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Abstract

In this paper, we propose an approach to estimate the Worst Case Response Time (WCRT) of each task in

a preemptive multi-tasking single-processor real-time system with an L1 cache. The approach combines inter-task

cache eviction analysis and intra-task cache access analysis to estimate the number of cache lines that can possibly be

evicted by the preempting task and also be accessed again by the preempted task after preemptions (thus requiring the

preempted task to reload the cache line(s)). This cache reload delay caused by preempting tasks is then incorporated

into WCRT analysis. Two sets of applications are used to test our approach. Each set of applications contains three

tasks. The experimental results show that our approach can tighten the WCRT estimate by 38% (1.6X) to 56% (2.3X)

over prior state-of-the-art.

I. INTRODUCTION

Timing analysis is critical in a real-time system. Underestimating the execution time of a task may cause deadlines

to be missed in practice, which might bring disastrous results. On the other hand, pessimistic estimates of execution

times may lower the utilization of resources. However, advanced features in modern processors such as caching and

pipelining complicate timing analysis. Lots of work has been performed to analyze the cache behavior in a single

task system in order to predict the timing properties of the system. Although single-task based timing analysis can

help us acquire insight about timing properties of tasks, lots of factors in a multi-tasking system are not taken

into consideration which will definitely affect the accuracy of such timing estimates. In a preemptive multi-tasking

system, timing analysis becomes even more difficult because of unpredictability of preemptions, the interaction

among tasks such as inter-task cache evictions and the underlining scheduling algorithms.

In this paper, we give an approach to analyze the Worst Case Response Time (WCRT) of tasks. We target

the single-processor preemptive multi-tasking system with set associative caches. The approach focuses on the

cache reload overhead caused by preemption and imposed on the preempted task. A novel method is proposed

to analyze inter-task cache eviction. Inter-task cache eviction behavior analysis is then combined with intra-task

cache access analysis of the preempted task to estimate the number of cache lines to be reloaded by the preempted

task. Furthermore, path analysis is applied to the preempting task in order to tighten the result. After acquiring the

WCRT of each task, we can further analyze the schedulability of the system. Two sets of applications are used to

exhibit the performance of our approach. The experimental results show that our approach can reduce the estimate

of WCRT up to 56% over prior state-of-the art.

The remaining of this paper is organized as follows. Section II introduces the previous work in the field of

timing analysis. Section III introduces the problem and gives an overview of the approach presented in this paper..

Sections IV, V and VII give the details of our approach. Experimental results are presented in Section VIII. The

last section concludes the paper.

II. PREVIOUS WORK

A cache is one of main factors complicating timing analysis in real-time systems. Two categories of methods

can be applied to predict cache behavior. One is limiting cache usage. This can be implemented by hardware
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approaches such as cache partitioning [2], [3], or, by software approaches such as compiler optimizations and

memory remapping [4], [5]. Usually, these schemes need specialized hardware support in the cache controllers or

TLBs as well as custom modifications to the compilers used. Moreover, cache utilization is compromised in these

schemes, because either the cache allocation strategy is more strict than conventional caches such as in [2], [3] or

the memory-to-cache mapping is more restrictive such as in [4], [5].

The second category of methods to predict cache behavior is to use static analysis methods. Such methods

analyze cache behavior and make restrictive assumptions in order to predict Worst Case Execution Time (WCET)

or Worst Case Response Time (WCRT) of tasks in real-time systems. Li and Malik contributed to WCET analysis

by proposing an explicit path enumeration method [6]–[8]. They use Integer Linear Programming (ILP) techniques

to limit the paths to be evaluated. Path analysis in their work is at the granularity of basic blocks. Wolf and Ernst

extend the concept of basic blocks to program segments and developed a framework for timing analysis, SYMTA

[9]–[12].The precision of time estimation is improved in SYMTA since the overestimate of execution time is reduced.

[13] gave a clustered calculation approach to reduce the timing overestimate. This approach is similar to SYMTA in

essence. [14], [15] proposed an abstract interpretation methodology to predict cache behavior. Stenstrom et al. [16]

gave another static analysis approach based on symbolic execution techniques. In both Wilhelm’s and Stenstrom’s

approach, WCET of programs can be analyzed without knowing the exact input data. All the aforementioned works

focus on single task timing analysis. The problem becomes more complicated in a multi-tasking system, especially

when preemption is allowed.

Timing analysis in multi-tasking systems is tightly related to scheduling techniques. In this paper, we assume that

a Fixed Priority Scheduling (FPS) algorithm such as Rate Monotonic Algorithm (RMA) is used in the system [17],

[18]. We further assume a single processor with a set associative L1 cache and secondary memory (the secondary

memory can be either on- or off-chip). The purpose of timing analysis is to verify the schedulability of tasks. In

this paper, we use the Worst Case Response Time (WCRT) [19] to analyze schedulability. Busquests-Mataix et al.

propose an approach to analyze cache eviction cost in a multi-tasking system [20]. They conservatively assume that

all the cache lines used by the preempting task need to be reloaded by the preempted task when the preempted task

is resumed. Lee et al. also give an approach for cache analysis in preemptions [21], [22]. This approach counts

the number of “useful” memory blocks by performing path analysis on the preempted task. However, they assume

that all “useful” memory blocks of the preempted task are evicted from the cache by the preempting task, which

might not be true. For example, if there are no dynamic data allocation in tasks and the cache lines used by the

preempted task are disjoint with the cache lines used by the preempting task, the cache reload cost induced by

preemption will be zero. But in Lee’s approach, the cache reload cost is still the same as the cost to reload all

“useful” memory blocks in the preempted task.

We proposed an approach for inter-task cache eviction analysis in [1]. This approach assumes that all cache

lines used by the preempted task and evicted by the preempting task will be reloaded after the preemption. But,

as presented in [21], only those cache lines used by “useful” memory blocks of the preempted task need to be

reloaded.
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Both the approach we presented in [1] and Lee’s approach in [21] have their pros and cons. However, these two

methods are complementary. Lee’s approach calculates the maximum set of memory blocks in the preempted task

that can possibly cause cache overload. But the preempting task is not considered. Our approach shows that the

intersection of memory blocks accessed by the preempted task and the preempting task influences the cache reload

overhead. However, we do not calculate the “useful” memory blocks in the preempted task. Thus, in this paper, we

focus on enhancing our approach in [1] by incorporating “useful” memory block analysis in Lee’s work. The new

approach gives the most accurate WCRT method known to date for a multi-tasking single-processor system using

set-associative or direct mapped unified caches. In Section VIII we will show examples where we achieve results

up to 56% better than Lee’s approach, and 38% better than our previous approach in [1].

III. OVERVIEW

In this section, we will state the problem formally first. Some terminology is defined for clarity. Then, we give

an overview of the approach proposed in this paper.

A. Terminology

For clarity, we first define terminology we will use throughout the paper.

We assume that there are n tasks in the system, which are represented with T1, T2, ..., Tn. Each task Ti has

a period Pi. Ti is ready to run at the beginning of its period. The deadline of Ti is at the end of its period. A

fixed priority scheduling algorithm is used for scheduling; thus, each task has a fixed priority, pi. The Worst Case

Execution Time (WCET) of task Ti is denoted with Ci. This WCET can be estimated initially with existing analysis

tools such as Cinderella [8] and SYMTA [9]. In this paper, we use SYMTA to derive the WCET of tasks. We

will discuss later how to estimate WCRT on the basis of WCET in a multi-tasking system. Tasks are executed

periodically. We use Ti,j to represent the jth run of Task Ti.

In a multi-tasking system,we aim at estimating the Worst Case Response Time (WCRT) of tasks, as defined in

[19], for schedulability analysis.

Definition 1. Worst Case Response Time (WCRT) : The WCRT is the time taken by a task from its arrival to its

completion of computations in the worst case. The WCRT of task Ti is denoted by Ri. �

In a multi-tasking preemptive system, a task with a low priority may be preempted by a task with a higher

priority. During a preemption, the preempting task may evict some cache lines used by the preempted task. When

the preempted task resumes and accesses an evicted cache line, the preempted task has to reload the cache line

from memory. This cache reload overhead caused by inter-task cache evictions increases the response time of the

preempted task.

Example 1: We have three tasks T1, T2 and T3. T1 is a Mobile Robot control application (MR). The mobile

robot updates its behavior every 3.5ms. The second task, T2 is an Edge Detection application (ED) and is

invoked every 6.5ms to process the images of obstacles detected by the robot. The third task, T3, which

is an OFDM transmitter, is invoked to communicate with other robots every 40ms. Figure 1 shows this
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example. In this example, three tasks arrive at time instant 0. However, T3 is not executed until there are no

instances of T1 or T2 ready to run. During the execution of T3, it could be preempted by T1 or T2, which is

shown in Figure 1. The response time of T3 is the time from 0 to the time when T3 is completed. We need to

estimate the response time of such a task in the worst case. If we do not consider inter-task cache evictions,

the WCRT of T3 is shown in Figure 1(A). However, because of inter-task cache evictions, the preempted

task has to reload some cache lines after preemption which impose an overhead on the WCRT of the

preempted task. Figure 1(B) shows this issue. t1, t2 and t3 are cache reload overhead in three preemptions

respectively. Obviously, due to cache evictions, the WCRT of T3 is extended, as shown in Figure 1(B) �

T3,1

T2,1

T3,1

T2,2

T3,1

T1,1

T2,2

T1,2 T1,3

R3

T3,1

T2,1

T3,1

T2,2

T3,1

Preemption−related cache reload overhead

(A). WCRT of T3 without cache considering cache eviction

(B). WCRT of T3 with considering cache eviction

T1,1 T1,2

R3

T2,2

T1,3

t1

t2

t3

Fig. 1. Example of WCRT

As shown in Example 1, inter-task cache eviction affects the WCRT of tasks. In order to include inter-task cache

eviction in the WCRT analysis for multi-tasking preemptive systems, we need to estimate the number of cache lines

that need to be reloaded by the preempted task after each preemption. This paper aims to incorporate inter-cache

eviction cost in the WCRT analysis by combining the inter-task cache eviction analysis as proposed [1] and Lee’s

approach in [21]..

In this paper, we will perform path analysis on the preempted task and the preempting task. The path analysis is

based on a Control Flow Graph (CFG) which describes the control structure of a program. A CFG is represented

with a graph G = (V,E), where V = {v1, v2, ..., vm} is the set of nodes and E = {e1, e2, ..., en} is the set of

edges. Each edge ei = (vk, vj) represents the control dependence between two nodes, vk and vj .

Usually, each node vi in a CFG represents a basic block in a program. Wolf and Ernst extend the basic block

concept to Single Feasible Path Program Segment (SFP-Prs) in [9]. A Program Segment can be viewed as a sequence

of basic blocks with exactly on entry and one exit.

Definition 2. Single Feasible Path Program Segment (SFP-Prs): SFP-Prs is defined as a hierarchical program

segment with exactly one path [9]. �

In this paper, each node in a CFG corresponds to a SFP-Prs. The SFP-Prs represented by the node vj in the
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CFG of task Ti is denoted by SFP Prs(Ti, vj).

We also need to clarify some definitions of caches and memory. A set-associative cache is defined by three

parameters: the number of cache sets, the number of cache lines in a set (i.e., the number of ways) and the number

of bytes/words in a cache line [23]. A direct mapped cache can be viewed as a special set associative cache which

only has one way. The sets in a cache are indexed sequentially, starting from 0. All the cache lines in a cache set

have the same index. A cache set with an index of i is represented with cs(i). Accordingly, a memory address is

divided into three parts: the tag, the index and the offset. We use idx(a) to denote the index of a memory address a.

When a memory address is accessed, it is possible that only one byte or one word at this address is actually used

by the program. However, when the byte/word at this address is loaded into the cache, the whole memory block

that contains the byte/word requested is loaded into the cache instead of a single byte/word. A memory block has

the same size as a cache line. Example 2 shows the relationship between cache and memory.

Example 2: Suppose we have a 4-way set associative cache with each line in the cache having 16 bytes.

The size of the cache is 1KB. Thus, the maximum index of the cache is 15. If a memory address has 32

bits, we can derive each part (i.e., offset, index and tag) of the address for this cache as shown in Figure 2.

When a memory address, 0x011, is accessed and the byte at this address is not in the cache, the whole

memory block that contains the byte at 0x011 is loaded. The size of the memory block is also 16 bytes,

starting from the address with an offset of 0. �
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...

memory address

31 7 4 3 0

tag index offset

1

0

15

.

.

.

index of sets

 .  .  .  .  .  .  .  .  .

Fig. 2. Cache vs. Memory

In the rest of this paper, when we refer to a cache operation such as cache load and cache eviction, we always

imply that the operation is performed on a unit of memory block by default. We do not distinguish the notation of

“byte/word at a memory address” and “memory block” explicitly.

When a memory block with an address of a is loaded to a set associative cache, it can only occupy a cache

line in the set with an index of idx(a). In this paper, we assume that LRU algorithm is used for cache line

replacement. However, our approach can also be applied to the caches with other replacement algorithms with

minor modifications.

B. Overall Approach

Intuitively, we know that the cache lines causing reload overhead after preemptions need to satisfy two conditions.
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Condition 1. These cache lines are used by both the preempted and the preempting task.

Condition 2. The memory blocks mapped to these cache lines are accessed by the preempted task before the

preemption and are also required by the preempted task after the preemption (i.e., when the preempted task is

resumed).

Condition 1 implies that memory blocks accessed by the preempting task conflict in the cache with memory

blocks accessed by the preempted task. Thus, some of the memory blocks loaded to the cache by the preempted

task before the preemption are evicted from the cache by the preempting task during the preemption. This cache

eviction involves memory access patterns of both the preempted task and the preempting task. Thus, we call this

type of cache eviction an inter-task cache eviction.

Condition 2 reveals that memory blocks causing cache reload overhead must have been present in the cache

prior to the preemption. Furthermore, these memory blocks must be accessed again by the preempted task after the

preemption, thus requiring reload to the cache. These memory blocks are called “useful memory blocks” in Lee’s

work [21], [22]. We can use Lee’s algorithm in [21] to find the maximum set of these useful memory blocks. Lee’s

algorithm does not consider the interaction between the preempting task and the preempted task. The maximum set

of useful memory blocks of the preempted task is derived from the program structure of the preempted task and

the memory blocks accessed by the preempted task. Thus, we call this type of analysis an intra-task cache eviction

analysis.

Based on the two facts above, we can give an overview of our approach presented in this paper. Our approach

has five steps.

First, we derive the memory trace of each task with the simulation method as used in SYMTA [9]. Here, we

assume that there are no dynamic data allocations in tasks and addresses of all the data structures are fixed. Second,

we perform intra-task cache access analysis on the preempted task to find the maximum set of useful memory

blocks accessed by the preempted task. Only the memory blocks in this set can possibly cause cache reload delay.

Third, we use the maximum set of useful memory blocks of the preempted task to perform inter-task cache eviction

analysis with the preempting tasks (i.e., all the tasks that have higher priorities than the preempted task). A low

priority task might be preempted more than once by a higher priority task, depending on the period of the low

priority task as compared to the period of the high priority task. Fourth, we apply path analysis to the preempting

task in order to tighten the estimate of the number of cache lines to be reloaded. After the fourth step, we can

calculate the cache reload overhead. In the last step, we preform WCRT analysis for all tasks based on the results

from the fourth step.

IV. INTRA-TASK CACHE ACCESS ANALYSIS

According to Condition 2 in Section III-B, the memory blocks of the preempted task that can possibly cause

cache reload overhead must be present in the cache before the preemption and must be accessed by the preempted

task again after the preemption. Lee gives an approach to calculate the maximum set of such memory blocks.

February 5, 2004 DRAFT



8

As we mentioned in Section III-A, a task can be represented with a CFG. Each node in a CFG is an SFP-Prs.

A task can be preempted at any point, which is called an execution point. When a preemption happens, a task can

be viewed as two parts, one part before the preemption and the other part after preemption. The pre-preemption

part of the preempted task loaded memory blocks to the cache. Some of these memory blocks might be accessed

again by the post-preemption part of the preempted task. These memory blocks are called useful memory blocks.

Only useful memory blocks of the preempted task can possibly cause cache reload after preemptions.

For a formal description, we use the notation of reaching memory blocks (RMB) and living memory blocks (LMB)

as defined in [21]. The set of reaching memory blocks of a cache set cs(i) at an execution point s of a task is

denoted by RMBi
s. RMBi

s contains all possible memory blocks that may reside in cache set cs(i) when the task

reaches execution point s. Suppose a cache set has L cache lines (i.e., a L-way set associative cache). If a memory

block can reside in cs(i), this memory blocks must have an index of i. Moreover, in order to be contained in

RMBi
s, this memory block is one of the last L distinct references to the cache set cs(i) when the task runs along

some execution path reaching execution point s. Otherwise, this memory would have been evicted from the cache

by other memory blocks. Similarly, the set of living memory blocks of cache set cs(i) at execution point s, denoted

by LMBi
s, contains all possible memory blocks that may be one of the first L distinct references to cache set cs(i)

after execution point s.

In [21], Lee demonstrates that the intersection of RMBi
s and LMBi

s can be used to find a superset of the set

of memory blocks in the preempted task that may cause cache line reload(s) due to preemption. These memory

blocks are called “useful memory blocks”. The details of their algorithm can be found in [21], [22]. Of course,

whether those memory blocks will really cause cache line reloading still depends on the actual path the preempted

task takes and the cache lines used by the preempting task. In Lee’s approach, he conservatively assumes that all

the useful memory blocks in the preempted task will be reloaded. Consider an extreme counter example for this

assumption: if the cache lines used by the preempted task and the preempting task are completely disjoint, the

preempting task will not evict any cache lines used by the preempted task. In this case, there is no cache reload

overhead imposed on the preempted task, yet Lee’s approach would indicate significant reload overhead.

Therefore, in order to estimate the number of cache lines to be reloaded, we also need to find the cache lines

used by the preempted task that may also be evicted by the preempting task during preemptions.

V. INTER-TASK CACHE EVICTION ANALYSIS

In [1], we propose an approach to calculate the intersection of cache lines that are used by both the preempted

task and the preempting task. In that paper, we assume that all memory blocks used by the preempted task when

the preempted task runs along the longest path are useful. However, the results from Lee’s approach shows that

this is not always true. In this paper, we focus on incorporating Lee’s intra-task cache access analysis with the

approach we presented in [1] in order to give a tighter estimate of cache-related delay caused by preemptions in

multi-tasking preemptive systems.

Let us go back to the two conditions in Section III-B. Lee’s approach only considers Condition 2. His approach
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gives all memory blocks that can potentially cause cache reload in the preempted task. However, if these memory

blocks need to be reloaded after preemption, they must be evicted from the cache by the preempting task. This

implies that we need to calculate the intersection of cache lines used by the memory blocks found in Lee’s approach

and the memory blocks accessed by the preempting task. This is stated in Condition 1.

Memory blocks that are mapped to different cache sets will never conflict in the cache. In other words, only

memory blocks that have the same index can possibly evict each other because these memory blocks are loaded to

the same cache set. Intuitively, we can divide memory blocks into different subsets according to their index.

Suppose we have a set of q memory block addresses, M = {m0, m1, ..., mq−1}, and an L-way set associative

cache. The index of the cache ranges from 0 to N − 1. We can derive N subsets of M as follows.

m̂i = {mk ∈ M |idx(mk) = i}, (0 ≤ i < N) (1)

When the memory blocks in the same subset defined above are accessed, these memory blocks are loaded into the

same set in the cache because they have the same index. Thus, cache evictions can happen among these memory

blocks (i.e., with the same index).

If we denote M̂ = {m̂i|m̂i 6= ∅, 0 ≤ i < N}, where ∅ is the empty set and m̂i is defined as Equation 1, then M̂

is a partition of M . Based on this conclusion, we define the Cache Index Induced Partition (CIIP) of a memory

block address set as follows.

Definition 3. Cache Index Induced Partition (CIIP) of a memory block address set: Suppose we have a set of

memory block addresses, M = {m0,m1, ...,mq−1}, and an L-way set associative cache. The index of the cache

ranges from 0 to N − 1. We can derive a partition of M based on the mapping from memory blocks to cache sets,

which is denoted by M̂ = {m̂i|m̂i 6= ∅, 0 ≤ i < N}. Each m̂i = {mk ∈ M |idx(mk) = i} is a subset of M . We

call M̂ the CIIP of M .�

The CIIP of a memory address set categorizes the memory block addresses according to their indices in the

cache. Cache evictions can only happen among memory blocks that are in the same subset in the CIIP. We first

defined and introduced CIIP in [1].

Example 3: Suppose we have a set of memory block addresses M = {0x000, 0x100, 0x010, 0x110, 0x210}.

Also, we have a set associative cache as defined in Example 2. Therefore, 0x000 and 0x100 have the same

index 0x0. 0x010, 0x110 and 0x210 have the same index 0x1. So, the CIIP of this memory block address

set is M̂ = {m̂0, m̂1}, where m̂0 = {0x000, 0x100} and m̂1 = {0x010, 0x110, 0x210}. Any block in m̂0 will be

loaded into the cache set with index 0 when the memory block is accessed. Any block in m̂1 will be loaded

into the cache set with index 1 when the memory block is accessed. Cache eviction can only happen among

memory blocks in m̂0 or memory blocks in m̂1. A memory block in m̂0 can never be replaced by a memory

block in m̂1 and vice versa because the memory blocks in m̂0 and the memory blocks in m̂1 are loaded into

different sets in the cache. �

The definition of CIIP provides us a formal representation to analyze inter-task cache evictions. The memory

block addresses in the same element of the CIIP have the same index. Therefore, when these memory blocks are
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loaded into the cache, they might conflict with each other. Memory blocks in different elements of the CIIP can

never conflict in the cache.

Suppose we have two tasks Ta and Tb. All the memory blocks accessed by Ta and Tb are in the set Ma =

{ma,0,ma,1, ...,ma,ka
} and Mb = {mb,0,mb,1, ...,mb,kb

} respectively. Tb has a higher priority than Ta. An L-way

set associative cache with a maximum index of N −1 is used in the system. In the case Ta is preempted by Tb, the

cache lines to be reloaded when Ta resumes are used by both the preempting task and the preempted task. Thus,

we can look for the conflicting memory blocks accessed by the preempting task and the preempted task in order

to estimate the number of reloaded cache lines. We can use the CIIPs of Ma and Mb to solve this problem.

We use M̂a = {m̂a,0, m̂a,1, ..., m̂a,N−1} to represent the CIIP of Ma and M̂b = {m̂b,0, m̂b,1, ..., m̂b,N−1} to

represent the CIIP of Mb. For m̂a,k1
∈ M̂a and m̂b,k2

∈ M̂b, only when k1 = k2 can memory blocks in m̂a,k1

possibly conflict with memory blocks in m̂b,k2
in the cache. Also, when the memory blocks in m̂a,k1

and m̂b,k2

are loaded into the cache, the number of conflicts in the cache cannot exceed min(|m̂a,k1
|, |m̂b,k2

|, L), where L

is the number of ways of the cache. Therefore, we can conclude that the following formula gives an upper bound

for the number of cache lines that could be reloaded after Task Ta resumes following a preemption by Task Tb:

S(Ma,Mb) =

N−1∑

r=0

min{|m̂a,r|, |m̂b,r|, L} (2)

where m̂a,r ∈ M̂a, m̂b,r ∈ M̂b.

S(Ma,Mb) denotes the upper bound on the number of cache lines that conflicts when the memory blocks in

Ma and Mb are loaded into the cache. This number can be used to estimate the cache lines to be reloaded by Tb

preempting Ta.

Example 4: Suppose we have a cache as defined in Example 2. Two tasks T1 and T2 run with this cache. The

memory block addresses accessed by T1 and T2 are contained in M1 = {0x000, 0x100, 0x010, 0x110, 0x210}

and M2 = {0x200, 0x310, 0x410, 0x510} respectively. The CIIPs of M1 and M2 are M̂1 = {{0x000, 0x100}, {0x010, 0x110, 0x210}}

and M̂2 = {{0x200}, {0x310, 0x410, 0x510}} respectively.

If we map the memory blocks in M1 and M2 to the cache as shown in Figure 3(a), we find that the

maximum number of overlapped cache lines, which is 4, is the same as the result derived from Equation 2.

However, if we map the memory blocks in M1 and M2 to the cache as shown in the Figure 3(b), only

two cache lines overlap. Obviously, the actual number of overlapped cache lines is related to the cache

replacement policy and memory access pattern of the preempted task and the preempting task. However,

we can guarantee that Equation 2 gives an upper bound of the number of overlapped cache lines. �

In Equation 2, we assume that Ma contains all memory blocks that can possibly be accessed by the preempted

task, Ta. However, as we point out above, only useful memory blocks in Ma can possibly cause cache line reload

no matter what memory blocks are accessed by the preempting task. Thus, we need to calculate the intersection

of useful memory blocks of the preempted task as derived from Lee’s approach and the memory blocks used by

the preempting task in order to tighten the estimate of the number of cache lines to be reloaded as derived from

Equation 2.
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Fig. 3. Conflicts of cache lines in a set associative cache

Definition 4. The Maximum Useful Memory Blocks Set (MUMBS) The maximum intersection set of LMB and

RMB over all the execution points of a task is called the maximum useful memory blocks set of this task. We

represent the set of useful memory blocks of task Ta with M̃a. ̂̃
Ma is the CIIP of M̃a. M̃a is a subset of Ma. �

We use Lee’s approach to calculate the maximum useful memory blocks set of the preempted task. Only the

memory blocks in this set can possibly need to be reloaded by the preempted task. The maximum set useful memory

blocks of the preempted task only depends on the structure and the memory accessed by the preempted task.

The simulation method in SYMTA is used to obtain all the memory blocks that can possibly accessed by the

preempting task [9]. All these memory blocks are contained in a set Mb. M̂b is the CIIP of Mb. Only the memory

blocks in Mb can possibly evict the cache lines used by the preempted task.

Then, we apply Equation 2 to calculate the intersection of memory block set M̃a and Mb, which is shown in

Equation 3. This result also gives an upper bound of the number of cache lines that can possibly need to be reloaded

after Tb preempts Ta. Since M̃a is a subset of Ma, the estimate given in Equation 3 can be less than the estimate

in Equation 2. Hence, we can expect a tighten WCRT estimate.

S(M̃a,Mb) =

N−1∑

r=0

min{| ̂̃ma,r|, |m̂b,r|, L} (3)

where ̂̃ma,r ∈ ̂̃
Ma, m̂b,r ∈ M̂b.

VI. PATH ANALYSIS FOR THE PREEMPTING TASK

The set Mb used in the section above contains all the memory block addresses that can possibly be accessed by

the preempting task Tb, if we do not use any path analysis methods. In this case, the result derived from Equation 3

only gives an upper bound of the number of cache lines that could be potentially reloaded by the preempted task.
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However, since the preempting task might have more than one feasible path and only one path is executed, some

memory blocks may not be accessed, thus, there is no need to reload the cache lines mapped from those memory

blocks. Example 5 gives such a case.

Example 5: Figure 4 shows the CFG of ED which has four SFP-Prs. When the image size is fixed (i.e. the

number of pixels to be processed is fixed), the loop bounds in the dashed-line rectangles are fixed. There

are no other branches depending on the input data in these two loops. Thus, these two loops can be viewed

as SFP-Prs. The CFG of ED can be simplified as the graph shown in Figure 4 (b). Each node in this graph

represents an SFP-Prs in the ED program. According to the parameter selected by the user, the program

can only take either the path (v1, e1, v2, e2, v3, e4, v5) or the path (v1, e1, v2, e3, v4, e5, v6); thus, only one of

two SFP-Prs, v3 or v4, can be accessed in one run. In this case, the evicted cache lines to be used by v3

and the evicted cache lines to be used by v4 do not need to be reloaded at the same time in one run. �

more images?

operator type
v1

v2

e2
3e

v3
v4

e 4 e 5

v5
v6

e 6 e 7

e 8

v7

e 9

e1

(b)

SFP−Prs SFP−Prs

more pixels? more pixels?

algorithm
Sobel Cauchy

Algorithm

over

more images?

start

(a)

Fig. 4. CFG of ED

The issue presented in Example 5 can be described more generally. Suppose we have two tasks in a system with

an L-way set associative cache, Ta and Tb. The largest index of the cache is N − 1. Tb has a higher priority than

Ta. Thus, Tb can preempt Ta. We use Ma to represent the set of all memory block addresses that can be possibly

accessed by Ta. M̃a is the maximum set of useful memory blocks of the preempted task, as given in Section IV. The

CFG of Tb is Gb = (Vb, Eb), where Vb = {vb,1, vb,2, ..., vb,n} and Eb = {eb,1, eb,2, ..., eb,m}. A path in Gb can be

represented with Pak
b = {vb,i1 , eb,i1 , vb,i2 , eb,i2 , ..., vb,ip

}. We use Mk
b to denote the set of memory block addresses

accessed by the task Tb when Tb runs along the path Pak
b . The CIIP of Mk

b is M̂k
b = {m̂k

b,0, m̂
k
b,1, ..., m̂

k
b,N−1}.

When Pak
b is determined, Mb,k can be derived from simulation as stated in Section III-A. Now, we need to find a

path in the preempting task Tb. When Tb takes this path, the memory blocks loaded to the cache have the largest

overlap with the cache lines used by memory blocks in the maximum useful memory blocks set of the preempted

task Ta. In another words, when Tb takes this path, the number of cache lines evicted by Tb and also used by Ta

is the largest. This problem can be transformed to a problem of finding the longest path in a graph.
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We define a cost function for the path Pak
b in the preempting task Tb.

C(Pak
b ) = S(M̃a,Mk

b ) =

N−1∑

r=0

min{| ̂̃mk

a,r|, |m̂b,r|, L} (4)

The cost of a path Pak
b in the preempting task Tb is defined as the maximum number of cache lines that can

be possibly overlapped with the cache lines mapped by useful memory blocks of the preempted task Ta, when the

preempting task Tb runs along the path Pak
b .

By using this cost function, we search all the paths of the preempting to find the longest path in the CFG of Ti.

Suppose the longest path is represented with Palongest, the cache lines to be reloaded in the worst case is bounded

by the cost of Palongest. This algorithm potentially needs to calculate over all paths. However, in practice, many

embedded programs have control flow graphs with a reasonably small number of paths. Thus, our approach can

still apply to many such systems.

Compared to Equation 3, the estimate given in Equation 4 is reduced further, because only a part of memory

blocks in Mb are considered in the calculation of intersection by using Equation 4.

We use Cpre(Ta, Tb) to represent the cache reload cost imposed on task Ta when Ta is preempted by task Tb.

Suppose the penalty for a cache miss is a constant, Cmiss, Cpre(Ta, Tb) can be calculated with the following

equation:

Cpre(Ta, Tb) = C(Palongest) × Cmiss (5)

This equation gives an estimate of the cache eviction cost induced by Tb preempting Ta. By incorporating the

cache eviction cost, we can derive a new approach to estimate the WCRT of each task in a preemptive multi-tasking

system.

VII. WCRT ANALYSIS

We can use the Worst Case Response Time (WCRT) to analyze schedulability of a multi-tasking real-time analysis

as shown in [19]. The approach uses the following recursive equations to calculate the WCRT Ri of the task Ti.

Ri = Ci +
∑

j∈hp(i)

d
Ri

Pj

e × Cj (6)

where hp(i) is the set of tasks whose priorities are higher than Ti. Recall thatCj is the WCET of Tj and Pj

is the period of Task Tj as defined in Section III-A. In this equation, the term
∑

j∈hp(i)d
Ri

Pj
e × Cj reflects the

interference of preempting tasks during the execution time of Ti. This equation can be calculated iteratively. The

iteration can be terminated when Ri converges or Ri is greater than the deadline of Ti. If Ri is greater than its

deadline, task Ti cannot be scheduled successfully.

Note that Cj is the WCET estimate of Tj without considering preemption. We use SYMTA [9] to estimate WCET.

However, the costs of cache reload and context switch caused by preemptions are not included in Equation 6.
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Therefore, Equation 6 may underestimate the WCRT of a task. Here, we focus on cache reload overhead analysis

and assume the cost of a context switch is a constant, Ccs, which is equal to the WCET of a context switch.

Example 6 gives the context switch cost for our simulation architecture. The context switch function cannot be

preempted, so the context switch cost is not affected by inter-task cache eviction. Therefore, it is reasonable to

assume the context switch cost is a constant, which is its WCET. The context switch function is called twice in

every preemption, once for switching to the preempting task and once for resuming the preempted task.

Example 6: An ARM9TDMI processor with two levels of memory, a 32KB 4-way set associative L1 cache

and 256MB SRAM, is used in our experiment. The cache miss penalty is 20 cycles. The Atalanta RTOS

developed at Georgia Tech [24] is used for task management. We use SYMTA to obtain the WCET of a

context switch, which implies that the instructions of the context switch function and the memory blocks

where contexts of the preempted and the preempting tasks are saved are not in the L1 cache when the

context switch function is called. In this case, the WCET of a single context switch estimated with SYMTA is

1049 cycles. �

When preemptions are allowed in a multi-tasking system, the WCRT of tasks that can be preempted may be

increased because of cache reload overhead. We use Cpre(Ti, Tj) to represent the cache reload overhead imposed

on task Ti when Ti is preempted by task Tj . Cpre(Ti, Tj) is defined in Equation 5. By considering the cache reload

overhead, Equation 6 can be modified as follows to no longer underestimate Ri:

Ri = Ci +
∑

j∈hp(i)

d
Ri

Pj

e × (Cj + Cpre(Ti, Tj) + 2Ccs) (7)

Based on Equation 7,we can estimate the WCRT for each task Ti with the following iteration:

R0
i = Ci;

R1
i = Ci +

∑
j∈hp(i)d

R0

i

Pj
e × (Cj + Cpre(Ti, Tj) + 2Ccs)

...

Rk
i = Ci +

∑
j∈hp(i)d

R
k−1

i

Pj
e × (Cj + Cpre(Ti, Tj) + 2Ccs)

This iteration terminates when Ri converges or Ri is greater than the deadline of Ti. After the iteration is

terminated, we compare the value of Ri with the deadline of Ti. If Ri is less than the deadline of Ti, Ti can be

scheduled. Otherwise, Ti cannot be scheduled. Hence, we can analyze the schedulability of the system based on

the WCRT estimate of each task. We need to perform such iteration for each task except the task with the highest

priority. Thus, the computational complexity of WCRT estimate with the above equation is directly proportional to

the number of tasks.

VIII. EXPERIMENTAL RESULTS

Two groups of applications are used in experiments. The applications are run on an ARM9TDMI processor with

a 4-way set associative cache, the size of which is 32KB. Each line in the cache is 16 bytes, thus, there are 512
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lines in each “way” of the cache in total. The instruction set is simulated with XRAY [26]. The tasks are supported

by Atalanta RTOS developed at Georgia Tech [24]. The whole system is integrated with Seamless CVE provided

by Mentor Graphics [25]. The simulation environment is shown in Figure 5.

(VCS)

Processor
Hardware

Software

L1 Cache Memory

Task 0 Task 1 Task 2

Atalanta RTOS

Seamless CVE

(XRAY)

(ARM9TDMI)

Fig. 5. Simulation Architecture

The first set of tasks, OFDM, ED and MR are described in Example 1. The second set of tasks are Adaptive

Differential Pulse Code Modulation Coder (ADPCMC), ADPCM Decoder (ADPCMD) and Inverse Discrete Cosine

Transform (IDCT). ADPCMC and ADPCMD are taken from MediaBench [27], [28]. IDCT is extracted from MPEG2

decoder. We use SYMTA, which is a single-task based WCET estimate approach as mentioned in Section III-A, to

estimate the WCET of each task in the experiment. The periods, priorities and WCET of tasks in each experiment

are listed in Table I.

TABLE I

TASKS

Tasks in Experiment I

Task WCET(us) Period(us) Priority

T1(OFDM) 2830 40,000 4

T2(ED) 1392 6,500 3

T3(MR) 830 3,500 2

Tasks in Experiment II

Task WCET(us) Period(us) Priority

T1(ADPCMC) 7675 50,000 4

T2(ADPCMD) 2839 10,000 3

T3(IDCT) 1580 4,500 2

In the experiment, we compare four approaches to estimate cache reload overhead caused by preemptions.

Approach 1: All cache lines used by preempting tasks are reloaded for a preemption. Note that this approach is

proposed by [20].
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Approach 2: Only lines in the intersection set of lines used by the preempting task and the preempted task are

reloaded after a preemption. Inter-task cache eviction method proposed in [1] is used here.

Approach 3: Only useful memory blocks in the preempted task are used to estimate the cache reload delay. Intra-

task cache access analysis for the preempted task proposed by Lee in [21] is used here.

Approach 4: Both inter-task cache eviction analysis and intra-task cache access analysis are used to estimate the

cache reload cost. Also, path analysis proposed in Section VI is applied to the preempting task. This is the approach

described in this paper.

The estimates of the number of cache lines to be reloaded in each type of preemption derived with these fours

approaches are listed in Table II.

TABLE II

NUMBER OF CACHE LINES TO BE RELOADED

Experiment I

Preemptions App. 1 App. 2 App. 3 App. 4

OFDM by MR 245 134 187 88

OFDM by ED 254 172 187 98

ED by MR 245 87 106 81

Experiment II

Preemptions App. 1 App. 2 App. 3 App. 4

ADPCMC by IDCT 249 68 98 56

ADPCMC by ADPCMD 220 114 98 64

ADPCMD by IDCT 183 58 89 46

Approach 1 assumes that all cache lines used by the preempting task will be accessed by the preempted task

after the preempted task is resumed. Obviously, this may not be true. Some cache lines will never be used by the

preempted task no matter which path the preempted task takes. Thus, by calculating the set of cache lines that can

possibly be accessed by both the preempting and the preempted task, we can further reduce the estimate of the

number of cache lines to be reloaded by the preempted task, as shown in Approach 2.

Approach 3 calculates the maximum set of memory blocks in the preempted task that can potentially cause cache

reload. This approach only relates to the structure and memory access pattern of the preempted task. Thus, for a

certain preempted task, the estimate of cache reload overhead is always the same. Obviously, this approach ignores

the differences among preempting tasks and only assumes that all “useful” memory blocks in the preempted task will

be evicted by the preempting task which might not be true. By considering the preempting tasks and incorporating

inter-task cache eviction analysis, the estimate of the number of cache lines that need to be reloaded is significantly

reduced, as shown in Table II.

The WCRT of OFDM and ED can be calculated based on the results shown in Table II. Notice that MR has

the hight priority so that it can never be preempted. So, the WCRT of MR is just equal to its WCET. We also

vary the Cmiss from 10 cycles to 40 cycles to investigate the influence of cache miss penalty on the WCRT. The
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estimate results and the Actual Response Times (ART) are listed in Table III. Table IV lists the improvement of

our approach (Approach 4) over all other approaches (Approach 1, Approach 2 and Approach 3). The same results

of the second experiment are listed in Table V and Table VI.

TABLE III

COMPARISON OF WCRT ESTIMATE (EXPERIMENT I)

Cmiss Task App. 1 App. 2 App. 3 App. 4 ART

OFDM 9847 9350 9539 6456 6113

10 ED 2567 2409 2428 2403 2382

OFDM 12510 10096 10474 9524 6211

20 ED 2812 2496 2534 2484 2400

OFDM 23501 12174 12900 9984 6255

30 ED 3057 2583 2640 2565 2426

OFDM 45216 16700 23536 10444 6362

40 ED 3302 2670 23746 2646 2525

TABLE IV

COMPARISON OF RESULTS IN EXPERIMENT I

Cache Penalty (cycles)

Task 10 20 30 40

OFDM 34% 24% 58% 77%

App.4 vs. App.1 ED 6% 12% 16% 20%

OFDM 31% 6% 18% 38%

App.4 vs. App.2 ED 0.2% 0.5% 1% 1%

OFDM 32% 9% 23% 56%

App.4 vs. App.3 ED 1% 2% 3% 4%

Compared with Approach 2 and Approach 3, our approach (App. 4) achieves a reduction of from 38% to 56% in

WCRT estimate of OFDM when the cache penalty is 40 cycles. Thus, combining inter-task cache evition analysis

with intra-task cache access analysis can significatly tighten the estimate of cache reload cost caused by preemptions

in multi-tasking systems, which in turn allow us to obtain a more precise estimate of WCRT.

IX. CONCLUSION

We propose a WCRT analysis approach in this paper. The cache reload overhead caused by preemptions are

considered in our approach. Inter-task cache eviction analysis is combined with useful memory block analysis of
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TABLE V

COMPARISON OF WCRT ESTIMATE (EXPERIMENT II)

Cmiss Task App. 1 App. 2 App. 3 App. 4 ART

ADPCMC 35743 29070 29232 28836 23512

10 ADPCMD 6565 6315 6377 6291 6190

ADPCMC 48528 29888 35223 29420 23867

20 ADPCMD 6931 6431 6555 6383 6223

ADPCMC 88606 35871 38373 34983 24101

30 ADPCMD 7297 6547 6733 6475 6278

ADPCMC 359239 38823 39647 30588 24353

40 ADPCMD 7663 6663 6911 6567 6354

TABLE VI

COMPARISON OF RESULTS IN EXPERIMENT II

Cache Penalty (cycles)

Task 10 20 30 40

ADPCMC 19% 39% 60% 92%

App.4 vs. App.1 ADPCMD 4% 8% 11% 14%

ADPCMC 1% 2% 3% 21%

App.4 vs. App.2 ADPCMD 1% 1% 1% 1%

ADPCMC 2% 17% 9% 23%

App.4 vs. App.3 ADPCMD 1% 3% 4% 5%

the preempted task. The experiment shows that our approach can reduce the estimate of WCRT by 38% to 77%,

compared with prior to approachs.

For future work, we plan to expand our analysis approach for systems with more than two-level memory hierarchy.

Also, we will research on the cache eviction problem in multi-processor systems.
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[4] J. Liedtke, H.Härtig and M. Hohmuth, “OS-Controlled Cache Predictability for Real-Time Systems,” Proceedings of the

Third IEEE Real-Time Technology and Applications Symposium (RTAS’97), pp. 213-227, June 1997.

February 5, 2004 DRAFT



19

[5] F. Muller, “Compiler Support for Software-based Cache Partitioning,” Proceedings of ACM SIGPLAN Workshop on

Languages, Compliers and Tools for Real-Time Systems, pp. 125-133, June 1995.

[6] Y. Li, S. Malik and A. Wolfe, “Performance Estimation of Embedded Software with Instruction Cache Modeling,” ACM

Transaction on Design Automation of Embedded Systems, Vol. 4, No. 3, pp. 257-279, July 1999.

[7] Y. Li, S. Malik and A.Wolfe, “Efficient Microarchitecture Modeling and Path Analysis for Real-time Software,” Proceedings

of IEEE Real-Time Systems Symposium, pp. 298-397, December 1995.

[8] Y. Li and S. Malik, Performance Analysis of Real-Time Embedded Software, Kluwer Academic Publishers, Boston, 1999.

[9] F. Wolf, Behavioral Intervals in Embedded Software, Kluwer Academic Publishers, Norwell, MA, 2002.

[10] F. Wolf, Jan Staschulat and Rolf Ernst, “Hybrid Cache Analysis in Running Time Verification of Embedded Software,”

Design Automation for Embedded Systems, Vol. 7, No. 3, pp. 271-295, October 2002.

[11] F. Wolf, J. Staschulat and R. Ernst, “Associative Caches in Formal Software Timing Analysis,” Proceedings of the

IEEE/ACM Design Automation Conference, June 2002.

[12] F. Wolf, R. Ernst, and W. Ye, “Path Clustering in Software Timing Analysis,” IEEE Transactions on VLSI Systems, Vol.9,

No.6, December 2001.

[13] A. Ermerahl, F. Stappert and J. Engblom, “Clustered Calculation of Worst-Case Execution Times,” Proceedings of

Compilers, Architecture and Synthesis for Embedded Systems, pp. 51-62, October 2003.

[14] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing and R. Wilhelm, “Reliable

and Precise WCET Determination for a Real-Life Processor,” Proceedings of the First International Workshop on Embedded

Software, (EMSOFT 2001), pp. 469-485, Volume 2211 of LNCS, Springer-Verlag (2001).

[15] M. Alt, C. Ferdinand, F. Martin and R. Wilhelm, “Cache behavior prediction by abstract interpretation,” Proceedings of

Static Analysis Symposium (SAS’96), pp. 52-66, September 1996.

[16] T. Lundqvist and P. Stenstrom, “An Integrated Path and Timing Analysis Method based on Cycle-Level Symbolic

Execution,”Real-Time Systems,Volume 17, Issue 2-3, pp. 183-207, November 1999.

[17] J. Lehoczky, L. Sha and Y. Ding, “The Rate Monotonic Scheduling Algorithm:Exact Characterization and Average Case

Behavior,” Proc. IEEE 10th Real-Time System Symposium, pp. 166-171, 1989.

[18] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,” Journal of

ACM, Vol. 20, No. 1, pp. 26-61, January 1973.

[19] K. Tindell, A. Burns, A. Wellings, “An Extendible Approach for Analyzing Fixed Priority Hard Real-Time Tasks,” Real-

Time Systems Vol.6, No.2, pp. 133-151, March 1994.

[20] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil and A. Wellings, “Adding instruction cache effect to schedulability analysis

of preemptive real-time systems,” Real-Time Technology and Applications Symposium, pp. 204-212, June 1996.

[21] C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee and C. Kim. “Analysis of Cache-related Preemption

Delay in Fixed-priority Preemptive Scheduling,” IEEE Transactions on Computers, Vol. 47, No. 6, pp. 700-713, 1998.

[22] C. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee and C. Kim, “Enhanced Analysis of Cache-related

Preemption Delay in Fixed-priority Preemptive Scheduling,” IEEE Real-Time Systems Symposium, pp. 187-198, December

1997.

[23] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach (3rd edition), Morgan Kaufmann Publishers,

Menlo Park, CA, 2002.

[24] D. Sun, D. Blough and V. Mooney, “Atalanta: A New Multiprocessor RTOS Kernel for System-on-a-Chip Applications,”

Technical Report GIT-CC-02-19, Georgia Institute of Technology, April 2002.

[25] Mentor Graphics, Seamless Hardware/Software Co-Verification, http://www.mentor.com/seamless/.

[26] Mentor Graphics XRAY Debugger, http://www.mentor.com/embedded/xray/.

[27] MediaBench, http://cares.icsl.ucla.edu/MediaBench/.

February 5, 2004 DRAFT



20

[28] C. Lee, M. Potkonjak and W. Mangione-Smith, “MediaBench: A Tool for Evaluating and Synthesizing Multimedia and

Communicatons Systems,” Proceedings of International Symposium on Microarchitecture, pp. 330-335, 1997.

February 5, 2004 DRAFT


