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Abstract

An experimental comparison of the effectiveness of the

all-uses and all-edges test data adequacy criteria was

performed. A large number of test sets was randomly

generated for each of nine subject programs with sub-

tle errors. For each test set, the percentages of (exe-

cutable) edges and definition-use associations covered

were measured and it was determined whether the test

set exposed an error. Hypothesis testing was used to

investigate whether all-uses adequate test sets are more

likely to expose errors than are all-edges adequate test

sets. All-uses was shown to be significantly more effec-

tive than all-edges for five of the subjects; moreover, for

four of these, all-uses appeared to guarantee detection of

the error. Further analysis showed that in four subjects,

all-uses adequate test sets appeared to be more effective

than all-edges adequate test sets of the same size. Lo-

gistic regression showed that in some, but not all of the

subjects there was a strong positive correlation between

the percentage of definition-use associations covered by

a test set and its error-exposing ability.

1. Introduction

Considerable eflort in software tesliug research has fo-

cussed on the development of software test data ade-

quacy criteria, that is, criteria which are used to de-
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terrnine when software has been tested “enough”, and

can be released. Numerous test data adequacy criteria

have been proposed, including those based on control

flow analysis [22, 23], data flow analysis [26, 28, 31],

and program mutation [8]. Tools based on several of

these criteria have been built [7, 14], and many the-

oretical studies of their formal properties and of cer-

tain aspects of their relation to one another have been

done [6, 13, 15, 29, 31]. But surprisingly, relatively little

work has focussed on the crucial question of how good

adequate test sets (as determined by various adequacy

criteria) are at exposing errors in programs.

In this paper, we describe an experiment which ad-

dresses this question. In Section 1.1, below, we define

a notion of the effectiveness of an adequacy criterion,

which, for a given erroneous program and specification,

measures the likelihood that an adequate set will expose

an error. The higher the effectiveness of criterion C, the

more confidence we can have that a program which has

been tested on a C-adequate test set without exposure

of an error is indeed correct. The primary goal of this

study was to measure and compare the effectiveness of

several adequacy criteria for a variety of subject pro-

grams.

We limited our attention to three adequacy criteria,

the all-edges criterion (branch testing), which is fairly

widely used in practice, the all-uses criterion, which is

considered promising by many testing researchers, and

the “null criterion” (which deems any test set to be

adequate). In addition to measuring the effectiveness of

the criteria, our experiment design allowed us to address

t Wo

●

●

related questions:

If all-uses adequate test sets are more effective than

all-edges adequate test sets, is this simply because

they are bigger, or are they more effective even for

test sets of a fixed size?

What is the relationship between the percentage of

definition-use associations covered by a test set and

the test set’s effectiveness?
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We believe that the results reported here should be of

interest both to testing researchers and to testing prac-

titioners. While practitioners may be primarily inter-

ested in the experiment’s results and their implications
for choosing an adequacy criterion, researchers may also

find the novel design of the experiment interesting.

In the remainder of this introduction, we define effec-

tiveness, review the definitions of the relevant adequacy

criteria, and survey related work. Section 2 describes

the design of the experiment, Section 3 describes the

statistical analysis techniques used, and Section 4 de-

scribes the subject programs on which the experiment

was performed. The experiment results are presented

in Section 5 and discussed further in Section 6.

1.1 Effectiveness of an adequacy crite-

rion

Consider the following model of the testing process:

● A test set is generated using some test data gener-

ation technique.

● The program is executed on the test set, the out-

puts are checked, and the adequacy of the test set

is checked.

● If at least one test case exposes an error, the prc

gram is debugged and regression tested; if no errors

are exposed but the test set is inadequate, addi-

tional test cases are generated.

● This process continues until the program has been

executed on an adequate test set which fails to ex-

pose an error.

At this point, the program is released. Although the

program is not guaranteed to be correct, the “better”

the adequacy criterion, the more confidence one can

have that it is correct.

We now define a measure of the “goodness” of an

adequacy criterion which captures this intuit ion. Let P

be an incorrect program whose specification is S, and let

C bean adequacy criterion. Consider all the test sets T

which satisfy C for P and S. Some but not necessarily

all of these test sets will expose an error. If a large

percentage of the C-adequate test sets expose an error,

then C is an effective criterion (for this program.)

More formally, we define the effectiveness of adequacy

criterion C for a program P which is incorrect with re-

spect to specification S, denoted PC(P, S), to be the

probability that a C-adequate test set T will expose at

least one error in P. Similarly, we can relativize this no-

tion to a particular test generation strategy and define

the effectiveness of criterion C for P and S relative to

test generation strategy G’ to be the probability that a

C-adequate test set generated by G will expose an error

in P. Weiss has defined a more general notion of the

effectiveness of an adequacy criterion [35], of which our

definition is a special case.

Suppose that it has been established that for a wide

variety of programs, criterion Cl is more effective than

criterion C2. Let P be a program and let T be a test

set for P. If P is incorrect, then the probability that T

exposes an error is greater if T is Cl-adequate than if T

is only C2-adequate. Consequently, if T does not expose

an error, the likelihood that P is incorrect is smaller

if T is Cl-adequate than if T is C2-adequate. Thus,

the more effective a criterion is, the more confidence its

adequate test sets can inspire in the correctness of the

program under test.

Most previous comparisons of adequacy criteria have

been based on investigating whether one criterion sub-

sumes another. Criterion Cl subsumes criterion C2 if,

for every program P and specification S, every test set

which satisfies Cl also satisfies C2. It might seem, at

first glance, that if Cl subsumes C2, then Cl is guaran-

teed to be more effective than C2 for every program.

This is not the case. It may happen that for some

program P, specification S, and test generation strat-

egy G, test sets which only satisfy C2 may be better

at exposing errors than those which satisfy Cl. Ham-

let has discussed related issues [20]. The relationship

between subsumption and error-detecting ability is ex-

amined further in [16].

1.2 Definitions of the adequacy criteria

This study compares the effectiveness of three adequacy

criteria: the all-edges criterion, the all-uses criterion,

and the null criterion. Two of these criteria, all-edges

and all-uses, are members of a family of criteria, some-

times called structured testing criteria, which are based

on requiring the test data to cause the execution of rep-

resentatives of certain sets of paths through the flow

graph of the program under test. The null criterion con-

siders any test set to be adequate; thus application of

the null criterion is the same as not using any adequacy

criterion at all. We have included the null criterion in

this study in order to allow comparison of all-edges and

all-uses adequate sets to arbitrary sets.

The all-edges criterion, also known as branch testing,

demands that every edge in the program’s flow graph

be executed by at least one test case. All-edges and its

variants (such as 80’%0 branch coverage) are the most

widely used formal test data adequacy criteria (other

than the null criterion). All-edges is known to be a

relatively weak criterion, in the sense that it is often

easy to devise a test set which covers all the edges in a

buggy program without exposing the bug.
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Data flow testing criteria [26, 28, 31] require the test

data to exercise paths from points at which variables are

defined to points at which their values are subsequently

used. Occurrences of variables in the program under

test are classified as being either definitions, in which

values are stored, or uses, in which values are fetched.

The all-uses criterion [31] demands that the test data

cover every definition-use association (dua) in the pro-

gram, where a dua is a triple (d,u,v) such that d is a

node in the program’s tlow graph in which variable v is

defined, u is a node or edge in which v is used, and there

is a definition-clear path with respect to v from d to u.

A test case t covers dua (d,u,v) if t causes the execution

a path which goes from d to u without passing through

any intermediate node in which v is redefined. 1

One problem with the all-edges and all-uses criteria,

as originally defined, is that for some programs no ade-

quate test set exists. This problem arises from infeasible

paths through the program, i.e. paths which can never

be executed. The problem is particularly serious for

the all-uses criterion because for many commonplace

programs (e.g. for any program having a for loop in

which the lower and upper bounds are non-equal con-

stants) no all-uses adequate test set exists. Frankl and

Weyuker defined a new family of criteria, the feasible

data jlow testing criteria, which circumvents this prob-

lem by eliminating unexecutable edges or definition-use.

associations from consideration [13, 15], and showed

that under reasonable restrictions on the program un-

der test, all-uses* subsumes all-edges* (where the * de-

notes the feasible versions of the criteria). As pointed

out above, this does not imply that all-uses* is more

effective than all-edges* for a particular test generation

strategy.

It is important to note that the original (unstarred)

criteria are not really used in practice: they do not ap-

ply to those programs which have infeasible edges or

duas, and they are the same as the starred versions

for other programs. Ideally, testers should examine the

program to eliminate infeasible edges and duas from

consideration. In reality they often stop testing when

some arbitrary percentage of the edges or duas has been

covered, wit bout worrying about whet her the remain-

ing edgesiduas are infeasible, or whether they indicate

deficiencies in the test set. For this reason, we felt that

it was also important to examine the relationship be-

tween the percentage of the edgeslduas covered by a

test set and its likelihood of exposing an error. In the

remainder of this paper, we will, by abuse of notation,

refer to the all-edges* and all-uses* criteria as all-edges

and all-uses, respectively.

1.3 Related Work

There have been several studies of the fault-detection

ability of various test data selection strategies, but few

studies of the fault-detection ability of adequacy cri-

teria. Many previous investigations have been analy-

ses [10, 33, 24] or simulations [9, 21, 32] using hypo-

thetical programs, fault distributions, and testing cri-

teria, but only a few have been experiments evaluating

real testing strategies on real programs with naturally

occurring faults [9, 17, 34].

As Hamlet pointed out [20], many previous exper-

iments may give misleading results because they rely

on a small number of test sets to represent each test-

ing technique. While there have been several studies

of related software quality issues which did use rigor-

ous statistical techniques, e.g. [2, 25, 34], none of these

were aimed at evaluating the effectiveness of adequacy

criteria, and so their designs could not be used for our

experiment.

2 Experiment Design

The goal of this experiment was to measure and com-

pare the effectiveness of various adequacy criteria for

several different subject programs. To measure the ef-

fectiveness of criterion C, we can

●

●

●

●

generate a large number of C-adequate test sets,

execute the subject program on each test set,

check the outputs and consider a test set exposing

if and only if the program gives the wrong output

on at least one element of the test set, and

calculate the proportion of C-adequate test sets

which expose an error.

If the proportion of C l-adequate test sets which expose

an error is significantly higher than the proportion of

C2-adequate test sets which expose an error, we can

conclude that criterion Cl is more effective than C2 for

the given program and test generation strategy.

In the present experiment, we generated test sets ran-

domly and compared the all-edges, all-uses, and null cri-

teria. For each program, we identified the unexecutable

edges and duas and eliminated them from considerate ion,

then recorded the number of executable edges (duas)

covered by each test set. This allowed us to measure

the effectiveness of all-edges and all-uses and to investi-

gate the correlation between percentage of edges (duas)

covered and error exposing ability.

1The formalism we use here is that given in [15].
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For each subject program, we first generated a large

set of test cases called the universe. We then exe-

cuted each test case in the universe, checked its output,

recorded whether it was correct in a table, and saved

a trace of the path executed by that test case (gen-

erated by ASSET [12, 14]). Finally, we selected and

checked test sets of size S by randomly selecting S ele-

ments of the universe, looking them up in the table to

see whether at least one of them exposed an error, and

using ASSET to check how many executable edges or

duaa were not covered by any of the paths correspond-

ing to the test set.

Some care was necessary in choosing appropriate test

set sizes. If the generated test sets were too small, then

relatively few of them would cover all edges (all duas),

so the results would not be statistically significant. On

the other hand, if the test sets were too large, then al-

most all of them would expose errors, making it difficult

to distinguish the effectiveness of the two criteria. To

overcome this problem, we generated our test sets in a

sequence of “batches” where each batch contained sets

of a fixed size. After observing which sizes were too

large or too small, we generated additional batches in

the appropriate size range, if necessary. This “stratifi-

cation” of test sets by size also allowed us to investigate

whether all-uses is more effective than all-edges for test

sets of a given size.

The design of the experiment impcsed several con-

st raints on the subject programs.

The input domain of the program had to have a

structure which allowed for some reasonable way

to generate the universe of test cases. For exam-

ple, while there are several reasonable ways to ran-

domly generate matrices, it is less clear how to ran-

domly generate inputs to an operating system.

Because of the large number of test cases, it was

necessary to have some means of automatically

checking the correct ness of the outputs.

The failure rate of the program had to be low; i.e.

errors should be exposed by relatively few inputs

in the universe. Otherwise, almost any test set

which is big enough to satisfy all-edges will be very

likely to expose an error. We were surprised to

discover that many of the programs we considered

as candidates for this experiment (including many

which had been used in previous software quality

studies) had to be rejected because of their high

failure rates.

The available tool support (ASSET) imposed an ad-

ditional constraint, namely, that the subject programs

had to be either written in Pascal or short enough to

translate manually. When translation was necessary,

program structure was changed as little as possible.

Note that our experiment considers the effect iveness

of all-edges adequate sets in general, not the effective-

ness of those all-edges adequate sets which fail to satisfy

all-uses. This models the situation in which the tester

releases the program when it has passed an all-edges ad-

equate test set without caring whether or not the test

set also sat isfies all-uses. In an alternative model, the

tester would classify a test set as all-edges adequate only

if it satisfied all-edges and did not satisfy all-uses.

Also note that our design introduces a bias in fa-

vor of all-edges. We used test set sizes which were big

enough to insure the selection of a statistically signifi-

cant number of all-uses adequate sets, not just a signif-

icant number of all-edges adequate sets. This resulted

in the selection of many all-edges adequate sets which

were bigger, thus more likely to expose an error, than

the all-edges adequate sets which would be selected by

a practitioner using our model of the testing process.

3 Data Analysis Techniques

Recall that we are interested in comparing the effec-

tiveness of all-uses to all-edges and to the null criterion

for each of a variety of subject programs. We treat

each subject program’s data as that of a separate ex-

periment. Throughout this section, when we refer to

the effectiveness of a criterion we mean its effectiveness

for a particular program. For clarity, we describe the

techniques used to compare all-uses with all-edges. The

techniques for comparing all-uses to the null criterion

are identical.

If we have randomly chosen IV C-adequate test sets,

and X is the number of these that exposed at leaat one

error, then p-c = X/N, the sample proportion, is a good

estimator of pc, the effectiveness of C. In fact, if the

probability that a C-adequate test set exposes an error

is governed by a binomial distribution, then p-c is a min-

imum variance unbiased estimator of the effectiveness of

c [3].

3.1 Overall comparison of criteria

The first quest ion posed was whether or not all-uses

adequate test sets are significant y more effective than

all-edges adequate test sets. Let p; be the proportion

of all-uses adequate sets which exposed an error and let

p. be the proportion of all-edges adequate sets which

exposed an error. If p; is significantly higher than p.

then there is strong statistical evidence that all-uses is

more effective than all-edges. If not, the data do not

support this hypothesis.
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This observation suggests that hypothesis testing

techniques are suit able for answering this quest ion. In

hypothesis testing, a research, or alternative, hypothe-

sis is pitted against a null hypothesis, and the data are

used to determine whether one hypothesis is more likely

to be true than the other. Our research hypothesis, that

all-uses is more effective than all-edges, is expressed by

the assertion p, < pu. The null hypothesis, that the two

criteria are equally effective, is expressed by p~ = PU. It

is important to realize that the goal in hypothesis test-

ing is quite conservative; we uphold the null hypothesis

as true unless the data is strong testimony against it,

in which case we reject the null hypothesis in favor of

the alternative.

Since we are using the sample proportions as estima-

tors of the effectiveness of the criteria, our decision to

accept or reject the null hypothesis reduces to a deci-

sion as to whether or not the difference between the

sample proportions is significantly large. In particular,

we should reject pe = pu if and only if j. —@. is greater

than some prespecified critical value.

We use a standard statistical technique [5] for estab-

lishing the critical values for each experiment. Call a

sample sufficiently large if there are at least five expos-

ing and five unexposing test sets in both the all-edges

and all-uses samples. For sufficiently large samples,

the difference fi. – $. is approximately normally dis-

tributed, enabling us to calculate critical values, signifi-

cance probabilities and confidence intervals for pti — pe.

The significance probabilities indicate the strength of

the evidence for rejection of hypotheses, and the confi-

dence intervals give an indication of how much better

one criterion is than the other, if at all. The lower

the significance probability, the stronger the evidence

that all-edges is less effective than all-uses. To be con-

servative in our interpretation of the data, we chose a

significance level of a = 0.01, meaning that if the null

hypothesis is rejected, the probability that all-edges is

actua/ly w effective as all-uses is at most 1/100.

In several of our subjects, every all-uses adequate test

set exposed an error, so that the normal approximation

could not be used. In these cases, we calculated con-

fidence intervals separately for p. and p.. Inspection

of the data showed that al-uses wsa clearly more ef-

fective than all-edges for these subjects, making further

analysis unnecessary.

3.2 Comparison of criteria for fixed size

test sets

The second question we asked dealt with the effect of

test set size on the previous results. The all-uses ade-

quacy criterion in general requires larger test sets than

does the all-edges criterion. Since the probability that a

test set exposes an error increases as its size increases,

for some subjects all-uses may be more effective than

all-edges simply because it demands larger test sets.

On the other hand, the increased effectiveness of anu-

ses may result from the way the criterion subdivides

the input domain [24].

To determine whether differences in the effectiveness

of the criteria were primarily due to differences in the

sizes of adequate test sets, we analyzed the data on

a “by-size” basis. In Table 5, we display the sample

data for each of the subject programs by size, arranging

close sizes into groups. The intent of this table is to give

descriptive evidence of the relationship between all-uses

and all-edges for fixed size test sets. Where there was

enough data and p. # 1, we also did hypothesis testing

on the individual size groups and reported the results

in the right hand columns. Similar “by-size” analyses

of all-edges and all-uses versus the null criterion are

presented in [36].

3.3 Relationship between coverage and

effectiveness

The last question to be answered is whether there is a

relationship between the extent to which a test set sat-

isfies the all-uses criterion and the probability that the

test set will expose an error. This is the most difficult of

the questions, and the technique we employed to answer

it is logistic regression.

A regression model gives the mean of a response vari-

able in a particular group as a function of the numerical

characteristics of the group. If Y is the response vari-

able and X1, X2,... Xn are the predictors, we denote

the mean of Y, given fixed values Z = xl, z2, . . . %,

by NYIE. Ordinary linear (or higher order) regression

models are not suitable for data in which the response

variable takes on yes-no type values such aa “exposing”

or “not exposing”, in part because regression equations

such as

PYp = @o +Plzl +P2X2 + “ “ ./3.% (1)

put no constraints on the value of PYIZ. The right hand

side can take on any real value whereas the left hand

side must lie between O and 1. The right hand side

is also assumed to follow a normal distribution whereas

the left hand side generally does not. There are other se-

rious problems that make linear regression a poor choice

for modeling proportions [1].

Logistic regression overcomes these problems and

provides many important advantages as well. In logistic

regression the left hand side of equation 1 is replaced

by the logit of the response variable,
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1041%.)
and the right hand side can be any real-valued function

of the predictors.

In our analysis, we treated test set size and fraction

of coverage of all-uses as the predictor variables, and

used logistic regression to determine the extent, if any,

to which the probability y of exposing an error was de-

pendent upon these variables. We used maximum likeli-

hood estimation as the method of inference, and various

chi square tests as measures of goodness of fit.

4 Subject Programs

Our nine subjects were obtained from seven programs,

all of which had naturally occurring errors. Three of

our programs were drawn from the Duran and Ntafos

study [9]; high failure rates made the rest of the Duran-

Ntafos subjects unsuitable for our experiment. We ob-

tained more than one subject from two of the programs

by using different input distributions and by instru-

menting different procedures.

The subjects are described briefly below, and more

thoroughly in [36]. Table 1 gives the numbers of edges,

duas, executable edges, executable duas, and propor-

t ions of failure causing test cases in each universe.

Subjects f indl and f ind2 both have Buggyfind [4]

as the subject program. Buggyfind takes as input an

array of integers and an array index. In f indl, the test

universe consist ed of 1000 randomly generated arrays,

with sizes in range [0..10], elements in range [1..100],

and index in range [1. array-size]. In f ind2 the universe

contained one test case for each array with elements

selected from {O, 1,2, 3,4} and range [0. . . n], for each

n from O to 5.

text fmt is the text formating program analyzed in

[18], with all the problems except N5 and N6 corrected.

The universe consisted of one thousand 15-character

long pieces of text, each generated by repeated uniform

random selection of a character from the set consisting

of letters, blank and newline characters.

transpose is the transpose routine of a sparse-matrix

package [19, 27]. The universe had 1,000 randomly gen-

erated R by C matrices (O ~ C ~ R ~ 50) with densities

between O and 66%.

strmtchl and strmtch2 are string matching routines,

each with an error which we had previously inadver-

tently introduced. st rmt chl failed whenever the null

pat tern was input, and st rmt ch2 had the maximum

r

matinvl 78 298 74 106 0.001

mat inv2 30 81 30 62 0.001

strmtchl 13 49 13 49 0.032

strmtch2 14 56 14 .54 0.062

t extfmt 21 50 21 42 0.052

transpose 44 97 42 88 0.023

Table 1: Subject Programs

pattern length shorter than specified. The universe con-

sisted of all (text, pattern) pairs on a two letter alphabet

with text length and pattern length ranging from zero

to four. 2

mat invl, mat inv2, and determinant were ma-

trix manipulation programs based on LU decomposi-

tion [30], written by graduate students. The programs

failed on some, but not all, singular matrices 3. In

mat invl and determinant the lower-upper decompo-

sition procedure was instrumented, while in matinv2

the back-solving procedure was instrumented. In each

case, the universe consisted of 1,000 square matrices

with sizes uniformly selected between O and 5 and with

ititeger entries uniformly selected between O and 24.

5 Results

Tables 2, 3, and 4 summarize the results of the com-

parisons of effectiveness of all-uses to all-edges, all-uses

to null, and all-edges to null. The columns labeled N.,

NU, and N. give the total numbers of adequate test sets

for criteria all-edges, all-uses, and null, respectively, and

the columns labeled P., pi, and P; give the proportions

of these which expose errors. The sixth column of each

table gives the significance probability to three signifi-

cant digits, where applicable; an entry of **** indicates

that hypothesis testing could not be applied. A “yes”

in the column labeled “p= < pu?” indicates that anu-

ses is significantly more effective than all-edges. The

columns labeled “pn < pu ?“ and “pn < pe ?“ answer

analogous quest ions. Where the answer to this question

is “yes”, confidence intervals are shown in the last col-

umn. In those cases where the normality assumption

held, a confidence interval for the difference in effec-

2We had previously discovered that all-uses was guaranteed to
discover the error in stnntchl, but did not know how effective
the other criteria were for this program.

3 ~teK~tiWly, the detefiut and matrix inversion ProW~

did not fail on the same set of inputs.
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Subj. N, @e Nu PU Sig. P= < pu ? Confidence

detm 169 0.041 7 1.000 **** yes [0.00,0.08] VS. [0.52,1.00]

findl 1678 0.557 775 0.667 0.000 yes [006,0.i6]

find2 3182 0.252 43 0.256 0.476 no

matinvl 3410 0.023 76 1.000 **** yes [0.02,0.03] VS. [0.94,1.00]

mat inv2 4789 0.001 4406 0.001 0.500 no

strmtchl 1584 0.361 238 1.000 **** yes [0.33,0.39] VS. [0.98,1.00]

strmtch2 1669 0.535 169 0.615 0.015 no

textfmt 1125 0.520 12 1.000 **** yes [0.48,0.56] VS. [0.68,1.00]

transpose 1294 0.447 13 0.462 0.456 no

Table 2: All-edges vs. All-uses

Subj. N. F. N. p. Sig. p. < p. ? Confidence

detm 6400 0.032 7 1.000 **** yes [0.03,0.04] VS. [0.52,1.00]

findl 2000 0.484 775 0.667 0.000 yes [0.13,0.24]

find2 3500 0.234 43 0.256 0.366 no

matinv 1 4000 0.020 76 1.000 **** yes [0.01,0.03] vs. [0.94,1.00]

matinv2 5000 0.001 4406 0.001 0.500 no

strmtchl 2000 0.288 238 1.000 **** yes [0.26,0.31] VS. [0.98,1.00]

strmtch2 2000 0.456 169 0.615 0.000 yes [0.06,0.26]

textfmt 2000 0.391 12 1.000 **** yes [0.36,0.42] VS. [0.68,1.00]

transpose 3000 0.407 13 0.462 0.336 no

Table 3: Null Criterion vs. All-uses

Subj. N. “ N. “ Sig. p. < P. ? Confidence

detm 6400 0.0:2 169 O.0~~ 0.255 no

findl 2000 0.484 1678 0.557 0.000 yes [0.03,0.12]

find2 3500 0.234 3182 0.252 0.040 no

matinv 1 4000 0.020 3410 0.023 0.179 no

matinv2 5000 0.001 4789 0.001 **** no

strmt chl 2000 0.288 1584 0.361 0.000 yes [0.03,0.11]

strmtch2 2000 0.456 1669 0.535 0.000 yes [0.04,0.12]

textfmt 2000 0.391 1125 0.520 0.000 yes [0.08,0.18]

transpose 3000 0.407 1294 0.447 0.006 yes [0.00,0.08]

Table 4: Null Criterion vs. All-edges
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Subj. size N. @e N“ fiu Sig. P, <p. ?

detm 1-6 5 0.000 0 - -

7-12 5 0.000 0 - -

13-18 10 0.000 0 - -

19-24 25 0.040 1 1.000 ****

25-30 73 0.000 0 - -

>30 51 0.118 6 1.000 **** yes

findl 1-5 211 0.299 1 0.000 ****

6-10 470 0.440 97 0.474 0.270 no

11-15 497 0.616 285 0.653 0.151 no

16-20 500 0.718 392 0.727 0.383 no

find2 1-5 205 0.088 0--

6-10 482 0.168 0 - -

11-15 496 0.228 4 0.000 ****

16-20 1999 0.296 39 0.282 0.575 no

matinvl 1-6 205 0.000 0 - -

7-12 484 0.015 6 1.000 **** yes

13-18 550 0.013 7 1.000 **** yes

19-24 579 0.021 12 1.000 **** yes

25-30 595 0.024 14 1.000 **** yes

31-35 498 0.032 16 1.000 **** yes

36-40 499 0.042 21 1.000 **** yes

matinv2 1-5 4090 0.001 3714 0.001 0.500 no

6-10 699 0.001 692 0.001 ****

strmtchl 1-5 194 0.155 0 - -

6-10 416 0.298 77 1.000 **** yes

11-15 484 0.388 161 1.000 **** yes

16-20 490 0.469 0 ---

strmtch2 1-5 238 0.366 1 1.000 ****

6-10 447 0.438 16 0.438 0.500 no

11-15 486 0.591 49 0.592 0.495 no

16-20 498 0.649 103 0.650 0.492 no

bextfmt 1-5 99 0.354 0 - -

6-10 258 0.399 0 - -

11-15 348 0.511 2 1.000 ****

16-20 420 0.640 10 1.000 **** yes

ranspose 10-20 359 0.306 1 0.000 ****

22-32 935 0.501 12 0.500 0.503 no

Table 5: All-edges vs. All-uses By Size

tiveness between the two criteria (e.g. PU – P.) is given, effective than the null criterion; and for five subjects

while in the other cases. confidence intervals around the all-edges was more effective than null. Note that for

effectiveness of each criterion are shown. For example, st rmt ch2 all-uses would be considered more effective

the first row of Table 2 indicates that for determinant than all-edges at 98% confidence. Further interpreta-

we are 99% confident that the effectiveness of all-edges tion of these results is given in Section 6.

lies between O and 0.08, whereas that of all-uses ~es

between 0.52 and 1.0. The second row indicates that
In Table 5 the test sets are grouped according to their

for f indl we are 99% confident that the effectiveness
sizes. In four of the nine subjects, all-uses adequate

test sets are more effective than all-edges adequate sets
of all-uses is lmtween 0.06 and 0.16 greater than that of

all-edges.
of the same (or similar) size. Thus it appears that in

four of the five subjects for which all-uses was more

effective than all-edges, the improved effectiveness can

Examination of these tables shows that for five of the be attributed to the inherent properties of all-uses, not

nine subjects, all-uses was more effective than all-edges just to the fact that all-uses adequate test sets are larger

at 99~o confidence; for six subjects, all-uses was more than all-edges adequate test sets.
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Subject f(c, s)

detm ****

find 1 –7.234 + 6.866c – 0.657s + 0.732cs

find2 –3.826 – 0.009s 2 – 0.707C2S + 1.028cs

matinvl 17.940 – 584.6c + 572.0c2 + 0.005cs2 – 0.265cs

mat inv2 –29.513 + 24.146cs – 7.225 cslns – 24.182c2 lns

strmtch 1 –1.579 – 19.093c2 + 139.3c16 – 282.1c26 + 201.5c39

+16.8161ns – 17.346 c41ns + 16.5981n clnzs

strmtch2 ****

textfmt 2600.2 + 1125.Oln c – 5203.lc + 3668.2c2 – 1043.3c3 – 0.116 c31ns

transpose –6.830 – 52.3591n c – 213.41n2 c + 1.932c6 ins

Table 6: Logistic Regression Results

The results of logist ic regression are shown in Table 6.

Each regression equation is of the form

Prob(eaposing) =
exp f(sl c)

1 + exp j(s, c)

where f (s, c) is a function of the predictor variables, s,

the test set size, and c, the fraction of duas covered by

the test set. The table gives the functions f(s, c) for

each subject program for which we were able to find a

good-fitting model. The asterisks in the table entries

for determinant and strmt ch2, indicate that the data

are so scattered that any function that gives a good fit is

too complex to offer much insight into the relationship,

if any exists, between coverage and effectiveness.

Inspection of the graphs of these functions, given

in [36], shows that for four of the subjects (f indl,

textf mt, strmt chl, and transpose), there is strong

posit ive correlation between coverage and effectiveness,

but that for the remaining three there is no correlation

at all.

6 Conclusion

We have described an experimental comparison of the

effectiveness of randomly generated test sets which are

adequate according to the all-edges, all-uses, and null

test data adequacy criteria. Our experiment was de-

signed to allow for comparison of adequacy criterza, not

just of test generation techniques. The data was ana-

lyzed rigorously, using well established statistical tech-

. niques. For five of the nine subjects, all-uses was sig-

nificantly more effective than all-edges, and for six of

the nine, all-uses was significantly more effective than

the null criterion. All-uses adequate test sets appeared

to be more effective than all-edges adequate sets of the

same size in four of the nine subjects. Logistic regres-

sion showed that in some, but not all of the programs,

there was a strong correlation between the percentage

of’ duas that a test set covered and the likelihood that

it exposed an error.

Close examination of the tables led us to several other

interesting observations. While all-uses was not always

more effect ive than all-edges and the null criterion, in

most of those cases where it was more effective, it was

much more effective. In contrast, in those cases in which

all-edges was more effective than the null criterion, it

was usually only a little bit more effective.

For buggyf ind, all-uses performed significantly bet-

ter than all-edges when the f indl universe was used,

but not when the find2 universe was used; also, the

effectiveness of each criterion is dramatically better for

f indl than for f i.nd2, This shows that even relatively

minor changes in the test generation strategy can pro-

foundly influence the effectiveness of an adequacy crite-

rion and that blanket statements about %andorn test-

ing” without reference to the particular input distribu-

tion used can be misleading.

In four of the subjects, determinant, mat invl,

t extf mt, and st rmt chl, coverage of all duas appears

to guarantee detection of the error. This was already

known (prior to the experiment) for strmt chf, but

was a surprise for the other three programs. The raw

data [36] show that in each of these, there is a number

~, such that below z70 coverage, effectiveness decreases

suddenly. It appears that in each of these cases there

are one or more duas whose coverage guarantees detec-

tion of the error.

This phenomenon has profound consequences for test-

ing practitioners, who might deal with the unexecutable

feature problem by testing until some arbitrary prede-

termined percentage of the duas have been covered. If

it so happens that the test set fails to cover any of the

“crucial” duas, the test set may be much less likely to

detect the error than if it had covered 100% of the ex-

ecutable duas.
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For example, in IIIat invl, there are a total of 298

def-use associations, only 206 (69%) of which are ex-

ecutable. Suppose it has been decided that test sets

which cover 200 of the duas will be deemed adequate.

Examination of the raw data [36] shows that such test

sets have probability y close to zero of exposing an error,

whereas those which cover all of the executable duas

appear certain to expose an error.

Consequently, we recommend that practitioners us-

ing data flow testing put in the effort required to weed

out unexecut able clef-use associations, and only accept

test sets which achieve 100% coverage of the executable

duas. A heuristic for doing this is presented in [11] and

the issue of how this effects the cost of using a criterion

is discussed in [35].

In summary, the all-uses criterion receives mixed re-

views according to our experiment. While it sometimes

performs much better than all-edges and the null crite-

rion, this is not always the case. On the other hand,

our results show that all-uses can be extremely effec-

tive, appearing to guarantee error detection in several

of the subjects. Further analysis of the data can be

found in [36].

There are many directions for future research, fore-

most among them being the performance of similar ex-

periments on a large variety of subjects, including large

programs, and on other adequacy criteria. In addition,

experiments comparing the effectiveness of various ade-

quacy criteria when non-random test generation strate-

gies are used would be useful. We hope that other re-

searchers will join us in performing such experiments in

the future.
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