve that clef. A pull-down menu from the
DUS button (in the upper left of the screen) gives

the user the options of removing exercised def-
use associations from the windows, purging the

DU state (i.e., removing the effect of any

previously executed test cases), saving the DU

state, or setting the criterion to either all-uses or

all-clefs. If the criterion is changed after some

tests have been run, TACTIC updates the clef-use

association windows

coverage according to

5 Summary

to acm>ately reflect the

the new criterion.

The data flow adequacy criteria, originally

proposed for a simple language and Pascal, have

been substantially modified to analyze languages

like C with extensive use of pointers. A prototype

tool, TACTIC, has been built to extract clef-use

associations from C programs, and to determine

whether test sets are adequate with respect to the

new criteria. TACTIC successfully analyzes data

smcq
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I ueathe. ( 6 40 )

.nbml la ( 7 40 )

weather ( 13 40 )

umb?ella ( 14 40 )

ueatb ( 18 40 )
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Ueattm ( 31 40 )

Fit-m
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Figure 5. TACTIC screen Run Test Case I
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flow of individual functions in C programs with
single-level pointer references. We are currently

working on extending both the theory and the

TACTIC tool to handle arrays and structures, and

to deal with interprocedural data flow in the
presence of pointers.
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