
Combating Information Overload
in Non-Visual Web Access Using Context

Jalal Mahmud, Yevgen Borodin, and I.V. Ramakrishnan
Department of Computer Science, Stony Brook University

Stony Brook, NY 11794, USA
{jmahmud, borodin, ram}@cs.sunysb.edu

Dipanjan Das
School of Computer Science
Carnegie Mellon University

dipanjan@cs.cmu.edu

ABSTRACT
Web sites are designed for graphical mode of interaction.
Sighted users can visually segment Web pages and quickly
identify relevant information. In contrast, visually-disabled
individuals have to use screen-readers to browse the Web.
Screen-readers process pages sequentially and read through
everything, making Web browsing time-consuming and stren-
uous. The use of shortcut keys and searching offers some
improvements, but the problem still remains. In this paper,
we address this problem using the notion of context. When
a user follows a link, we capture the context of the link, and
use it to identify relevant information on the next page. The
content of this page is rearranged, so that the relevant infor-
mation is read out first. We conducted a series of experiments
to compare the performance of our prototype system with the
state-of-the-art screen-reader, JAWS. Our results show that
the use of context can potentially save browsing time as well
as improve browsing experience of blind people.

ACM Classification: H5.2[Information Interfaces and Pre-
sentation]:User Interfaces. - Natural language, Voice I/O.

General terms: Algorithms, Design, Human Factors, Ex-
perimentation.

Keywords: Web navigation, context, screen-reader, CSurf,
voice browsing, user interface, information rearrangement.

INTRODUCTION
The Web has become an indispensable source of information.
The primary mode of interaction with the Web is via graph-
ical browsers, which are designed for visual interaction. As
we browse the Web, we have to filter through a lot of ir-
relevant data (e.g. banners, commercials, navigation bars).
Sighted individuals can quickly segment any Web page and
identify the information that is most relevant to them. The
task becomes complicated for individuals with visual disabil-
ities. Blind people and people with low vision use screen-
readers, such as JAWS and IBM’s Home Page Reader [6, 1],
to browse the Web. However, screen-readers process Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’07, January 28–31, 2007, Honolulu, Hawaii, USA..
Copyright 2007 ACM 1-59593-481-2/07/0001 ...$5.00.

pages sequentially, and provide little or no content filtering,
resulting in information overload. To address the problem of
information overload in non-visual Web browsing, screen-
readers often permit to skip blocks of text in the order they
appear on the page. Unfortunately, in many cases, users still
have to listen or skip through a substantial part of page con-
tent before they get to the information. To help users lo-
cate the information quicker, a number of screen-readers al-
low keyword searching. However, simple searching has two
problems: it works only for exact string matching and it dis-
orients users in case of a wrong match. In both cases users
have to start from the beginning of the page. The problem of
information overload in non-visual Web access still remains.
Is it possible to do better than that?

The identification of relevant information on any distinct Web
page is subjective. However, as soon as the user follows a
link, it is often possible to use the text around it to determine
the relevant information on the next page. In this paper we
describe a novel approach for combating information over-
load in non-visual Web access using context. We explore the
structural and visual organization of Web pages to identify
the context. For example, when the user follows the head-
line news link, encircled in Figure 1(a), the news article in
Figure 3(a) should be read out first. To identify the article
as most “relevant”, all the words contained in the dotted box
in Figure 1(a) are selected as context. Then, the content of
the following page is rearranged to present the article first.
The rest of the Web page is read sequentially as before. This
approach helps blind and low vision users quickly identify
relevant information while surfing the Web, thus, consider-
ably reducing their browsing time.

SYSTEM ARCHITECTURE
The architecture of CSurf, our context-based browsing proto-
type system, is shown in Figure 2. Users communicate with
the system through the Interface Manager. The module
uses VoiceXML dialogs to interact with the users and present
Web page content. The interface allows keyboard and voice
input via our own VoiceXML interpreter [2], and provides
both basic and extended screen-reader navigation features,
such as shortcuts and corresponding voice commands.

Context Analyzer is called twice for each Web page access.
When the user follows a link, the module collects the context
from the current page. When a new Web page is retrieved,
the module executes our algorithm to contextualize the page
before it is presented to the user. The Browser Object mod-

341

(a) Source Page (b) Source Frame Tree

Figure 1: Context Identification and Ranking

Interface Manager

Browser Object

Context Analyzer

Frame Tree Processor

VXML

Dialog Generator

Frame Tree

HTTP
request

WEB

HTTP
request

HTML

Frame Tree

Frame Tree

HTTP
request

Figure 2: Architecture of CSurf

ule downloads Web content every time the user requests a
new page to be retrieved. The module, built on top of the
Mozilla Web Browser, is coupled with extended JREX Java
API wrapper [7]. Frame Tree Processor extracts the Frame
Tree representation of the Web page. A Frame Tree, con-
structed by the Mozilla Engine, is a tree-like data structure
that contains Web page content and formatting, specifying
how a Web page has to be rendered. This module cleans and
reorganizes the frame tree. Subsequently, Context Analyzer
reorders the frame tree before passing it to the Dialog Gen-
erator. The Dialog Generator module uses a collection of
dialog templates to convert the frame tree into a Voice-XML
dialog. The latter is then delivered to the Interface Manager.
Architectural details of dialog generator appears in [10].

CONTEXT ANALYSIS
In this section we formally define the notion of context and
describe the phases of the context analysis algorithm.

Context: Given a frame tree of a Web page and a link with
its corresponding tree node ni, context is defined as a mul-
tiset that includes the text of the link node, along with the
text contained in the m sibling nodes {n1, ..., ni−1, ni+1,
..., nm} of ni.

Consider an example when the source is the front page of
The New York Times news Web site, Figure 1(a). The context

of the encircled link is the text surrounded by the dotted line.
Figure 1(b) shows the corresponding frame tree with the link
and its siblings.

1. Context Identification and Ranking: From the frame
tree, we extract the text in and around the link and store it in
a multiset after removing all function words1. We denote this
multiset as Scontext. The words in Scontext are then ranked
(weighted) according to their proximity to the link. At this
point, the destination Web page is fetched, Figure 3(a).

2. Context Matching: After the context of the source page
has been gathered and ranked, the Browser Object module
downloads the destination Web page and generates a new
frame tree. The algorithm matches the words in the multi-
set Scontext, to the text in all leaves of the new frame tree,
Figure 3(b), which are then assigned respective weights. The
steps are enumerated below:

a. Run a depth-first search to identify all leaves {Leaf1, ...,
Leafn} in the frame tree of the destination page.

b. For each Leafi:

i. Set its weight Wi to 0.
ii. If Leafi contains text, tokenize and store the text in the

corresponding Listi, after removing the function words.
iii. Search for the context keywords from set Scontext in

Listi.
iv. For each successful context keyword match, increment

Wi by the weight of the keyword.

Continuing our example in Figure 3, the frame tree of the
destination page will be searched for all words occurring in
the context of the link from the source page. By the end of
this step, the leaf nodes, marked with clear-box icons in Fig-
ure 3(b), will have accumulated their weights. The weight
“W : n”, in the leftmost column, express the relevance of
1Function Words or grammatical words are words that have little lexical
meaning or have ambiguous meaning, but instead serve to express grammat-
ical relationships with other words within a sentence, or specify the attitude
or mood of the speaker (Wikipedia.org)

342

(b) Destination Frame Tree(a) Destination Page

Figure 3: Most Relevant Block Identification

each leaf-node with respect to the context gathered from the
source Web page. Higher weight implies greater relevancy.

3. Block Ranking and Rearrangement: We propagate the
weights from the leaves of the frame tree up to a certain node
(block), which we call a Marker Node. This is a node of a
block tree, whose children are organized contiguously on the
Web page and have the same geometric alignment, i.e. have
matching X or Y coordinates. To identify marker nodes, we
initiate a depth first search from the root of the frame tree
and recursively merge the geometrically aligned nodes. Web
pages are usually organized in such a way that semantically
related information is grouped together and has the same ge-
ometric alignment. Thus, the geometric alignment can help
identify semantically related blocks.

For example, in Figure 1(a), all Web page objects in the
area surrounded by the dotted line have the same geometrical
alignment and are semantically related. The parent node will
be identified as a marker node in frame tree. In Figure 1(b)
marker nodes are shown by circular icons. The following
steps describe the Block Ranking procedure:

a. Starting with one level above the leaf nodes, propagate the
weights of the leaves up in the frame tree.

b. For block node m (with n children) calculate its weight:

Wm =
∑n

i=1(n− i + 1) ∗Wchildi

where i = 1, ..., n, and Wchildi denotes the weight of the
ith child of the block node m.

c. Do not propagate the weights beyond the marker nodes.

d. Store all marker nodes in a list for further processing.

We observed that the first node in any block is usually more
important than the subsequent nodes. We use this observa-
tion and multiply the weight Wchildi of each child node in
block m by (n − i + 1). Thus, with each new child node,
we reduce its contribution to the total weight of the block m.

Then, the frame tree is reorganized based on the weights of
the marker nodes, so that the most relevant block of informa-
tion is placed first.

The marker node, expanded in Figure 3(b), happens to have
the most weight, which makes it the most relevant block.
The section of the Web page, corresponding to the selected
marker node, is shown in Figure 3(a). The frame tree is re-
arranged in such a way, that the Interface Manager will first
read the most relevant block, which, in our case, is the article
about the identity theft. Having finished with the article, the
Interface Manager will continue reading the rest of the Web
page content.

PERFORMANCE
We experimentally compared our Web browser prototype with
the state-of-the-art JAWS screen-reader. In our performance
evaluation, we used over a dozen Web sites spanning 4 con-
tent domains: news, books, consumer electronics, and office
supplies. Our sighted performance testers did 5 navigations
on each Web site and measured the total time2 taken to reach
the relevant information using CSurf. For baseline compar-
ison, they were also asked to do the same experiments with
JAWS screen-reader using the same set of Web pages. We al-
lowed the use of shortcuts to skip blocks of text and acceler-
ate browsing. The results of the performance comparison are
shown in Figure 4. We also calculated how well CSurf identi-
fied relevant block in each Web site. Our algorithm showed a
reasonable accuracy of over 80% in all four content domains
(Figure 5). We believe that a more sophisticated algorithm
could substantially improve the accuracy.

We have also demonstrated CSurf to our low-vision consul-
tant, who is an instructor teaching his students to use JAWS
at Helen Keller Services for the Blind (HKSB) [5], Hemp-
stead, NY. Our consultant noted that context-based browsing
has the potential to substantially reduce information overload
and improve browsing experience, compared to Web brows-
ing with regular screen-readers.

2Here total time represents the period that starts when the user follows a
link and ends when our system begins to read the relevant information on
the next Web page.

343

0

50

100

150

200

250

News Books Electronics Office

A
ve

ra
ge

 T
im

e
(s

ec
)

CSurf

JAWS

Figure 4: CSurf vs. JAWS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

News Books Electronics Office

A
cc

u
ra

cy
 (

%
)

Figure 5: Accuracy of Relevant Block Identification

RELATED WORK
The work in this paper is related to research in non-visual
Web access, information rearrangement in Web pages, and
contextual analysis. Blind users access the Web using screen-
readers, such as JAWS [6] and IBM’s Home Page Reader [1].
BrookesTalk [13] summarizes Web pages to address the in-
formation overload problem in non-visual Web access. The
work described in [4] generates “gist” summary of a Web
page to help visually impaired users reduce the information
they need to read on that page. However, summarization of
the entire page does not help find the relevant information in
that page on following a link. Another approach is described
in [12] where users are presented with the logical structure of
the Web page to select which part they want to listen. CSurf
goes beyond these systems in scope and approach; it helps
find relevant information quickly on following a link. Infor-
mation Rearrangement in Web Pages mostly relies either on
rules [11] or logical structures [12]. Our system uses visual
layout of Web pages to automatically capture contextual in-
formation and re-arrange the content.

Contextual Analysis for non-visual Web browsing has not
been previously explored. The system in [3] uses the con-
text of a link to get the preview of the next Web page before
following the link. This idea is also used in AcceSS system
[9], to get the preview of the entire page. However, present-
ing a preview does not guarantee the reduction of browsing
time. In contrast to all of these works, we aim to help blind
users quickly identify relevant information after following a
link. A poster describing our initial ideas on context-based
browsing [8] appears in ASSETS’06. Here, we describe our
algorithm for context-based browsing and its preliminary ex-
perimental results.

CONCLUSION AND FUTURE WORK
In this paper, we described an algorithm for context-based
non-visual Web browsing. The preliminary experimental re-
sults of our algorithms show that context-based browsing can
reduce information overload in non-visual Web access. We
identify several potentially useful areas for further research.
If search keywords are treated as context, our algorithm can
be easily extended to allow smart searching within a Web
page. NLP techniques can be employed to enhance con-
text processing and searching. We are currently researching
summarization techniques to further save the browsing time.
We are also investigating the feasibility of applying machine
learning algorithms to context identification.

REFERENCES
1. C. Asakawa and T. Itoh. User interface of a home page

reader. In ACM Intl. Conf. on Assistive Technologies (AS-
SETS), 1998.

2. Y. Borodin. A flexible vxml interpreter for non-visual
web access. In ACM Conf. on Assistive Technologies
(ASSETS), 2006.

3. S. Harper, C. Goble, R. Stevens, and Y. Yesilada. Mid-
dleware to expand context and preview in hypertext. In
Assets ’04: Proceedings of the 6th international ACM
SIGACCESS conference on Computers and accessibility,
2004.

4. S. Harper and N. Patel. Gist summaries for visually im-
paired surfers. In Assets ’05: Proceedings of the 7th in-
ternational ACM SIGACCESS conference on Computers
and accessibility, pages 90–97, 2005.

5. http://www.hellenkeller.org.

6. http://www.freedomscientific.com.

7. http://jrex.mozdev.org.

8. J. Mahmud, Y. Borodin, D. Das, and I. Ramakrishnan.
Improving non-visual web access using context. In AS-
SETS, 2006.

9. B. Parmanto, R. Ferrydiansyah, A. Saptono, L. Song,
I. W. Sugiantara, and S. Hackett. Access: acces-
sibility through simplification & summarization. In
W4A ’05: Proceedings of the 2005 International Cross-
Disciplinary Workshop on Web Accessibility (W4A),
pages 18–25, 2005.

10. I. Ramakrishnan, A. Stent, and G. Yang. Hearsay: En-
abling audio browsing on hypertext content. In Intl.
World Wide Web Conf. (WWW), 2004.

11. T. Raman. Audio system for technical readings. PhD
Thesis, Cornell University, 1994.

12. H. Takagi and C. Asakawa. Transcoding proxy for non-
visual web access. In ACM Intl. Conf. on Assistive Tech-
nologies (ASSETS), 2000.

13. M. Zajicek, C. Powell, and C. Reeves. Web search and
orientation with brookestalk. In Proceedings of Tech.
and Persons with Disabilities Conf., 1999.

344

