
Fast Online Pointer Analysis

MARTIN HIRZEL

IBM Research

DANIEL VON DINCKLAGE and AMER DIWAN

University of Colorado
and

MICHAEL HIND

IBM Research

Pointer analysis benefits many useful clients, such as compiler optimizations and bug finding tools.
Unfortunately, common programming language features such as dynamic loading, reflection, and
foreign language interfaces, make pointer analysis difficult. This article describes how to deal
with these features by performing pointer analysis online during program execution. For example,
dynamic loading may load code that is not available for analysis before the program starts. Only
an online analysis can analyze such code, and thus support clients that optimize or find bugs in
it. This article identifies all problems in performing Andersen’s pointer analysis for the full Java
language, presents solutions to these problems, and uses a full implementation of the solutions in a
Java virtual machine for validation and performance evaluation. Our analysis is fast: On average
over our benchmark suite, if the analysis recomputes points-to results upon each program change,
most analysis pauses take under 0.1 seconds, and add up to 64.5 seconds.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Pointer analysis, class loading, reflection, native interface

ACM Reference Format:
Hirzel, M., von Dincklage, D., Diwan, A., and Hind, M. 2007. Fast online pointer analysis. ACM
Trans. Program. Lang. Syst. 29, 2, Article 11 (April 2007), 55 pages. DOI = 10.1145/1216374.
1216379 http://doi.acm.org/10.1145/1216374.1216379.

A preliminary version of parts of this article appeared in the European Conference on Object-
Oriented Programming 2004.
This work was supported by NSF ITR Grant CCR-0085792, an NSF Career Award CCR-0133457,
and IBM Ph.D. Fellowship, an IBM faculty partnership award, and an equipment grant from Intel.
Any opinions, findings, and conclusions or recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the sponsors.
Authors’ addresses: M. Hirzel, M. Hind, IBM T. J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532; email: {hirzel,hindm}@us.ibm.com; D. von Dincklage, A. Diwan, University
of Colorado, Boulder, CO 80309; email: {danielvd,diwan}@colorado.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/04-ART11 $5.00. DOI 10.1145/1216374.1216379 http://doi.acm.org/
10.1145/1216374.1216379

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1216374.1216379&domain=pdf&date_stamp=2007-04-01

2 • M. Hirzel et al.

1. INTRODUCTION

Pointer analysis benefits many useful clients, such as optimizations (e.g., in the
compiler or garbage collector) and programmer productivity tools (e.g., for bug
finding or refactoring). Pointer analysis is useful whenever a client depends on
possible values of pointers at runtime.

An online analysis occurs during program execution. In contrast, an offline
analysis completes before the program begins executing. An online analysis
incrementally analyzes new code when it is dynamically loaded into the running
program. Some of that code may not be available at all for offline analysis before
the program begins executing, and thus can only be analyzed by online analysis.

Besides being the natural way to deal with dynamically loaded code, an
online analysis also enables novel techniques for dealing with reflection and
foreign language interfaces. All three features are commonly used in Java,
both in the standard libraries and in many user programs. We developed the
first online version of Andersen’s pointer analysis [1994]. Our online analysis
deals with all Java language features in the general setting of an executing
Java virtual machine. Thus, the benefits of points-to information become
available to optimizations in just-in-time compilers and other components of
the language runtime system. Online analysis provides information about the
entire program, including parts that are not available offline, for which an
offline analysis cannot provide any information.

The rest of this section describes challenges that dynamically loaded code,
reflection, and foreign language interfaces (Sections 1.1 to 1.3, respectively)
present for program analysis, the possible space of solutions (Section 1.4), and
our specific solution to these challenges (Section 1.5). Section 1.6 outlines the
rest of this article.

1.1 Dynamic Loading

An offline analysis does not know where code will be loaded from at runtime,
which code will be loaded, and whether a given piece of code will be loaded. For
these reasons, some of the code can be unavailable to offline analysis, hampering
its ability to yield useful information.

1.1.1 Offline Analysis Does Not Know Where Code Will Be Loaded From.
Applications can “load” code by generating it during execution, rather than read-
ing it from a file. A user-defined class loader in Java can create code in an array of
bytes at runtime, then hand it to the underlying runtime system to execute with
ClassLoader. defineClass (byte[] b). Other languages have similar features.
Many production-strength applications use runtime code generation to create
custom-tailored code snippets for performance-critical tasks, such as serializa-
tion or data structure traversal. In fact, using jar and grep on the bytecode files
of the Java 1.5 libraries reveals that they use defineClass for XML processing.

Applications can also load code over the network. In Java, a user-defined
class loader can download a stream of bytes from another machine, then call
defineClass for it. This feature is popular for distributed extensible applications.

Another situation where parts of the program are not available to offline
analysis is library development. The developer of a library cannot analyze all

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 3

code offline because some of that code will be written by users of the library.
This restricts the scope of clients of the analysis, such as optimizations and
productivity tools.

1.1.2 Offline Analysis Does Not Know Which Code Will Be Loaded. Dy-
namic loading poses problems for an offline analysis, even when all code
is available before runtime. In Java, an application may load code with
Class. forName(String name), where name can be computed at runtime. For
example, a program may compute the localized calendar class name by reading
an environment variable. One approach to dealing with this issue would be
to assume that all calendar classes may be loaded. This would result in a less
precise solution if any particular run loads only one calendar class. Even worse,
the relevant classes may be available only in the execution environment, and
not in the development environment.

1.1.3 Offline Analysis Does Not Know Whether a Given Piece of Code Will Be
Loaded. Dynamic loading poses problems for an offline analysis, even when
all code is available before runtime and there is no explicit class loading. In
Java, the runtime system implicitly loads a class the first time executing code
refers to it, for example, by creating an instance of the class. Whether a program
will load a given class is indeterminable: This depends on the input, and even
when the input is known, it is undecidable. In general, an offline whole-program
analysis has to analyze more code than gets executed, making it less efficient
(analyzing more code wastes time and space) and less precise (the code may
exhibit behavior never encountered at runtime). In situations like these, online
analysis can be both more efficient and more precise.

1.1.4 Issues with Unavailable Code. Section 1.1.1 describes how some code
can be unavailable for offline analysis. Offline analysis only analyzes the avail-
able code, and therefore does not supply its clients with information about the
unavailable code. For example, optimizations cannot use offline analysis to im-
prove the performance of code that is not available offline. Similarly, bug finding
tools based on offline analysis will miss bugs in unavailable code.

When some code is unavailable offline, even the code that is available is
harder to analyze because the offline analysis must make assumptions about
what happens at the boundary to unavailable code. This typically means sac-
rificing a desirable analysis property: (i) Offline analysis can make pessimistic
assumptions at the boundary, sacrificing some degree of precision. (ii) Alterna-
tively, it can make optimistic assumptions at the boundary, sacrificing sound-
ness. (iii) Offline analysis can require the user to write a specification for
what the unavailable code does, sacrificing ease-of-use and maintainability.
(iv) Finally, offline analysis can reject programs involving unavailable code,
sacrificing the ability to analyze programs that use certain language features,
either directly or through the standard libraries.

Online analysis avoids these issues because all code that is executed is avail-
able to online analysis. Thus, it can support online clients that operate on code
which is not available offline. Also, it does not need to sacrifice precision, sound-
ness, usability, or coverage at the boundary to unavailable code because there
is no boundary.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

4 • M. Hirzel et al.

1.2 Reflection

Reflection allows expressing certain design patterns and frameworks more con-
veniently that are hard or impossible to express within the confines of more
traditional language features. For example, Java libraries can use reflection to
implement a class-independent clone method. When a program analysis tries
to predict the effect of reflection, the result is often quite imprecise because re-
flection can manipulate the arbitrary program entities named by strings that
are constructed at runtime. Hence, many offline analyses elect to be unsound
with respect to reflection rather than to sacrifice precision, or elect to require
manual specifications of the possible effect of reflection in a particular program
or library. Online analysis can avoid these issues by waiting for reflection to
actually happen, and then updating its results if the program uses reflection
in a way it has not before. This prevents the loss of precision, soundness, or
usability that offline analysis may experience.

1.3 Foreign Language Interfaces

Foreign language interfaces allow code written in different languages to inter-
operate. For example, the JNI (Java native interface) allows bidirectional data
and control flow between Java and native code, such as compiled C code. This
allows interaction with the operating system and with legacy libraries, and
gives developers the choice of the right language for the right task. For exam-
ple, file I/O in Java is implemented using JNI. To analyze the whole application,
we would need an analysis for each of the languages involved. But even this
may not be enough when the code in the foreign language is unavailable; for
example, JNI loads native code dynamically.

In the absence of an analysis for the foreign language, we can analyze just the
part of the application written in one language. This means that the analysis
must make assumptions at the boundary to the foreign code: It can be pes-
simistic (sacrificing some precision), optimistic (sacrificing soundness), require
user specifications, or reject certain programs.

Online analysis gives an alternative: It can instrument the places wherein
the analyzed language makes calls to, or receives calls from, the foreign lan-
guage. The instrumentation checks whether the foreign code affects the ana-
lyzed code in a way it has not before, and updates analysis results accordingly.
This prevents the loss of precision, soundness, or usability that offline analy-
sis may experience, without requiring a separate analysis for the foreign code.
In addition, online analysis does not require all foreign code to be available
offline.

1.4 Offline vs. Online: Picking the Right Analysis

Clients of program analyses have some or all of the following requirements, but
may prioritize them differently:

—Code coverage: The analysis should characterize all parts of the program.
—Feature coverage: The analysis should accept code using all language

features.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 5

—Input coverage: The analysis results should predict program behavior with
respect to all possible program inputs.

—Analysis time: The analysis should take little time before the program runs.
—Runtime: The analysis should take little time while the program runs.
—Precision: The analysis should not overapproximate runtime behavior.
—Soundness: The analysis should not underapproximate runtime behavior.
—Ease-of-use: The analysis should require no work on the part of the human

user.
—Ease-of-engineering: Developing and maintaining the analysis code should

not take too much time.

Offline analysis cannot achieve both full code coverage and full feature cov-
erage if one of the features of the analyzed language is dynamic loading. Online
analysis cannot achieve full input coverage or zero runtime overhead because
the input determines the code it encounters, and the analysis itself takes time
while the program is running. Offline analyses often sacrifice one or more of
soundness, ease-of-use, code coverage, and feature coverage, particularly when
dealing with reflection or foreign language interfaces. This is not strictly neces-
sary, and the fact that it happens anyway indicates that most analysis designers
rate other requirements, such as better precision, as more important for their
clients.

The choice of offline versus online analysis depends on how well the require-
ments of the client match the strengths and weaknesses of the analysis. In
general, online analysis is better for optimizations (they should be fully auto-
matic and deal with all programs, but can be specialized to the current input by
using an invalidation framework), and offline analysis is better for productivity
tools (they should be general with respect to all possible inputs, but need not
necessarily deal with all programs or all language features).

1.5 Contributions

This article describes an online version of Andersen’s pointer analysis [1994].
The online analysis elegantly deals with dynamically loaded code, as well as
with reflection and a foreign language interface. This article

—identifies all problems of performing Andersen’s pointer analysis for the full
Java language,

—presents a solution for each of the problems,
—reports on a full implementation of the solutions in Jikes RVM, an open-

source research virtual machine [Alpern et al. 2000],
—discusses how to optimize the implementation to make it fast,
—validates, for our benchmark runs, that the analysis yields correct results,

and
—evaluates the efficiency of the implementation.

In a previous paper on our analysis [Hirzel et al. 2004], we found that the
implementation was efficient enough for stable long-running applications, but

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

6 • M. Hirzel et al.

too inefficient for the general case. Because Jikes RVM, which is itself writ-
ten in Java, leads to a large code base even for small benchmarks, and be-
cause Andersen’s analysis has time complexity cubic in the code size, obtaining
fast pointer analysis in Jikes RVM is challenging. This article improves anal-
ysis time by almost two orders of magnitude compared to our previous paper.
On average over our benchmark suite, if the analysis recomputes points-to
results upon each program event that is relevant to pointer analysis, the av-
erage analysis pause takes under 0.1 seconds, and all pauses together take
64.5 seconds.

The contributions from this work should be transferable to

—Other analyses: Andersen’s analysis is a whole-program analysis consisting
of two steps: modeling the code and computing a fixed point on the model. Sev-
eral other algorithms follow the same pattern, such as VTA [Sundaresan et al.
2000], XTA [Tip and Palsberg 2000], or Das’s one-level flow algorithm [2000].
Algorithms that do not require the second step, such as CHA [Fernández
1995; Dean et al. 1995] or Steensgaard’s unification-based algorithm [1996],
are easier to perform in an online setting. Our implementation of Andersen’s
analysis is flow- and context-insensitive. Although this article should also
be helpful for performing flow- or context-sensitive analyses online, these
analyses pose additional challenges that need to be addressed. For example,
correctly dealing with exceptions [Choi et al. 1999] or multithreading [Grun-
wald and Srinivasan 1993] is more difficult in a flow-sensitive than in a
flow-insensitive analysis.

—Other languages: This article shows how to deal with dynamic class loading,
reflection, and the JNI in Java. Dynamic class loading is a form of dynamic
loading of code, and we expect our solutions to be useful for other forms of
dynamical loading, such as DLLs. Reflection is becoming a commonplace lan-
guage feature, and we expect our solutions for Java reflection to be useful for
reflection in other languages. The JNI is a form of foreign language interface,
and we expect our solutions to be useful for foreign language interfaces of
other languages.

1.6 Overview of the Article

Section 2 introduces abstractions and terminology. Section 3 describes an of-
fline version of Andersen’s analysis that we use as the starting point for our
online analysis. Section 4 explains how to turn this into an online analysis, and
Section 5 shows how to optimize its performance. Section 6 discusses implemen-
tation issues, including how to validate that the analysis yields sound results.
Section 7 investigates clients of the analysis, and how they can deal with the dy-
namic nature of its results. Section 8 evaluates the performance of our analysis
experimentally. Section 9 discusses related work, and Section 10 concludes.

2. BACKGROUND

Section 2.1 describes ways in which pointer analyses abstract data flow and
points-to relationships in programs. Section 2.2 gives a concrete example for

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 7

how pointer analysis manipulates these abstractions. Section 2.3 defines online
and incremental analyses.

2.1 Abstractions

The goal of pointer analysis is to find all possible targets of all pointer variables
and fields. Because the number of pointer variables, fields, and pointer targets
is unbounded during execution, a pointer analysis operates on a finite abstrac-
tion. This section defines this abstraction. This section elaborates on what the
analysis finds, and subsequent sections give details for how it works. While this
section enumerates several alternative abstractions, the lists are not intended
to be exhaustive.

2.1.1 Variables. Variables are locals, parameters, or stack slots of methods,
or static fields of classes. A pointer analysis tracks the possible values of pointer
variables. The Java type system distinguishes which variables are of reference
(i.e., pointer) type: A pointer cannot hide in a nonpointer variable or a union.
Multiple instances of the locals, parameters, and stack slots of a method can
coexist at runtime, one per activation of the method. Pointer analysis abstracts
this unbounded number of concrete variables with a finite number of v-nodes.
Alternatives for variable abstraction include:

(a) For each variable, represent all instances of that variable in all activations
of its method by one v-node (this is one of the ingredients of a context-
insensitive analysis).

(b) Represent each variable by different v-nodes based on the context of the
activation of its method (this is one of the ways to achieve context-sensitive
analysis).

Most of this article assumes context-insensitive analysis, using Option (a).

2.1.2 Pointer Targets. Pointer targets are heap objects, in other words, in-
stances of classes or arrays. In Java, there are no pointers to other entities such
as stack-allocated objects, nor to the interior of objects. Multiple instances of
objects of a given type or from a given allocation site can coexist at runtime.
Pointer analysis abstracts this unbounded number of concrete heap objects with
a finite number of h-nodes. Alternatives for heap object abstraction include the
following.

(a) For each type, represent all instances of that type by one h-node (type-based
heap abstraction).

(b) For each allocation site, represent all heap objects allocated at that alloca-
tion site by one h-node (allocation-site-based heap abstraction).

Most of this work assumes allocation-site-based heap abstraction, using Op-
tion (b).

2.1.3 Fields. Fields are instance variables or array elements. A field is
like a variable, but is stored inside of a heap object. Just as the analysis is
concerned only with variables of reference type, it is concerned only with fields
of reference type, and ignores nonpointer fields. Multiple instances of a field can

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

8 • M. Hirzel et al.

coexist at runtime because multiple instances of the object in which it resides
can coexist. Pointer analysis abstracts this unbounded number of fields with
a bounded number of nodes. Ignoring arrays for the moment, alternatives for
field abstraction for an h-node h, and a field f include

(a) ignore the h-node h, and represent the field f for all h-nodes of the type
that declares the field by one f -node (field-based analysis).

(b) use one h. f -node for each combination of h and f (field-sensitive analysis).

For array elements, the analysis ignores the index, and represents all ele-
ments of an array by the same h. f -node h. felems. Most of this work assumes
field-sensitive analysis, thus using Option (b).

2.1.4 PointsTo Sets. PointsTo sets are sets of h-nodes that abstract the
may-point-to relation. Alternatives for where to attach pointsTo sets include

(a) attach one pointsTo set to each v-node, and one to each h. f -node (flow-
insensitive analysis).

(b) have separate pointsTo sets for the same node at different program points
(flow-sensitive analysis).

This article assumes flow-insensitive analysis, thus using Option (a). When
the analysis finds that h ∈ pointsTo(v), it predicts that any of the variables
represented by v may point to any of the heap objects represented by h. Likewise,
when the analysis finds that h ∈ pointsTo(h′. f), it predicts that the field f of
any of the heap objects represented by h′ may point to any of the heap objects
represented by h.

2.2 Example

Consider a program with just three statements:

1 : x = new C(); 2 : y = new C(); 3 : x = y ;

In the terminology of Section 2.1, there are two v-nodes vx and vy , and two
h-nodes h1 and h2. Node h1 represents all objects allocated by Statement 1, and
node h2 represents all objects allocated by Statement 2. From Statements 1
and 2, the analysis produces initial pointsTo sets

pointsTo(vx) = {h1}, pointsTo(vy) = {h2}.
But this is not yet the correct result. Statement 3 causes the value of variable
y to flow into variable x. To model this situation, the analysis also produces
flowTo sets

flowTo(vx) = {}, flowTo(vy) = {vx}
Formally, these flowTo sets represent subset constraints

vx ∈ flowTo(vy) represents pointsTo(vy) ⊆ pointsTo(vx).

In this example, the constraints mean that x may point to all targets that y
points to (due to Statement 3), but possibly more.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 9

An analysis component called a “constraint propagator” propagates pointsTo
sets from the subset side to the superset side of constraints until it reaches a
fixed-point solution that satisfies the subset constraints. In the running exam-
ple, it finds:

pointsTo(vx) = {h1, h2}, pointsTo(vy) = {h2}
Now, consider adding a fourth statement, resulting in the program:

1 : x = new C(); 2 : y = new C(); 3 : x = y ; 4 : x. f = y ;

Again, the analysis represents statements with flowTo sets

flowTo(vx) = {}, flowTo(vy) = {vx , vx . f }.
The node vx . f represents the contents of fields f of all objects that variable
x points to. Due to Statement 4, values flow from variable y to those fields.
Therefore, those fields can point to anything that variable y points to. In other
words, there are multiple subset constraints

for each h ∈ pointsTo(vx) : pointsTo(vy) ⊆ pointsTo(h. f).

Since pointsTo(vx) = {h1, h2}, the for each expands to two new concrete con-
straints

pointsTo(vy) ⊆ pointsTo(h1. f), pointsTo(vy) ⊆ pointsTo(h2. f).

For the full set of constraints, the constraint propagator finds the fixed point

pointsTo(vx) = {h1, h2}, pointsTo(vy) = {h2},
pointsTo(h1. f) = {h2}, pointsTo(h2. f) = {h2}.

2.3 Kinds of Interprocedural Analysis

An incremental interprocedural analysis updates its results efficiently when
the program changes [Cooper et al. 1986; Burke and Torczon 1993; Hall et al.
1993; Grove 1998]. By “efficiently,” we mean that computing new results based
on previous results must be much less expensive than computing them from
scratch. Also, the computational complexity of updating results must be no
worse than that of analyzing from scratch. Because incrementality is defined by
this efficiency difference, it is not a binary property; rather, there is a continuum
of more or less incremental analyses. However, for each incremental analysis, all
analysis stages (constraint finding, call graph construction, etc.) must deal with
program changes. Prior work on incremental interprocedural analysis focused
on programmer modifications to the source code. This article differs in that it
uses incrementality to deal with dynamically loaded code.

An online interprocedural analysis occurs during program execution. In the
presence of dynamic loading, incrementality is necessary, but not sufficient, for
online analysis. It is necessary because the inputs to the analysis materialize
only incrementally as the program is running. It is not sufficient because online
analysis must also interact differently with the runtime system. For example,
for languages like Java, an online analysis must deal with reflection, foreign
function interfaces, and other runtime system issues.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

10 • M. Hirzel et al.

Method compilation

Constraint finder

Call graph builder

Constraint propagator

Analysis
components

Analysis
data structures

Client optimizations

Call graph

Propagator worklist

Constraint graph

Fig. 1. Offline architecture.

A modular interprocedural analysis (e.g., Chatterjee et al. [1999], Liang and
Harold [1999], Cheng and Hwu [2000]) performs most of its work in an in-
tramodule step, and less work in an intermodule step. By “most” and “less,” we
mean that the intramodule step must be much more expensive than the inter-
module step. Also, the computational complexity of the intramodule step must
be no better than that of the inter-module step. Modularity is neither necessary
nor sufficient for online interprocedural analysis. A modular analysis must also
be incremental and interface correctly with the runtime system in order to be
used online.

A demand-driven interprocedural analysis (e.g., Duesterwald et al. [1997],
Heintze and Tardieu [2001a], Vivien and Rinard [2001], Agrawal et al. [2002],
Lattner and Adve [2003]) attempts to compute just the part of the solution that
the client is interested in, rather than the exhaustive solution. Being demand-
driven is neither necessary nor sufficient for online interprocedural analysis. A
demand-driven analysis must also be incremental and interface correctly with
the runtime system in order to be used online.

3. OFFLINE ANALYSIS

This section describes the parts of our version of Andersen’s pointer analy-
sis that could be used for Java-like languages without dynamic features. We
present them separately here to make the article easier to read, and to allow
Section 4 to focus on techniques for performing online analyses. Our implemen-
tation combines the techniques from Sections 3 to 6 into a sound analysis for
the full Java language.

3.1 Offline Architecture

Figure 1 shows the architecture for performing Andersen’s pointer analysis
offline. In an offline setting, bytecode for the entire program is available be-
fore running it, and “method compilation” constructs an intermediate repre-
sentation (IR) from bytecode. The call graph builder uses the IR as input, and
creates a call graph. The constraint finder uses the IR as input for creating

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 11

Table I. Constraint Graph

Node kind Represents concrete entities PointsTo sets Flow sets
h-node Set of heap objects, e.g., all objects allocated at none none

a particular allocation site
v-node Set of program variables, e.g., a static variable, pointsTo[h] flowTo[v],

or all occurrences of a local variable flowTo[v. f]
h. f -node Instance field f of all heap objects represented by h pointsTo[h] none
v. f -node Instance field f of all h-nodes pointed to by v none flowFrom[v],

flowTo[v]

intraprocedural constraints, and the call graph as input for creating interpro-
cedural constraints. The output consists of constraints in the constraint graph
that model the code of the program. When the constraint finder is done, the
constraint propagator determines the least fixed-point of the pointsTo sets of the
constraint graph. The propagator uses a worklist to keep track of its progress.
The final pointsTo sets in the constraint graph are the output of the analysis
to clients.

3.2 Analysis Data Structures

The call graph models possible method calls (Section 3.2.1). The constraint
graph models the effect of program code on pointsTo sets (Section 3.2.2). The
propagator worklist keeps track of possibly violated constraints (Section 3.2.3).
Our analysis represents pointsTo sets in the constraint graph with Heintze’s
shared bit sets (Section 3.2.4).

3.2.1 Call Graph. The nodes of the call graph are call sites and callee
methods. Each edge of the call graph is a pair of a call site and a callee method
that represents a may-call relation. For example, for call site s and method
m, the call edge (s, m) means that s may call m. Due to virtual and interface
methods, a given call site may have edges to multiple potential callee methods.

3.2.2 Constraint Graph. The constraint graph has four kinds of nodes, all
of which participate in constraints. The constraints are stored as sets at the
nodes. Table I describes the nodes. The reader is already familiar with h-nodes,
v-nodes, and h. f -nodes from Sections 2.1.1–2.1.3. A v. f -node represents the
instance field f accessed from variable v; the analysis uses v. f -nodes to model
loads and stores.

Table I also shows sets stored at each node. The generic parameters in “[· · ·]”
are the kinds of nodes in the set. The reader is already familiar with pointsTo
sets (column 3 of Table I) from Section 2.1.4.

FlowTo sets (column 4 of Table I) represent a flow of values (assignments,
parameter passing, etc.), and are stored with v-nodes and v. f -nodes. For exam-
ple, if v′ ∈ flowTo(v), then the pointer r-value of v may flow to v′. As discussed
in Section 2.2, this flow-to relation v′ ∈ flowTo(v) can also be viewed as a subset
constraint pointsTo(v) ⊆ pointsTo(v′). FlowFrom sets are the inverse of flowTo
sets. For example, v′. f ∈ flowTo(v) is equivalent to v ∈ flowFrom(v′. f).

Each h-node has a map from fields f to h. f -nodes (i.e., the nodes that rep-
resent the instance fields of the objects represented by the h-node). For each

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

12 • M. Hirzel et al.

pointsTo sets

Overflow lists

Base bit-vectors

Lookup map

v1 v2 v3 v4

{h1, h2} {h1, h3} {h1, h4, h5}

{h3} {h4} {h6}{}

2 3

Fig. 2. Example for Heintze’s pointsTo set representation.

h-node representing arrays of references, there is a special node h. f elems that
represents all of their elements.

The constraint graph plays a dual role: It models the effect of code on pointers
with flow sets, and models the pointers themselves with pointsTo sets. Clients
are interested in the pointsTo sets, but not in the flow sets, which are only
used as an internal representation for the analysis to compute and update the
pointsTo sets.

3.2.3 Propagator Worklist. The worklist is a list of v-nodes that may ap-
pear on the left side of unresolved constraints. In other words, if v is in
the worklist, then there may be a constraint pointsTo(v) ⊆ pointsTo(v′) or a
constraint pointsTo(v) ⊆ pointsTo(v′. f) that may not hold for the current
pointsTo set solution. If this is the case, the propagator has some more work
to do in order to find a fixed point. The work list is a priority queue, so ele-
ments are retrieved in topological order. For example, if there is a constraint
pointsTo(v) ⊆ pointsTo(v′), and no transitive constraints cycle back from v′ to
v, then the worklist returns v before v′. Other implementations of Andersen’s
analysis, such as BANE (Berkely ANalysis Engine) [Fähndrich et al. 1998], also
put h. f -nodes on the worklist.

3.2.4 Heintze’s pointsTo Set Representation. Heintze’s shared bit sets com-
pactly represent pointsTo sets by exploiting the observation that many pointsTo
sets are similar or identical [Heintze 1999]. Each set consists of a bit vector
(“base bit-vector”) and a list (“overflow list”). Two sets that are nearly identical
may share the same base bit-vector; any elements in these sets that are not in
the base bit-vector go in their respective overflow lists.

For example, imagine that pointsTo(v1) is {h1, h2, h3} and pointsTo(v2) is
{h1, h2}. Then the two pointsTo sets may share the base bit-vector {h1, h2}, as
shown in Figure 2. Since pointsTo(v1) also includes h3, its overflow list contains
the single element h3; by similar reasoning, pointsTo(v2)’s overflow list is empty.

Figure 3 gives the algorithm for inserting a new element h into a pointsTo
set in Heintze’s representation. For example, consider the task of inserting h4
into pointsTo(v1). The algorithm adds h4 to the overflow list of pointsTo(v1)
if the overflow list is smaller than overflowLimit (a configuration parameter;
we picked the value 24). If the overflow list is already of size overflowLimit,
then instead of adding h4 to the overflow list, the algorithm tries to find an
existing base bit-vector that will enable the overflow list to be smaller than
overflowLimit, and indeed as small as possible (Lines 6–11; we configured

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 13

1: if h �∈ base and h �∈ overflow

2: if |overflow | < overflowLimit
3: overflow.add(h)
4: else

5: desiredSet ← base ∪ overflow ∪ {h}
6: for overflowSize ← 0 to newOverflowThreshold

7: for each candidate ∈ lookupMap[|desiredSet| − overflowSize]
8: if candidate ⊆ desiredSet

9: base ← candidate

10: overflow ← desiredSet − candidate

11: return

12: // we get here only if there was no suitable candidate

13: base ← desiredSet

14: overflow ← {}
15: lookupMap[|base|].add(base)

Fig. 3. Adding a new element h to a pointsTo set in Heintze’s representation.

newOverflowThreshold = 12). If no such base bit-vector exists, then the algo-
rithm creates a new perfectly matching base bit-vector and makes it available
for subsequent sharing (Lines 13–15).

3.3 Offline Call Graph Builder

We use CHA (class hierarchy analysis [Fernández 1995; Dean et al. 1995])
to find call edges. CHA finds call edges based on the subtyping relationship
between the receiver variable and the class that declares the callee method. In
other words, it only considers the class hierarchy, and ignores what values are
assigned to the receiver variable.

A more precise alternative than CHA is to construct the call graph on-the-fly
based on the results of the pointer analysis [Ghiya 1992; Burke et al. 1994;
Emami et al. 1994]. We decided against that approach because prior work indi-
cated that the modest improvement in precision does not justify the cost in effi-
ciency [Lhoták and Hendren 2003]. Constructing a call graph on-the-fly would
require an architectural change: In Figure 1, the input to the call graph builder
would come both from method compilation and from the constraint graph (which
contains the pointsTo sets). Instead of improving the precision using on-the-fly
call graph construction based on the pointsTo sets, a better alternative may be
to obtain the most precise possible call graph using low-overhead exhaustive
profiling [Qian and Hendren 2004].

3.4 Offline Constraint Finder

The constraint finder analyzes the data flow of the program, and models it in
the constraint graph.

3.4.1 Assignments. The intraprocedural part of the constraint finder an-
alyzes the code of a method and models it in the constraint graph. It is a
flow-insensitive pass of the just-in-time compiler. In our implementation, it
operates on the high-level register-based intermediate representation (HIR) of
Jikes RVM [Alpern et al. 2000]. HIR decomposes access paths by introducing

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

14 • M. Hirzel et al.

Table II. Finding Constraints for Assignments

Statement Actions Represent constraints
v′ = v (move v → v′) flowTo(v). add(v′) pointsTo(v) ⊆ pointsTo(v′)
v′ = v. f (load v. f → v′) flowTo(v. f). add(v′) for each h ∈ pointsTo(v) :

pointsTo(h. f) ⊆ pointsTo(v′)
v′. f = v (store v → v′. f) flowTo(v). add(v′. f), for each h ∈ pointsTo(v′) :

flowFrom(v′. f). add(v) pointsTo(v) ⊆ pointsTo(h. f)
a: v = new . . . (alloc ha → v) pointsTo(v). add(ha) {ha} ⊆ pointsTo(v)

a = x.m(b);

A::m(this(A::m), c) {
return d;

}

caller

callee

retval(A::m)

Fig. 4. Finding constraints for parameters and return values.

temporaries so that no access path contains more than one pointer dereference.
Column “Actions” in Table II gives the actions of the constraint finder when it
encounters the statement in column “Statement.” For example, the assignment
v′ = v moves values from v to v′, and the analysis models this by adding v′ to
the set of variables to which v flows. Column “Represent constraints” shows
the constraints implicit in the actions of the constraint finder using mathe-
matical notation. For example, because pointer values flow from v to v′, the
possible targets pointsTo(v) of v are a subset of the possible targets pointsTo(v′)
of v′.

3.4.2 Parameters and Return Values. The interprocedural part of the con-
straint finder analyzes call graph edges, and models the data flow through
parameters and return values as constraints. It models parameter passing as
a move from actuals (at the call site) to formals (of the callee). In other words,
it treats parameter passing just like an assignment between the v-nodes for
actuals and formals (first row of Table II). The interprocedural part of the con-
straint finder models each return statement in a method m as a move to a
special v-node vretval(m). It models the data flow of the return value to the call
site as a move to the v-node that receives the result of the call. Figure 4 shows
these flow-to relations as arrows. For example, the arrow d → retval(A :: m)
denotes the analysis action flowTo(vd).add(vretval(A::m)).

3.4.3 Exceptions. Exception handling leads to a flow of values (the excep-
tion object) between the site that throws an exception and the catch clause
that catches the exception. The throw and catch may happen in different meth-
ods. For simplicity, our current prototype assumes that any throws can reach
any catch clause of matching type. We could easily imagine making this more

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 15

1: while worklist not empty

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: for each field f of v
11: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
12: for each h ∈ pointsTo(v)
13: pointsTo(h.f).add(pointsTo(v′))
14: for each v′ ∈ flowTo(v.f) // load v.f → v′

15: for each h ∈ pointsTo(v)
16: pointsTo(v′).add(pointsTo(h.f))
17: if pointsTo(v′) changed, add v′ to worklist

18: for each v.f
19: for each v′ ∈ flowTo(v.f) // load v.f → v′

20: for each h ∈ pointsTo(v)
21: pointsTo(v′).add(pointsTo(h.f))
22: if pointsTo(v′) changed, add v′ to worklist

Fig. 5. Lhoták-Hendren worklist propagator.

precise, for example, by assuming that throws can only reach catch clauses in
the current method or its (transitive) callers.

3.5 Offline Constraint Propagator

The constraint propagator finds a least fixed-point of the pointsTo sets in the
constraint graph, so they conservatively model the may-point-to relationship.

3.5.1 Lhoták-Hendren Worklist Propagator. Figure 5 shows the worklist
propagator that Lhoták and Hendren present as Algorithm 2 for their offline
implementation of Andersen’s analysis for Java [2003]. We adopted this as the
starting point for our online version of Andersen’s analysis because it is effi-
cient and the worklist makes it amenable for incrementalization. The Lhoták-
Hendren propagator has two parts: Lines 2–17 are driven by a worklist of
v-nodes, whereas Lines 18–22 iterate over pointsTo sets of h. f -nodes. Other
propagators, such as the one in BANE [Fähndrich et al. 1998], do not need the
second part.

The worklist-driven Lines 2–17 consider each v-node whose pointsTo set has
changed (Line 3). Lines 4–9 propagate the elements along all flow edges from
v to v′-nodes or v′. f -nodes. In addition, Lines 10–17 propagate along loads and
stores where v is the base node of a field access v. f because new pointer targets
h of v mean that v. f represents new heap locations h. f .

The iterative Lines 18–22 are necessary because processing a store v1 → v2. f
in Lines 7–9 can change pointsTo(h2. f) for some h2 ∈ pointsTo(v2). When this
occurs, simply putting v2 on the worklist is insufficient because the stored value

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

16 • M. Hirzel et al.

can be retrieved via an unrelated variable v3. For example, assume that:

flowTo(v1) = {v2. f }, flowTo(v3. f) = {v4},
pointsTo(v1) = {h1},
pointsTo(v2) = {h2}, pointsTo(v3) = {h2},
pointsTo(v4) = {}, pointsTo(h2. f) = {}

Assume v1 is on the worklist. Processing the store v1 → v2. f propa-
gates h1 from pointsTo(v1) to pointsTo(h2. f). Because flowTo(v3. f) = {v4},
there is a constraint pointsTo(h2. f) ⊆ pointsTo(v4), but it is violated, since
pointsTo(h2. f) = {h1} �⊆ {} = pointsTo(v4). Processing the load v3. f → v4 would
repair this constraint by propagating h1 from pointsTo(h2. f) to pointsTo(v4).
But the algorithm does not know that it has to consider that load edge, since
neither v3 nor v4 are on the worklist. Therefore, Lines 18–22 conservatively
propagate along all load edges.

3.5.2 Type Filtering. The propagator admits only those h-nodes into a
pointsTo set that are compatible with its type. The operation

pointsTo(b).add(pointsTo(a))

is really implemented as:

for each h ∈ pointsTo(a)
if typeOf(h) is a subtype of typeOf(b)

pointsTo(b).add({h})
This technique is called on-the-fly type filtering. Lhoták and Hendren [2003]
demonstrated that it helps in keeping pointsTo sets small and improves both
the performance and precision of the analysis. Our experiences confirm this
observation.

3.5.3 Propagator Issues. The propagator creates h. f -nodes lazily the first
time it adds elements to their pointsTo sets, in Lines 9 and 13. It creates only
h. f -nodes if instances of the type of h have the field f . This is not always the
case, as the following example illustrates. Let A, B, C be three classes such that
C is a subclass of B, and B is a subclass of A. Class B declares a field f . Let
hA, hB, hC be h-nodes of type A, B, C, respectively. Let v be a v-node of declared
type A, and let pointsTo(v) = {hA, hB, hC}. Now, data flow to v. f should add to
the pointsTo sets of nodes hB. f and hC. f , but there is no node hA. f .

We also experimented with the optimizations partial online cycle elimina-
tion [Fähndrich et al. 1998] and collapsing of single-entry subgraphs [Roun-
tev and Chandra 2000]. They yielded only modest performance improvements
compared to shared bit-vectors [Heintze 1999] and type filtering [Lhoták and
Hendren 2003]. Part of the reason for the small payoff may be that our data
structures do not put h. f -nodes in flowTo sets (as does BANE [Fähndrich et al.
1998]).

4. ONLINE ANALYSIS

This section describes how to change the offline analysis from Section 3 to obtain
an online analysis. It is organized around the online architecture in Section 4.1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 17

Method compilation

Building and startup

Native code execution

Reflection execution

Class loading

Type resolution

Events during
virtual machine execution

Resolution manager

Constraint finder

Call graph builder

Constraint propagator

Analysis
components

Analysis
data structures

Client optimizations

Validation mechanism

Call graph

Deferred call sites

Deferred constraints

Propagator worklist

Constraint graph

Fig. 6. Online architecture. Components absent from the offline architecture (Fig. 1) are shaded.

4.1 Online Architecture

Figure 6 shows the architecture for performing Andersen’s pointer analysis on-
line. The online architecture subsumes the offline architecture from Figure 1,
and adds additional functionality (shown as shaded) for dealing with dynami-
cally loaded code and other dynamic program behavior that cannot be analyzed
prior to execution. In the online case, method compilation is performed by a
JIT, a just-in-time compiler that compiles bytecode to machine code when the
method gets executed for the first time.

The left column shows the events during virtual machine execution that
generate inputs to the analysis. The dotted box contains the analysis: the middle
column shows analysis components, and the right column shows shared data
structures that the components operate on. At the bottom, there are clients
that trigger the constraint propagator component of the analysis, and consume
the outputs (i.e., the pointsTo sets). The validation mechanism behaves like a
client. Arrows mean triggering an action and/or transmitting information. We
will discuss the online architecture in detail as we discuss its components in
the subsequent sections.

4.2 Online Call Graph Builder

As described in Section 3.3, we use CHA (class hierarchy analysis) to find call
edges. Compared to offline CHA, online CHA has to satisfy two additional re-
quirements: It has to gradually incorporate the call sites and potential callee
methods that the JIT compiler encounters during runtime, and it has to work
in the presence of unresolved types.

4.2.1 Incorporating Call Sites and Callees as They Are Encountered. For
each call edge, either the call site or the callee is compiled first. The call edge

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

18 • M. Hirzel et al.

is added when the second of the two is compiled. More precisely

—When the JIT compiler compiles a new method (Figure 6, arrow from method
compilation to call graph builder), the call graph builder retrieves all call sites
of matching signature that it has seen in the past, and adds a call edge if the
types are compatible (Figure 6, arrow from call graph builder to call graph).
Then, it stores the new callee method node in a map that is keyed by its
signature, for future retrieval when new call sites are encountered.

—Analogously, when the JIT compiler compiles a new call site (Figure 6, arrow
from method compilation to call graph bilder), the call graph builder retrieves
all callee methods of matching signature that it has seen in the past, and adds
a call edge if the types are compatible (Figure 6, arrow from call graph builder
to call graph). Then, it stores the new call site node in a map that is keyed
by its signature, for future retrieval when new callees are encountered.

4.2.2 Dealing with Unresolved Types. The JVM specification allows a Java
method to have references to unresolved entities [Lindholm and Yellin 1999].
For example, the type of a local variable may be a class that has not been
loaded yet. Furthermore, Java semantics prohibit eager loading of classes to
resolve unresolved references: Eager loading would require hiding any visible
effects until the class actually is used. Unfortunately, when a variable is of an
unresolved type, the subtyping relationships of that type are not yet known,
thus prohibiting CHA. When the call graph builder encounters a call site v.m()
where the type of the receiver variable v is unresolved, it refuses to deal with
it at this time, and sends it to the resolution manager instead (Figure 6, arrow
from call graph builder to resolution manager).

4.3 Resolution Manager

The resolution manager enables lazy analysis: It allows the analysis to defer
dealing with information that it can not yet handle precisely and does not yet
need for obtaining sound results. The arrows from the call graph builder and
constraint finder to the resolution manager in Figure 6 represent call sites and
constraints, respectively, that may refer to unresolved types. The arrows from
the resolution manager to the deferred call sites and deferred constraints data
structures in Figure 6 represent “shelved” information: This information does
indeed involve unresolved types, so the analysis can and should be lazy about
dealing with it.

When the VM resolves a type (arrow from type resolution to resolution man-
ager in Figure 6), the resolution manager reconsiders the deferred information.
For each call site and constraint that now involves only resolved types, the res-
olution manager removes it from the deferred data structure, and sends it back
to the call graph builder (in the case of a call site), or on to later analysis stages
(in the case of a constraint).

With this design, the analysis will shelve some information forever if the
involved types never get resolved. This saves unnecessary analysis work. Qian
and Hendren [2004] developed a similar design independently. Before becom-
ing aware of the subtleties of the problems with unresolved references, we used

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 19

an overly conservative approach: We added analysis information eagerly even
when we had incomplete information. This imprecision led to large pointsTo
sets, which, in turn, led to a prohibitive slowdown of our analysis. In addition,
it complicated the analysis because it had to treat unresolved types as a spe-
cial case throughout the code. Using the resolution manager is simpler, more
precise, and more efficient.

4.4 Online Constraint Finder

Compared to the offline constraint finder (Section 3.4), the online constraint
finder has to satisfy three additional requirements: It has to capture more
input-generating events, find interprocedural constraints whenever more call
edges are encountered, and work in the presence of unresolved types.

4.4.1 Capturing More Input-Generating Events. In the offline architecture
(Figure 1), the only input to the constraint finder is the compiler’s intermediate
representation of methods. In the online architecture (Figure 6) several events
generate inputs to the constraint finder:

—Method compilation: Offline pointer analysis assumes that code for all meth-
ods is available simultaneously for analysis. Due to dynamic class loading,
this is not true in Java. Instead, code for each method becomes available for
analysis when the JIT compiler compiles it. This does not necessarily coin-
cide with the time that the class is loaded: The method may get compiled
at any time after the enclosing class is loaded and before the method gets
executed for the first time (this assumes a compile-only approach; we will
discuss interpreters in Section 6.3.1).

—Building and start up: A Java virtual machine often supports system libraries
with classes that interact directly with the runtime system. Support for these
is built into the VM, and initialized during VM startup. This system behavior
does not consist of normal Java code, and the pointer analysis must treat it
in a VM-dependent way. We will discuss how we handle this for Jikes RVM
in Section 6.3.5.

—Class loading: Methods (including the class initializer method) are handled
as usual at method compilation time. The only action that does take place
exactly at class loading time is that the constraint finder models the Con-
stantValue bytecode attribute of static fields with constraints [Lindholm and
Yellin 1999, Sect. 4.5]. This attribute initializes fields, yet is not represented
as code, but rather as metadata in the class file.

—Reflection execution: Section 4.6 describes how to analyze reflection online.
—Native code execution: Section 4.7 describes how to analyze native code online.

4.4.2 Capturing Call Edges as They Are Encountered. Whenever the online
call graph builder (Section 4.2) adds a new call edge to the call graph (Figure 6,
arrow from call graph builder to call graph), the constraint finder is notified
(Figure 6, arrow from call graph to constraint finder), so it can model the data
flow for parameter passing and return values. This works as follows:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

20 • M. Hirzel et al.

a = x.m(b);

A::m(this(A::m), c) {
return d;

}

B::m(this(B::m), g) {
return h;

}

caller

callee

retval(A::m) retval(B::m)

Fig. 7. Call constraints when adding a new callee.

—When encountering a call site c : vretval(c) = m(vactual1(c), . . . , vactualn(c)), the
constraint finder creates a tuple Ic = 〈vretval(c), vactual1(c), . . . , vactualn(c)〉 for call-
site c, and stores it for future use.

—When encountering a method m(vformal1(m), . . . , vformaln(m)), the constraint
finder creates a tuple Im = 〈vretval(m), vformal1(m), . . . , vformaln(m)〉 for m as a callee,
and stores it for future use.

—When encountering a call edge c → m, the constraint finder retrieves the
corresponding tuples Ic and Im, and adds constraints to model the moves
between the corresponding v-nodes in the tuples.

For the example, in Figure 4, the tuple for call site a = x.m(b) is
Ia=x.m(b) = 〈va, vx , vb〉. Suppose the analysis just encountered a new poten-
tial callee B::m with the tuple IB::m = 〈vretval(B::m), vthis(B::m), vg 〉. The call graph
builder uses CHA to decide whether the call site and callee match, based on the
type of the receiver variable x and class B. If they are compatible, the constraint
finder models the moves x → this(B::m), b → g , and retval(B::m) → a, shown
as dashed arrows in Figure 7.

4.4.3 Dealing with Unresolved Types. As discussed in Section 4.2.2, Java
bytecode can refer to unresolved types. This prohibits type filtering in the prop-
agator (Section 3.5.2), which relies on knowing the subtype relations between
the declared types of nodes involved in flow sets. Furthermore, the propagator
also requires resolved types for mapping between h-nodes and their correspond-
ing h. f -nodes. In this case, it needs to know the subtyping relationship between
the type of objects represented by the h-node, and the class in which the field
f was declared.

To allow type filtering and field mapping, the propagator must not see con-
straints involving unresolved types. The online architecture supports deal-
ing with unresolved types by a layer of indirection: Where the offline con-
straint finder directly sent its outputs to later analysis phases (Figure 1),
the online constraint finder sends its outputs to the resolution manager first
(Figure 6), which only reveals them to the propagator when they become re-
solved. This approach is sound because the types will be resolved when the
instructions are executed for the first time before the types are resolved, the
constraints involving them are not needed. The analysis deals with unresolved

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 21

Table III. Deferred Constraints Stored at Unresolved Nodes

Node kind Flow PointsTo
h-node none pointedToBy[v]
v-node flowFrom[v], flowFrom[v. f], flowTo[v], flowTo[v. f] pointsTo[h]
h. f -node there are no unresolved h. f -nodes
v. f -node flowFrom[v], flowTo[v] none

types as follows:

—When the constraint finder creates an unresolved node, it registers the node
with the resolution manager. A node is unresolved if it refers to an unresolved
type. An h-node refers to the type of its objects; a v-node refers to its declared
type; and a v. f -node refers to the type of v, the type of f , and the type in
which f is declared.

—When the constraint finder would usually add a node to a flow set or pointsTo
set of another node, but one or both are unresolved, it defers the informa-
tion for later, instead. Table III shows the deferred sets stored at unresolved
nodes. For example, if the constraint finder finds that v should point to h,
but v is unresolved, it adds h to v’s deferred pointsTo set. Conversely, if h is
unresolved, it adds v to h’s deferred pointedToBy set. If both are unresolved,
the points-to information is stored twice.

—When a type is resolved, the resolution manager notifies all unresolved nodes
that have registered for it. When an unresolved node is resolved, it iterates
over all deferred sets stored at it, and attempts to add the information to the
real model that is visible to the propagator. If a node stored in a deferred set
is not yet resolved itself, the information will be added in the future when
that node gets resolved.

4.5 Online Constraint Propagator

Method compilation and other constraint-generating events happen throughout
program execution. Whereas an offline analysis can propagate once after all
constraints have been found, the online analysis has to propagate whenever a
client needs points-to information if new constraints have been created since the
last propagation. After constraint propagation, the pointsTo sets conservatively
describe the pointers in the program until one of the events in the left column
of Figure 6 causes the analysis to add new constraints to the constraint graph.

The propagator propagates pointsTo sets following the constraints repre-
sented in the flow sets until the pointsTo sets reach the least fixed-point. This
problem is monotonous: Newly added constraints may not hold initially, but a
repropagation starting from the previous fixed point suffices to find the least
fixed-point of the new constraint set. To accommodate this, the propagator
starts with its previous solution and a worklist (Section 3.2.3) of changed parts
in the constraint graph to avoid incurring the full propagation cost every time.

In architectural terms, the online propagator’s worklist is populated by the
constraint finder (Figure 6), whereas the offline propagator’s worklist was only
used internally by the propagator (Figure 1). Exposing the worklist was the only
“external” change to the propagator to support online analysis. In addition,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

22 • M. Hirzel et al.

1: class Main {
2: public static void main(String[] argv) throws Exception {
3: Class[] paramTypes = new Class[] { Object.class };

4: Method m = Vector.class.getMethod(argv [0], paramTypes);
5: Vector v = new Vector();
6: Object[] params = new Object[] { v };

7: Object result = m.invoke(v, params);
9: }

10: }

Fig. 8. Reflection example.

we found that “internal” changes that make the constraint propagator more
incremental are invaluable for achieving good overall analysis performance.
We will describe these incrementalizations in Section 5.1.

4.6 Reflection

Java allows code to access methods, fields, and types by name based on strings
computed at runtime. For example, in Figure 8, method m may be any method
of class Vector that takes one argument of type Object, such as Vector.add, Vec-
tor.contains, or Vector.equals. A static analysis cannot determine what actions
the reflection will perform. This reduces analysis precision; in the example, the
analysis would have to conservatively assume that any of the Vector methods
with a matching signature can get called. If the command line argument argv[0]
is “add”, then Line 7 calls add, adding the vector v into itself. Hence, the anal-
ysis would have to model a points-to relation from the vector to itself, even if
the program only calls method contains or equals, which do not install such a
pointer. In practice, the issue is usually even more complicated: The analysis
cannot always determine the signature of the callee method statically (in the
example, this relies on knowing the exact contents of the array paramTypes),
and often does not know the involved types (in the example, Vector.class might
be obtained from a class loader instead).

One solution would be to use string [Christensen et al. 2003] or reflection
analysis [Livshits et al. 2005] to predict which entities reflection manipulates.
However, both are offline analyses, and while they can solve the problem in
special cases, this problem is undecidable in the general case. Another solution
would be to assume the worst case. We felt that this was too conservative and
would introduce significant imprecision into the analysis for the sake of a few
operations that are rarely executed. Other pointer analyses for Java side-step
this problem by requiring users of the analysis to provide hand-coded models
describing the effect of the reflective actions [Whaley and Lam 2002; Lhoták
and Hendren 2003].

Our solution is to handle reflection when the code is actually executed. We
instrument the virtual machine service that handles reflection with code that
adds constraints dynamically. For example, if reflection stores into a field, the
constraint finder observes the actual source and target of the store and gener-
ates a constraint that captures the semantics of the store at that time.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 23

This strategy for handling reflection introduces new constraints when the
reflective code does something new. Fortunately, this does not happen very often.
When reflection has introduced new constraints and a client needs up-to-date
points-to results, it must trigger a repropagation.

4.7 Native Code

The Java native interface (JNI) allows Java code to interact with dynamically
loaded native code. A downcall transfers control from Java to native code, and
an upcall transfers control from native code to Java. Downcalls are calls to
native methods. Upcalls include Java method calls, Java field and array ma-
nipulation, allocation of Java objects, and calls to JVM services such as the
class loader. Upcalls go through the JNI API, which is equivalent to Java re-
flection (in fact, Jikes RVM implements this by calling Java methods that use
reflection).

In general, the analysis can not analyze the dynamically loaded native code,
since it is compiled architecture-specific machine code. But in order to soundly
analyze the Java code, it needs to model possible data transfer from native
code to Java. Specifically, it needs to predict the set of pointers that native code
returns from downcalls or passes as parameters to upcalls.

Offline pointer analyses for Java usually require the user to specify a model
for the effect of native code on pointers. This approach is error-prone and does
not scale well.

Our approach is to be imprecise, but conservative, for return values from
downcalls, while being precise for parameters passed in upcalls. If a downcall
returns a pointer to a heap-allocated object, the constraint finder assumes that
the object could have originated from any allocation site. This is imprecise,
but easy to implement. Type filtering (Section 3.5.2) limits the imprecision by
reducing the set of h-nodes returned by a JNI method based on its declared
return type. For upcalls, our analysis simply uses the same instrumentation as
for reflection.

5. OPTIMIZATIONS

The first implementation of our online pointer analysis was slow [Hirzel et al.
2004]. Thus, we empirically evaluated where the analysis was spending its
time. Besides timing various tasks performed by the analysis, we visualized the
constraint graphs to discover bottlenecks. Based on our findings, we decided to
further incrementalize the propagator (Section 5.1) and to manually fine-tune
the precision of the analysis along various dimensions to improve performance
(Section 5.2).

5.1 Incrementalizing the Propagator

As discussed in Section 2.3, incrementality is necessary, but not sufficient,
for online program analysis. Section 4.5 described some steps towards mak-
ing the propagator incremental. However, incrementality is not an absolute
property; rather, there is a continuum of increasingly incremental algorithms.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

24 • M. Hirzel et al.

Sections 5.1.1 to 5.1.4 describe several such algorithms, each more incremental
than the previous. None of these algorithms affect precision: They all compute
the same fixed point on the constraint set.

5.1.1 Lhoták-Hendren Propagator and Propagating from New Constraints
Only. This section briefly reviews the starting point of our propagator incre-
mentalization. Section 3.5 describes the propagator that Lhoták and Hendren
presented in their initial paper about the SPARK offline pointer analysis frame-
work for Java [2003]. Figure 5 gives the pseudocode, which has two parts:
Lines 2–17 are driven by a worklist of v-nodes, whereas Lines 18–22 iterate
over pointsTo sets of h. f -nodes. Section 3.2.3 describes the worklist data struc-
ture: This is a list of v-nodes that may appear on the left side of unresolved
constraints. Section 4.5 describes how to use the worklist for incrementaliza-
tion: Essentially, the constraint finder produces work on the worklist, and the
constraint propagator consumes that work. When the constraint propagator
starts, the worklist tells it exactly which constraints require propagation, mak-
ing Lines 2–17 of Figure 5 efficient.

5.1.2 IsCharged Bit for h. f -nodes. We found that after some iterations
of the outer loop (Line 1) of the Lhoták-Hendren propagator in Figure 5, the
iterative part (Lines 18–22) dominates runtime. Because the algorithm still
has to consider all load edges even when the constraint graph changes only
locally, it does not yet work well incrementally. One remedy we investigated
is making flowTo sets of h. f -nodes explicit, similar to BANE [Fähndrich et al.
1998], as this would allow maintaining a worklist for h. f -nodes. We found the
space overhead for this redundant flowTo information prohibitive. Therefore,
we took a different approach to further incrementalize the algorithm.

Figure 9 shows the algorithm that we presented as Figure 3 in our previous
paper about this analysis [2004], which maintains isCharged bits on h. f -nodes
to speed-up the iterative part of Figure 5 (Lines 18–22). We say an h. f -node
is charged if processing a load might propagate new pointsTo set elements
from h. f . The purpose of the iterative part is to propagate new elements from
pointsTo sets of h. f -nodes. This is only necessary for those h. f -nodes whose
pointsTo sets changed in Lines 2–17 of Figure 5. In Figure 9, when pointsTo(h. f)
changes, Lines 10 and 15 set its isCharged bit. This enables Line 22 to perform
the inner loop body for only the few h. f -nodes that need discharging. Line 25
resets the isCharged bits for the next iteration.

5.1.3 Caching Charged h. f -node Sets. Lines 20–22 of Figure 9 still iterate
over all h. f -nodes, even if they can often skip the body of Lines 23–24. Profiling
found that much time is spent determining the subset of nodes h ∈ pointsTo(v)
for which h. f is charged. In Line 22, when pointsTo(v) is almost the same
as pointsTo(v2) for some other variable v2, it is wasteful to compute the subset
twice. Instead, the propagator in Figure 10 caches the set of charged h. f -nodes,
keyed by the set of base h-nodes and the field f .

In a naive implementation, a cache lookup would have to compare pointsTo
sets for equality. This would take time linear in the size of the sets, which would
be no better than performing the iteration in Line 22 of Figure 9. Instead, our

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 25

1: while worklist not empty, or isCharged(h.f) for any h.f -node // c.f. Fig. 5 L. 1

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed, isCharged(h.f) ← true // new in Fig. 9
11: for each field f of v
12: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
13: for each h ∈ pointsTo(v)
14: pointsTo(h.f).add(pointsTo(v′))
15: if pointsTo(h.f) changed, isCharged(h.f) ← true // new in Fig. 9
16: for each v′ ∈ flowTo(v.f) // load v.f → v′

17: for each h ∈ pointsTo(v)
18: pointsTo(v′).add(pointsTo(h.f))
19: if pointsTo(v′) changed, add v′ to worklist

20: for each v.f
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: for each h ∈ pointsTo(v), if isCharged(h.f) // compare to Fig. 5 Line 20
23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist
25: for each h.f , isCharged(h.f) ← false // new in Fig. 9

Fig. 9. IsCharged bit for h. f -nodes. Changes compared to Fig. 5 are annotated with comments.

1-19: identical with Lines 1-19 in Fig. 9

20: for each v.f
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: if (pointsTo(v), f) ∈ chargedHFCache
23: chargedHF← chargedHFCache[pointsTo(v), f]
24: else
25: chargedHF← {h.f for h ∈ pointsTo(v), if isCharged(h.f)}
26: chargedHFCache[pointsTo(v), f] ← chargedHF
27: for each h.f ∈ chargedHF
28: pointsTo(v′).add(pointsTo(h.f))
29: if pointsTo(v′) changed, add v′ to worklist
30: for each h.f, isCharged(h.f) ← false

Fig. 10. Caching charged h. f -node sets.

implementation exploits the fact that the pointsTo sets are already shared (see
Heintze’s representation, Section 3.2.4). Each cache entry is a triple (b, f , c) of
a shared bit-vector b, a field f , and a cached set c. The set c ⊆ b is the set
of h-nodes in b for which h. f is charged. Given a pointsTo set, the lookup in
Line 23 works as follows:

—Given (pointsTo(v), f), find a cache entry (b, f ′, c) such that the base bit-
vector of pointsTo(v) is b, and the fields are the same (f = f ′).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

26 • M. Hirzel et al.

—For each h ∈ c, put the node h. f in the resulting set chargedHF.
—In addition, iterate over the elements h of the overflow list of pointsTo(v),

and determine for each whether h. f is charged.

This lookup is faster than iterating over the elements of the base bit-vector
individually.

5.1.4 Caching the Charged h-node Set. The iterative part of the algorithm
in Figure 10 still loops over all load edges v. f → v′ in Lines 20 and 21. Therefore,
its best-case execution time is proportional to the number of assignments of
the form v′ = v. f . This bottleneck limited peak responsiveness of our online
pointer analysis. Therefore, we used a final optimization to reduce the time
of the iterative part to be proportional to the number of v. f -nodes, instead of
v. f → v′-edges. The algorithm in Figure 11 uses a set of charged h-nodes: An
h-node is charged if there is at least one field f such that isCharged(h. f) =
true.

Lines 12 and 19 in Figure 11 remember h-nodes for which at least one h. f -
node became charged. Line 26 uses these h-nodes to decide whether to consider
loads from a given v. f -node; Lines 27–36 are necessary only if at least one
of the corresponding h. f -nodes is charged. The check in Line 26 is a fast bit-
vector operation. After Line 37 clears all of the isCharged bits, Line 38 resets
chargedH.

The chargedH set is not only useful for reducing the number of outer loop
iterations in the iterative part. It also speeds-up the computation of charged
h. f -nodes in Line 25 of Figure 10 (compare to Lines 31–32 in Figure 11). Again,
the set intersection is a fast bit-set operation. These optimizations for handling
loads in the iterative part (Lines 25–36) also apply to loads in the worklist part
(Lines 20–24).

5.2 Varying Analysis Precision

Section 2.1 states that our analysis is context-insensitive, abstracts the heap
with allocation sites, and is field-sensitive. These choices yield a reasonable
overall precision/performance tradeoff. But in fact, manually revising the
choices for precision in a few places improves performance. Based on conversa-
tions with different pointer analysis implementers, we believe that these kinds
of precision adjustments are common practice. We record them here to demys-
tify what can seem like black magic to the uninitiated, and to encourage the
community to come up with techniques for automatically, rather than manu-
ally, revising choices for precision online. Section 8.3 will evaluate the effects
of these optimizations.

5.2.1 Selectively Use Context Sensitivity. Our context-insensitive analysis
(Section 2.1.1) gives imprecise results, particularly for methods that are called
from many places and modify or return their argument objects. In such situ-
ations, a context-insensitive analysis will propagate information from all call
sites into the method and then back out to all the call sites (via the modification
or return value). When context sensitivity (Section 2.1.1) improves precision,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 27

1: while worklist not empty, or isCharged(h.f) for any h.f -node

2: while worklist not empty
3: remove node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed
11: isCharged(h.f) ← true
12: chargedH.add(h) // new in Fig. 11
13: for each field f of v
14: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
15: for each h ∈ pointsTo(v)
16: pointsTo(h.f).add(pointsTo(v′))
17: if pointsTo(h.f) changed
18: isCharged(h.f) ← true
19: chargedH.add(h) // new in Fig. 11
20: if pointsTo(v) ∩ chargedH �= {} // new in Fig. 11
21: for each v′ ∈ flowTo(v.f) // load v.f → v′

22: for each h ∈ (pointsTo(v) ∩ chargedH) // compare to Fig. 9 Line 17

compare to

Fig. 10 Line 25

23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist

25: for each v.f
26: if pointsTo(v) ∩ chargedH �= {} // new in Fig. 11
27: for each v′ ∈ flowTo(v.f) // load v.f → v′

28: if (pointsTo(v), h) ∈ chargedHFCache
29: chargedHF← chargedHFCache[pointsTo(v), f]
30: else
31: ch← pointsTo(v) ∩ chargedH // new in Fig. 11
32: chargedHF← {h.f for h ∈ ch, if isCharged(h.f)} //

33: chargedHFCache[pointsTo(v), f]← chargedHF
34: for each h.f ∈ chargedHF
35: pointsTo(v′).add(pointsTo(h.f))
36: if pointsTo(v′) changed, add v′ to worklist
37: for each h.f , isCharged(h.f) ← false
38: chargedH← {}

Fig. 11. Caching the charged h-node set.

it can also improve performance, since the analysis has to propagate smaller
pointsTo sets with context sensitivity.

We found enabling context sensitivity for all methods prohibitively expen-
sive, and thus we extended our analysis with selective context-sensitivity. It
is context-sensitive only in those cases where the efficiency gain from smaller
pointsTo sets outweighs the efficiency loss from more pointsTo sets. We manu-
ally picked the following methods to analyze context-sensitively wherever they
are called: StringBuffer.append(. . .) (where . . . is String, StringBuffer, or char),
StringBuffer.toString(), and VM Assembler.setMachineCodes(). Both append()

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

28 • M. Hirzel et al.

and toString() are Java standard library methods, and setMachineCodes() is
a Jikes RVM method. Plevyak and Chien [1994] and Guyer and Lin [2003]
describe mechanisms for automatically selecting methods for context sensitiv-
ity. While those mechanisms happen in an offline, whole-world analysis and
thus do not immediately apply to online analysis, we believe they can inspire
approaches to automate online context-sensitivity selection.

5.2.2 Selectively Relax Allocation-Site Sensitivity. Creating a new h-node
for each allocation site is more precise than creating an h-node for each type
(in the words of Section 2.1.2, allocation-site-based heap abstraction is more
precise than type-based heap abstraction). However, the precision is useful
only if the instances created at two sites are actually stored in separate loca-
tions. For example, if a program creates instances of a type T at 100 allocation
sites but puts references to them all only in one variable, then there is no
benefit in distinguishing between the different allocation sites. Thus, rather
than creating 100 h-nodes that all need to be propagated, the pointer anal-
ysis can create just a single h-node that represents all the allocation sites
of that type. Using a single h-node not only saves memory (fewer h-nodes
and thus h. f -nodes), but also propagation effort (since the pointsTo sets are
smaller).

We extended our analysis to selectively merge h and v-nodes. We used man-
ual investigation to determine three types whose nodes should be selectively
merged: classes OPT Operand, OPT Operator, and OPT Instruction, which are
all part of the Jikes RVM optimizing compiler.

5.2.3 Selectively Relax Field Sensitivity. If there are many stores into a
field accessed via different h-nodes, but they all store similar pointsTo sets,
then field sensitivity is harmful: It degrades performance without improving
precision. Context sensitivity creates such situations. For example, when we
analyze StringBuffer.append() context-sensitively, we effectively create many
copies of its body and thus many copies of references to the StringBuffer.value
instance variable. Since StringBuffer.value is initialized with arrays allocated
at one of a few sites in the StringBuffer class, there is no point in treating
StringBuffer.value field-sensitively: All h. fStringBuffer.value point to the same few
instances.

We have extended our analysis to selectively fall back to being field-based. In
our runs we apply field sensitivity everywhere except for fields affected as de-
scribed earlier by context sensitivity, namely, StringBuffer.value, String.value,
and VM Assembler.machineCodes.

6. IMPLEMENTATION

Section 6.1 describes how we convinced ourselves that our analysis implementa-
tion is sound. Section 6.2 mentions some performance issues that we found and
fixed. Finally, Section 6.3 shows how our implementation tackles the challenges
of a concrete VM. Readers who are less interested in detailed implementation
issues may skip ahead to Section 7.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 29

6.1 Validation

Implementing a pointer analysis for a complicated language and environment
such as Java and Jikes RVM is a difficult task: The pointer analysis has to
handle numerous corner cases, and missing any of the cases results in incorrect
pointsTo sets. To help us debug our pointer analysis (to a high confidence level)
we built a validation mechanism.

6.1.1 Validation Mechanism. We validate the pointer analysis results at
GC (garbage collection) time (Figure 6, arrow from constraint graph to valida-
tion mechanism). As GC traverses each pointer, it checks whether the pointsTo
set captures the pointer: (i) When GC finds a static variable p holding a pointer
to an object o, our validation code finds the nodes v for p and h for o. Then, it
checks whether the pointsTo set of v includes h. (ii) When GC finds a field f of
an object o holding a pointer to an object o′, our validation code finds the nodes
h for o and h′ for o′. Then, it checks whether the pointsTo set of h. f includes
h′. If either check fails, it prints a warning message. The validation mechanism
does not check whether the pointsTo sets of local variables are correct.

Since it checks the correctness of pointsTo sets during GC, the validation
mechanisms triggers constraint propagation just before GC starts (Figure 6,
arrow from validation mechanism to constraint propagator). As there is no
memory available to grow pointsTo sets at that time, we modified Jikes RVM’s
garbage collector to set aside some extra space for this purpose.

Our validation methodology relies on the ability to map concrete heap objects
to h-nodes in the constraint graph. To facilitate this, we add an extra header
word to each heap object that maps it to its corresponding h-node in the con-
straint graph. For h-nodes representing allocation sites, we install this header
word at allocation time. This extra word is only used for validation runs; the
pointer analysis does not require any change to the object header, and the extra
header word is absent in production runs.

6.1.2 Validation Anecdotes. Our validation methodology helped us find
many bugs, some of which were quite subtle. We describe two examples. In
both cases, there was more than one way in which bytecode could represent
a Java-level construct. Both times, our analysis dealt correctly with the more
common case, and the other case was obscure, yet legal. Our validation method-
ology showed us where we missed something; without it, we might not even have
suspected that something was wrong.

—Field reference class: In Java bytecode, a field reference consists of the name
and type of the field, as well as a class reference to the class or interface “in
which the field is to be found” [Lindholm and Yellin 1999, Sect. 5.1]. Even
for a static field, this may not be the class that declared the field, but a
subclass of that class. Originally, we had assumed that it must be the exact
class that declared the static field, and had written our analysis accordingly
to maintain separate v-nodes for static fields with distinct declaring classes.
When the bytecode wrote to a field using a field reference that mentions the
subclass, the v-node for the field that mentions the superclass was missing
some pointsTo set elements. That resulted in warnings from our validation

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

30 • M. Hirzel et al.

methodology. Upon investigating those warnings, we became aware of the
incorrect assumption and fixed it.

—Field initializer attribute: In Java source code, a static field declaration has
an optional initialization, for example, “final static String s = "abc";”. In
Java bytecode, this usually translates into initialization code in the class ini-
tializer method <clinit>() of the class that declares the field. But sometimes,
it translates into a ConstantValue attribute of the field instead [Lindholm
and Yellin 1999, Sect. 4.5]. Originally, we had assumed that class initializ-
ers are the only mechanism for initializing static fields, and that we would
find these constraints when running the constraint finder on the <clinit>()
method. But our validation methodology warned us about v-nodes for static
fields whose pointsTo sets were too small. Knowing exactly for which fields
this happened, we looked at the bytecode, and were surprised to see that the
<clinit>() methods did not initialize the fields. Thus, we found out about the
ConstantValue bytecode attribute, and added constraints when class loading
parses and executes this attribute (Section 4.4.1).

6.2 Fixing Performance Issues

We took a “correctness first, performance later” approach in demonstrating
the first pointer analysis that works for all of Java [2004]. This led to various
performance issues: situations where the analysis is still sound, but takes ex-
cessive time and space. Mentioning them here may help readers avoid pitfalls
in implementing similar analyses.

6.2.1 Use a Bit Mask for Type Filtering. Section 3.5.2 describes type filter-
ing: When propagating from pointsTo(a) into pointsTo(b) where b is a v-node or
an h. f -node, the analysis filters the propagated h-nodes, only adding h-nodes of
a subtype of the declared type of b to pointsTo(b). Type filtering keeps pointsTo
sets smaller, improving both the precision and efficiency of the analysis. How-
ever, in our implementation in Hirzel et al. [2004], it was surprisingly expensive.
Our implementation iterated over all the h-nodes in pointsTo(a) one-at-a-time
and added them to pointsTo(b) if the type check succeeded. To avoid the cost of
that inner loop, we changed our implementation to filter by doing a logical “and”
of bit vectors. This operation is much faster than our original implementation
at the cost of minimal space overhead. As it turns out, Lhoták and Hendren’s
implementation of type filtering for bit sets also uses the bit mask approach,
but they do not describe it in their paper [Lhoták and Hendren 2003].

One subtlety with using a bit mask for type filtering is that Heintze’s pointsTo
set representation uses a base bit-vector and an overflow list (Section 3.2.4).
Therefore, the operation

pointsTo(b).add(pointsTo(a))

still involves a loop over the bounded-size overflow list:

pointsTo(b) ← pointsTo(b) ∪ (pointsTo(a).base ∩ typeMask(typeOf(b)))
for each h ∈pointsTo(a).overflow

if h ∈typeMask(typeOf(b))
pointsTo(b) ←pointsTo(b) ∪ {h}

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 31

6.2.2 Use Information on Private/Final/Constructor Methods for Call
Graph Construction. Class hierarchy analysis (CHA) constructs a call graph
based on the canonical definition of virtual method dispatch. But implementing
plain CHA was needlessly imprecise. In Java, there is often more information
available to disambiguate calls. Private methods are invisible to subclasses,
final methods cannot be overridden, and constructor calls have a known ex-
act receiver type. We improved both precision and efficiency of the analysis by
pruning call edges using this additional information.

6.2.3 Restrict the Base Variable Type for Field Accesses. In Java source
code, each local variable v has a declared type T . A field access v. f is only
legal if T or one of its superclasses declares f . However, in Java bytecode, both
local variables and stack slots can have different, conflicting types at different
program points. This is not an artifact of our JIT compiler’s IR, but a general
property of JVM-independent bytecode. A field access v. f may be legal even
if at other points, the variable has a type that is incompatible with the field.
The constraint finder represents such a variable with a v-node of a type that
is general enough to be legal at all program points. But this means that the
constraint propagator has to check to which h-nodes in pointsTo(v) the field
applies whenever it processes a load or a store. This check is costly; doing so
naively was too slow. We fixed it by introducing helper v-nodes of more precise
types in some cases where it helps performance, thereby using the normal type
filtering when propagating to the helper v-nodes and avoiding the need to filter
at field access time.

6.3 VM Interactions

So far, the description of our pointer analysis was general with respect to the
virtual machine in which it is implemented. The following sections describe
how to deal with VM-specific features. We use Jikes RVM as a case study, but
the approaches generalize to other VMs with similar features.

6.3.1 Interpreters and Unoptimized Code. The intraprocedural constraint
finder is implemented as a pass of the Jikes RVM optimizing compiler. How-
ever, Jikes RVM compiles some methods only with a baseline compiler, which
does not use a representation that is amenable to constraint finding. We han-
dle such methods by running the constraint finder as part of a truncated op-
timizing compilation. Other virtual machines wherein some code is not com-
piled at all, but interpreted, can take a similar approach. Alternatively, they
can take the more dynamic approach of finding constraints at interpretation
time.

6.3.2 Recompilation. Many VMs, including Jikes RVM, may recompile a
method (at a higher optimization level) if it executes frequently. Optimizations
such as inlining may introduce new variables or code into the recompiled meth-
ods. Since the analysis models each inlining context of an allocation site by a
separate h-node, it generates new constraints for the recompiled methods and
integrates them with the constraints for any previously compiled versions of the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

32 • M. Hirzel et al.

method. Since the old constraints are still around, the analysis does not benefit
from any possible improvements in precision that recompilation could cause.

6.3.3 Type Descriptor Pointers. In addition to language-level fields, each
h-node has a special node h. f td that represents the field containing the reference
to the type descriptor for the object. A type descriptor contains support for
runtime system mechanisms such as virtual method dispatch, casts, reflection,
and type-accurate garbage collection. Jikes RVM implements type descriptors
as ordinary Java objects, and thus, our analysis must model them as such. The
alternative would be to add a special case for clients that need to know what
points to type descriptors.

6.3.4 Magic. Jikes RVM has some internal “magic” operations, for exam-
ple, to allow direct manipulation of pointers. The compilers expand magic in
special ways directly into low-level code. The analysis treats uses of magic on
a case-by-case basis: For example, when magic stores a type descriptor from
a variable v to an object header, the analysis adds the appropriate v′. f td to
flowTo(v). As another example, when magic manipulates raw memory in the
garbage collector, the analysis ignores those operations.

6.3.5 Building and Startup. Jikes RVM itself is written in Java, and be-
gins execution by loading a boot image (a file-based image of a fully initialized
VM) of preallocated Java objects and precompiled methods for the JIT compil-
ers, GC, and other runtime services. These objects live in the same heap as
application objects, so our analysis must model them.

Our analysis models all of the code in the boot image as usual, with the con-
straint finder from Sections 3.4 and 4.4. Our analysis models the data snapshot
of the boot image with special boot-image h-nodes, and with pointsTo sets of
global v-nodes and boot-image h. f -nodes. The program that creates the boot
image does not maintain a mapping from objects in the boot image to their
actual allocation site, and thus, the boot-image h-nodes are not allocation sites,
instead they are synthesized at boot-image writing time. Finally, the analysis
propagates on the combined constraint system. This models how the snapshot
of the data in the boot image may be manipulated by future execution of the
code in the boot image.

Our techniques for correctly handling the boot image can be extended to form
a general hybrid offline/online approach, where parts of the application are
analyzed offline (as the VM is now) and the rest of the application is handled by
the online analysis presented in this work. Such an approach could be useful for
applications where it is known statically that certain parts of the application use
no dynamic language features, either based on user assertions or on compiler
analysis.

7. CLIENTS

This section investigates example clients of our analysis, and how they can
deal with its dynamic nature. In general, each client triggers constraint prop-
agation when it requires sound analysis results (Figure 6, arrow from client

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 33

optimizations to constraint propagator), and then consumes the resulting
pointsTo sets (Figure 6, arrow from constraint graph to client optimizations).
So far, we have only used our online pointer analysis for connectivity-based
garbage collection (Section 7.3).

7.1 Method Inlining

Method inlining can benefit from pointer analysis: If the pointsTo set elements
of v all have the same implementation of a method m, the call v.m() has only one
possible target. Modern JVMs [Cierniak et al. 2000; Arnold et al. 2000; Paleczny
et al. 2001; Suganuma et al. 2001] typically use a dual execution strategy, where
each method is initially either interpreted or compiled without optimizations.
No inlining is performed for such methods. Later, an optimizing compiler that
may perform inlining recompiles the minority of frequently executing methods.
Because inlining is not performed during the initial execution, our analysis
does not need to propagate constraints until the optimizing compiler needs to
make an inlining decision.

Since the results of our pointer analysis may be invalidated by any of the
events in the left column of Figure 6, an inlining client must be prepared to
invalidate inlining decisions. Techniques such as code patching [Cierniak et al.
2000] and on-stack replacement [Hölzle et al. 1992; Fink and Qian 2003] sup-
port invalidation. If instant invalidation is needed, our analysis must reprop-
agate every time it finds new constraints. There are also techniques for de-
ferring or avoiding invalidation of the inlining decisions (preexistence-based
inlining [Detlefs and Agesen 1999] and guards [Hölzle and Ungar 1994; Arnold
and Ryder 2002], respectively) that would give our analysis more slack in re-
propagating after it finds new constraints. Qian and Hendren [2005] study the
usefulness of pointer analysis for inlining in a VM, and survey invalidation
techniques.

As an aside, inlining is also an example for how online pointer analysis can
subtly interact with online optimization. Updating pointer information may in-
validate the inlining results, and inlining may force updating of pointer infor-
mation. We do not anticipate this to be a problem in practice, since the analysis
results in the version of the method with inlining will in general be more precise
than the original ones. Thus, adding them should not reduce overall precision.

7.2 Side-Effect Analysis

Side-effect analysis enables various JIT compiler optimizations. Le et al. [2005]
show how pointer analysis enables side-effect information, and that this in turn
could help optimizations in a JVM achieve higher speedups if pointer analysis
information was available in the JVM. Invalidation would proceed similarly to
method inlining.

7.3 Connectivity-Based Garbage Collection

CBGC (connectivity-based garbage collection) is a new garbage collection tech-
nique that requires pointer analysis [Hirzel et al. 2003]. It uses pointer analysis
results to partition heap objects such that connected objects are in the same

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

34 • M. Hirzel et al.

partition, and the pointer analysis can guarantee the absence of certain cross-
partition pointers. CBGC exploits the observation that connected objects tend
to die together [Hirzel et al. 2003], and certain subsets of partitions can be
collected while completely ignoring the rest of the heap.

CBGC must know the partition of an object at allocation time. However,
it can easily combine partitions later if the pointer analysis finds that they
are strongly connected by pointers. Thus, there is no need to perform a full
propagation at object allocation time. On the other hand, CBGC does need full
conservative points-to information when performing a garbage collection; thus,
it requests a full propagation before collecting. Between collections, CBGC does
not need conservative points-to information.

7.4 Other Clients

Pointer analysis could help make many optimizations in a virtual machine
more aggressive. This includes compiler optimizations that involve pointers, as
well as optimizations related to heap memory management or to paralleliza-
tion. The previous concrete examples show that Java’s dynamic class loading
forces clients to be speculative, and we presented mechanisms for invalidating
optimistic assumptions in a variety of clients.

8. RESULTS

Section 8.1 introduces the environment in which our pointer analysis operates,
Section 8.2 evaluates the performance of the analysis with all optimizations,
and Section 8.3 evaluates the effects of optimizations individually and in groups.
We conducted all experiments for this work using Jikes RVM 2.2.1 running on
a 2.4GHz Pentium 4 with 2GB of memory running Linux, kernel version 2.4.

8.1 Environment

Section 8.1.1 introduces the benchmarks. Pointer analysis for Java must hap-
pen online, dealing with new code as new methods get compiled; Section 8.1.2
characterizes this behavior over time. Finally, Section 8.1.3 describes the in-
frastructure underlying the rest of the results section.

8.1.1 Benchmarks. Table IV describes the benchmark suite. Each row
shows a benchmark; null is the empty main method. The suite includes all
SPECjvm98 benchmarks and several other Java programs. Column “Command
line arguments” shows the workload; for pseudojbb, the workload consists of
one warehouse and 70,000 transactions.

Table V characterizes the benchmarks. Row average is the arithmetic mean
of all benchmarks except for null. Columns “Compiled methods” and “Loaded
classes” of Table V characterize the code size. The numbers in parentheses
show how much code each benchmark adds beyond null. Jikes RVM compiles a
method if it belongs to the boot image, or when the program executes it for the
first time. The loaded classes also include classes in the boot image. Our pointer
analysis has to deal with all these methods andclasses, which includes the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 35

Table IV. Benchmark Descriptions

Program Command line arguments Description
null Empty main method, does nothing
compress -m1 -M1 -s100 LZW compression
db -m1 -M1 -s100 Memory-resident database
hsql -clients 1 -tpc 50000 Relational database engine
ipsixql 3 2 Queries against persistent XML document
jack -m1 -M1 -s100 Parser generator
javac -m1 -M1 -s100 Java source to bytecode compiler
javalex qb1.lex Scanner generator
jess -m1 -M1 -s100 Java Expert Shell System
mpegaudio -m1 -M1 -s100 Decompresses audio files
mtrt -m1 -M1 -s100 Multithreaded raytracer
pseudojbb Java business benchmark for server-side Java
richards Simulates task dispatcher in OS kernel
soot -W –app -t -d Hello –jimple Java bytecode analyzer and optimizer
xalan 1 1 XSLT tree transformation language processor

Table V. Benchmark Characteristics

Compiled Loaded Alloc. Time
Program methods classes [MB] [s]
null 15,298 1,263 9.5 0
mtrt 15,858 (+560) 1,404 (+141) 152.8 13
mpegaudio 15,899 (+601) 1,429 (+166) 15.0 26
javalex 16,058 (+760) 1,289 (+26) 48.5 23
compress 16,059 (+761) 1,290 (+27) 116.8 30
db 16,082 (+784) 1,284 (+21) 86.5 25
ipsixql 16,275 (+977) 1,348 (+85) 193.9 6
jack 16,293 (+995) 1,324 (+61) 245.9 8
richards 16,293 (+995) 1,336 (+73) 12.0 2
hsql 16,323 (+1,025) 1,316 (+53) 2,944.3 153
pseudojbb 16,453 (+1,155) 1,318 (+55) 283.7 27
jess 16,489 (+1,191) 1,420 (+157) 278.4 13
javac 16,795 (+1,497) 1,418 (+155) 238.2 15
soot 17,023 (+1,725) 1,486 (+223) 70.9 3
xalan 17,342 (+2,044) 1,504 (+241) 344.2 31
average 16,374 (+1,076) 1,369 (+106) 359.4 27

benchmark’s own code, library code used by the benchmark, and code belonging
to Jikes RVM, including code of the pointer analysis itself. Benchmark null pro-
vides a baseline: It represents approximately the amount that Jikes RVM adds
to the size of the application. This is an approximation because, for example,
some of the methods called by the optimizing compiler may also be used by the
application (e.g., methods on container classes).

Analysis in Jikes RVM has to deal with many more methods and classes than
it would have to in a JVM that is not written in Java. On the other hand, writing
the analysis itself in Java has significant software engineering benefits, such as
relying on garbage collection for memory management. Furthermore, the ab-
sence of artificial boundaries between the analysis, other parts of the runtime
system, and the application exposes more opportunities for optimizations. For

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

36 • M. Hirzel et al.

example, the analysis can speed-up garbage collection (by providing informa-
tion on where pointers may point to), and garbage collection in turn can speed-
up the analysis (by efficiently reclaiming garbage produced by the analysis).

If we had implemented our analysis in a JVM that is not written in Java,
it would need to analyze much less code, and likely perform better. Another
way to achieve this would be by isolating the JVM from the application as far
as the analysis is concerned. This is difficult to achieve in Jikes RVM, and we
did not pursue it. On the other hand, our implementation prompted us to solve
some other challenges (Section 6.3) that are gaining relevance as the benefits of
writing system code in a high-level managed language gain wider recognition
(see, e.g., Hunt et al. [2005]). Among other things, our analysis is actually a
hybrid of offline and online analysis, since part of it is performed when building
the JVM (Section 6.3.5).

Columns “Alloc.” and “Time” of Table V characterize the workload, using
Jikes RVM without our pointer analysis. Column “Alloc.” is the amount of MB
allocated during the run, excluding the boot image, but including allocation
on behalf of Jikes RVM runtime system components such as the JIT compil-
ers. Column “Time” is the runtime in seconds, using generous heap sizes (not
shown). Our choice of workloads turns hsql into an extreme point with a com-
paratively long running time (2 minutes 33 seconds), and turns soot into an
extreme point with a short running time (3 seconds) despite a large code base.

8.1.2 Method Compilation Over Time. Figure 12 shows how the number
of analyzed methods increases over a run of mpegaudio. The experiment used
Jikes RVM without our pointer analysis. The x-axis shows time in milliseconds.
The y-axis shows compiled methods for which an online analysis would have to
find constraints. The first data point is the main() method; all methods analyzed
before that are either part of the boot image or compiled during virtual machine
startup. The graphs for other benchmarks have a similar shape, and therefore
we omit them.

Figure 12 shows that after an initial warm-up period of around 0.3 seconds,
mpegaudio executes only methods that it has encountered before. For an on-
line analysis, this means that behavior stabilizes quickly, at which point the
analysis time overhead drops to zero. At the end of the run, there is a phase
shift that requires new code. For an online analysis, this means that even after
behavior appears to have stabilized, the analysis must be ready and able to
incorporate new facts, and possibly even invalidate results used by clients. In
general, the analysis needs to keep some data structures around for this, so
its space overhead stays positive even when the time overhead asymptotically
approaches zero.

8.1.3 Infrastructure. We implemented our pointer analysis in Jikes RVM
2.2.1. To evaluate our analysis in the context of a client of the analysis, we also
implemented CBGC (connectivity-based garbage collection) in our version of
Jikes RVM. CBGC [Hirzel et al. 2003] is a novel garbage collector that depends
on pointer analysis for its effectiveness and efficiency. We use the partitioner
component of CBGC to evaluate the precision of the analysis.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 37

 14800

 14850

 14900

 14950

 15000

 15050

 15100

 15150

 15200

 15250

 0 5000 10000 15000 20000 25000

a
n

a
ly

z
e

d
 m

e
th

o
d

s

time (in msec)

Fig. 12. Method compilation over time, for mpegaudio. The first shown data point is the main()
method.

Since context-insensitive Andersen-style analysis has cubic time complexity,
optimizations that increase code size can dramatically increase analysis over-
head. In our experience, overly aggressive inlining can increase constraint prop-
agation time by up to a factor of five for our benchmarks. We used Jikes RVM
with its default adaptive optimization system, which performs inlining (and
optimizations) only inside the hot application methods, but is more aggressive
about methods in the boot image (see Section 6.3.5). We force Jikes RVM to
be more cautious about inlining inside boot-image methods by disabling inlin-
ing at build time, with the effect that at system start, only those VM methods
that carry an explicit inlining pragma are inlined. However, the adaptive sys-
tem still recompiles some hot boot-image methods if an inlining opportunity is
discovered later [Arnold et al. 2000].

8.2 Performance With All Optimizations

This section evaluates the performance of our online analysis when all op-
timizations from Section 5 are enabled, and all solutions to performance is-
sues from Section 6.2 have been applied. Section 8.2.1 introduces terminology,
Section 8.2.2 evaluates memory usage, Section 8.2.3 evaluates the time for con-
straint finding, and Section 8.2.4 evaluates the time for constraint propagation.

8.2.1 Terminology for Propagator Eagerness. Performing Andersen’s anal-
ysis offline requires O(n2) memory for representing pointsTo sets and other
abstractions (Section 2.1), O(n2) time for constraint finding including call
graph construction, and O(n3) time for constraint propagation (Figure 1),

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

38 • M. Hirzel et al.

where n is the code size (indicated by the number of methods and classes in
Table V).

Performing Andersen’s analysis online also requires O(n2) memory and
O(n2) time for constraint finding, including call graph construction. In the worst
case, this requires O(e·i) time for constraint propagation, where e (eagerness) is
how often a client requests up-to-date analysis results, and i (incrementality) is
how long each repropagation takes (Figure 6). In general, i = O(n3), but thanks
to our worklist-driven architecture, this is much faster than propagating from
scratch. Another change compared to offline analysis is that n itself, the code
size, differs. As discussed in Section 8.1.1, on the one hand n is smaller in an
online context because not all methods in the code base end up being compiled
in a particular execution; and on the other hand, the code size n is larger in a
homogeneous-language system like Jikes RVM because it includes the code for
the runtime system itself.

Constraint propagation happens once offline after building the boot image
(Section 6.3.5), and then at runtime whenever a client of the pointer analysis
needs points-to information and there are unresolved constraints.

This article investigates three kinds of propagation: Eager, At GC, and
At End. Eager propagation occurs whenever an event from the left column
of Figure 6 generates new constraints. At GC propagation occurs at the start
of every garbage collection, and is an example for supporting a concrete client:
Connectivity-based garbage collection (CBGC) requires up-to-date points-to in-
formation at GC time [Hirzel et al. 2003]. At End propagation occurs just once
at the end of program execution. With respect to cumulative propagation cost,
Eager represents the worst case and At End represents the best. With respect
to the cost of an individual propagation, Eager represents the best case and
At End represents the worst. In both respects, At GC is an example real case.

8.2.2 Memory Usage. Figure 13 gives the total allocation of the applica-
tion and runtime system (“No analysis”) compared to the total allocation of
constraint finding and by the propagator. Total allocation is the cumulative
size of all objects allocated during the run; many objects become garbage and
get collected, so the total allocation is at least as high as, and usually much
higher than, the amount of data in the heap at any given point in time. Total
allocation gives an indication of GC pressure. Without pointer analysis, the av-
erage benchmark allocates 359.4MB of memory. This includes allocation by the
application itself, as well as allocation by the runtime system such as the JIT
compilers, but excludes the boot image. Since the boot image needs to contain
constraints for the code and data, our analysis inflates the boot-image size from
31.5MB to 69.4MB.

On average, constraint finding without propagation allocates 67.7MB more
than the benchmark without the analysis, bringing the total to 427.1MB. On
average, At End propagation allocates another 3.5MB (total 430.5MB), whereas
At GC propagation allocates 11.3MB (total 438.3MB). With At GC propagation
or At End propagation, most of the space overhead of the pointer analysis comes
from constraint finding, rather than from propagation. Constraint finding allo-
cates flowTo sets, deferred unresolved constraints, and the call graph. We have

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 39

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

nu
ll

m
trt

m
pe

ga
ud

io

ja
va

le
x

co
m

pr
es

s db

ip
si
xq

l
ja
ck

ric
ha

rd
s

hs
ql

ps
eu

do
jb
b

je
ss

ja
va

c
so

ot

xa
la
n

av
er

ag
e

No analysis

Constraint finding

At End propagation

At GC propagation

Eager propagation

2944

Fig. 13. Memory usage in MB.

not yet optimized their representation. Propagation allocates pointsTo sets.
The low allocation for At End and At GC propagation indicates that Heintze’s
shared representation for pointsTo sets [Heintze 1999] is reasonably compact
for none-too-eager clients.

On average, Eager propagation allocates 218.3MB. Together with the
67.7MB allocation for constraint finding, this adds 286.0MB to the 359.4MB
average allocation without pointer analysis. Some data structures, such as de-
ferred constraints or shared bit-sets, become garbage and get recycled through-
out the run. The total allocation for eager propagation depends on the number
of compiled methods and loaded classes (see Table V). For example, the bench-
mark with the most compiled methods is xalan, and Eager propagation allocates
653.2MB of memory for xalan. Clients that are content with lower propagation
frequency techniques, such as CBGC, are rewarded with lower space overhead,
but space overhead remains a challenge.

8.2.3 Time for Constraint Finding. Table VI gives the time overhead of
finding constraints from methods (column “Analyzing methods”) and from res-
olution events (column “Resolving classes and arrays”) on top of runtime with-
out constraint finding or propagation. The cost of finding constraints for meth-
ods dominates. Also, as the benchmark runtime increases, the percentage of
time spent in constraint finding decreases. For example, the time spent in con-
straint finding is a negligible percentage of the runtime for our longest-running

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

40 • M. Hirzel et al.

Table VI. Time for Constraint Finding

Resolving classes
Program Analyzing methods and arrays
null 0.3s (195%) 0.1s (24%)
mtrt 1.3s (10%) 0.4s (1%)
mpegaudio 1.5s (6%) 0.5s (1%)
javalex 1.1s (5%) 0.3s (1%)
compress 1.0s (3%) 0.3s (0%)
db 1.0s (4%) 0.2s (0%)
ipsixql 1.8s (28%) 0.8s (7%)
jack 2.8s (33%) 0.9s (8%)
richards 1.3s (54%) 0.8s (17%)
hsql 1.6s (1%) 0.5s (0%)
pseudojbb 2.2s (8%) 0.4s (1%)
jess 3.0s (23%) 1.1s (4%)
javac 2.8s (19%) 1.1s (3%)
soot 8.5s (312%) 1.7s (37%)
xalan 5.8s (19%) 2.2s (5%)
average 2.6s (38%) 0.8s (6%)

The percentages are normalized to time without analysis.

Table VII. Time for Constraint Propagation (in seconds)

Eager At GC At End
Program k ×(Avg±Std) = Total k × (Avg ± Std) = Total 1 × Total
null 2 × (2.3± 3.2) = 4.6 1 × (4.7 ± 0.0) = 4.7 1 × 4.8
mtrt 315 × (0.1± 0.3) = 16.1 4 × (2.3 ± 2.0) = 9.0 1 × 6.8
mpegaudio 383 × (0.0± 0.3) = 17.2 4 × (2.3 ± 2.1) = 9.2 1 × 7.6
javalex 208 × (0.1± 0.4) = 26.6 2 × (4.6 ± 0.2) = 9.2 1 × 6.2
compress 162 × (0.1± 0.4) = 13.8 4 × (2.2 ± 2.0) = 8.7 1 × 6.6
db 181 × (0.1± 0.4) = 17.2 4 × (2.2 ± 2.0) = 9.0 1 × 6.1
ipsixql 485 × (0.1± 0.3) = 37.3 2 × (4.2 ± 0.9) = 8.4 1 × 6.2
jack 482 × (0.1± 0.3) = 39.5 4 × (3.1 ± 2.8) = 12.5 1 × 9.6
richards 438 × (0.0± 0.2) = 8.8 2 × (2.8 ± 2.8) = 5.5 1 × 5.6
hsql 482 × (0.1± 0.3) = 43.9 4 × (3.5 ± 4.2) = 14.1 1 × 12.0
pseudojbb 726 × (0.1± 0.2) = 44.3 2 × (6.2 ± 1.8) = 12.5 1 × 9.3
jess 833 × (0.1± 0.3) = 100.0 4 × (3.1 ± 2.8) = 12.3 1 × 8.7
javac 1,275 × (0.1± 0.3) = 182.3 6 × (3.7 ± 5.4) = 22.0 1 × 16.4
soot 1,588 × (0.1± 0.3) = 206.4 2 ×(11.9 ± 10.1) = 23.7 1 × 20.8
xalan 2,018 × (0.1± 0.2) = 149.3 2 × (8.3 ± 5.0) = 16.6 1 × 13.7
average 684 × (0.1± 0.3) = 64.5 3 × (4.3 ± 3.2) = 12.3 1 × 9.7

benchmark, hsql, but large for our shortest-running benchmarks (e.g., null).
Soot is a worst case for this experiment: It has a large code base, but runs only
three seconds.

8.2.4 Time for Constraint Propagation. Table VII shows the cost of
constraint propagation. For example, with Eager propagation on javac, the
propagator runs 1,275 times, taking 0.1 seconds on average, with a standard
deviation of 0.3 seconds. All of the Eager propagation pauses add up to 182.3
seconds. The At End propagation data gives an approximate sense for how
long propagation would take if we could wait for exactly the right moment to

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 41

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Propagation number

T
im

e
(s

e
co

n
d
s)

(1,4.74s)

(1193,2.23s)

Fig. 14. Time for constraint propagation for javac with eager propagation.

propagate just once, after all methods are compiled, but before the application
does the bulk of its computation. For example, At End propagation on javac
would take 16.4 seconds. However, finding exactly the right moment to
propagate is usually not possible.

Table VII shows that when propagating more frequently, individual propa-
gations become faster. When all the optimizations are enabled, an eager prop-
agation takes 0.1 seconds on average. Thus, our incremental pointer analysis
algorithm is effective in avoiding work on parts of the program that have not
changed since the last propagation. That said, the total propagation times show
that frequent propagations incur a nontrivial aggregate cost.

Figure 14 presents the spread of propagation times for javac. A point (x, y)
in this graph says that propagation x took y seconds. Out of 1,275 propaga-
tions in javac, 996 take one-tenth of a second or less. This figure omits the
offline propagation that happens at VM build time, and only shows propaga-
tions at application runtime. The most expensive runtime propagation is the
first because it finds a fixed point for all constraints that arise during VM
startup, before Jikes RVM loads the application itself. The omitted graphs for
other benchmarks have a similar shape. Figure 14 considers eager propagation
times; as discussed in Table VII, at gc propagations are slower individually, but
there are fewer of them.

8.2.5 Runtime Constraint Counts. This section explores how many con-
straints arise from each kind of runtime event. A constraint is an individual
flow-to edge between two v-nodes or one v-node and one v. f -node. The runtime
events are the inputs to the constraint finder in the left column of Figure 6,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

42 • M. Hirzel et al.

Table VIII. Runtime Constraint Counts

Program JIT compiler Reflection Clone Native
Change? Yes + No Yes + No Yes + No Yes + No
null 2,736 + 1,388 18 + 22 50 + 930 3 + 0
mtrt 13,890 + 4,470 20 + 70 33 + 2,250 3 + 0
mpegaudio 9,055 + 3,836 20 + 93 50 + 3,362 3 + 0
javalex 8,523 + 2,066 18 + 26 60 + 10,800 3 + 0
compress 6,265 + 3,697 20 + 80 50 + 1,994 3 + 0
db 8,222 + 3,742 20 + 54 50 + 2,214 3 + 0
ipsixql 6,460 + 2,026 18 + 22 50 + 3,754 3 + 0
jack 16,404 + 7,141 19 + 138 50 + 3,862 3 + 0
richards 5,096 + 1,731 18 + 24 50 + 3,850 3 + 0
hsql 12,700 + 3,763 22 + 96 50 + 4,838 3 + 0
pseudojbb 39,529 + 3,624 43 + 507,067 33 + 3,945 3 + 0
jess 62,926 + 4,657 63 + 198 46 + 4,284 3 + 0
javac 44,832 + 10,343 20 + 638 142 + 1,123,018 3 + 0
soot 73,764 + 13,853 21 + 41 50 + 17,338 4 + 0
xalan 27,073 + 6,249 51 + 275 88 + 404,260 3 + 0
average 23,910 + 5,086 27 + 36,344 57 + 113,555 3 + 0

except for building and startup. The constraint finder may try to add a con-
straint that is already there. For example, when reflection calls the same
method twice from the same place, the second call does not give rise to any new
constraints. We are interested both in how many constraints are newly added
and in how often the constraint finder tries to add an existing constraint, but
does not because this would not change the constraint graph.

Table VIII shows the number of constraints from the different kinds of run-
time events. For each kind of event, the table distinguishes how many con-
straints changed the constraint graph (Change = Yes or No). Column “JIT
compiler” shows constraints from method compilation, class loading, type res-
olution, call graph building, and constraint propagation. Column “Reflection”
counts all reflection constraints except for those caused by clone or native up-
calls. Column “Clone” shows constraints from copying fields or array slots with
reflection while cloning an object. Column “Native” shows constraints from the
instrumentation on upcalls from native code.

Most constraints added to the constraint graph at runtime (Change = Yes)
come from the JIT compiler (23,910 on average); all other runtime events to-
gether add 87 constraints, on average. Clone and reflection often attempt to
add constraints that are already there (Change = No). The optimizing compiler
of Jikes RVM calls clone on every compiler phase object for every compilation,
causing a few thousand clone constraints for all benchmarks, but javalex, javac,
soot, and xalan have even more significant numbers of clones in application
code. An analysis might be able to deduce constraints for clone at compile time,
reducing runtime overhead. The benchmark pseudojbb often uses reflection to
allocate objects, generating 507,110 reflection constraints, most of which are
redundant. Upcalls from native code cause only three constraints on average,
indicating that in our benchmarks, native code seldom passes pointer argu-
ments to Java methods or assigns pointers to Java fields or array slots.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 43

Table IX. Constraint Propagation Time for Different Propagators

Prop. from IsCharged Caching Caching
new constraints for h. f charged h. f charged h

(Section 4.5) (Section 5.1.2) (Section 5.1.3) (Section 5.1.4)Num.
of

Program Props Avg ± Std Total Avg ± Std Total Avg ± Std Total Avg ± Std Total
null 2 4.9 ± 5.7 9.9 4.8 ± 6.8 9.6 4.0 ± 5.7 8.0 2.3 ± 3.2 4.6
mtrt 314 1.3 ± 0.9 401.9 0.4 ± 0.9 122.6 0.3 ± 0.7 83.3 0.1 ± 0.3 16.1
mpegaudio 382 1.2 ± 1.0 464.4 0.4 ± 0.8 149.3 0.3 ± 0.6 96.4 0.0 ± 0.3 17.2
javalex 209 1.8 ± 1.2 366.1 0.8 ± 1.2 160.6 0.6 ± 1.0 122.7 0.1 ± 0.4 26.6
compress 161 1.4 ± 1.1 231.8 0.5 ± 1.1 85.8 0.7 ± 1.6 105.5 0.1 ± 0.4 13.8
db 180 1.6 ± 1.6 286.1 0.6 ± 1.2 106.8 0.4 ± 0.9 69.5 0.1 ± 0.4 17.2
ipsixql 485 1.4 ± 1.1 699.0 0.6 ± 1.4 309.3 0.4 ± 0.9 211.7 0.1 ± 0.3 37.3
jack 481 1.7 ± 1.3 813.0 0.7 ± 1.5 341.6 0.4 ± 0.8 197.4 0.1 ± 0.3 39.5
richards 438 1.0 ± 0.4 441.4 0.2 ± 0.5 74.8 0.1 ± 0.4 54.7 0.0 ± 0.2 8.8
hsql 484 1.6 ± 1.4 778.4 0.7 ± 1.4 320.5 0.4 ± 0.8 199.9 0.1 ± 0.3 43.9
pseudojbb 726 1.5 ± 1.3 1,109.9 0.5 ± 1.3 336.9 0.3 ± 0.8 233.4 0.1 ± 0.2 44.3
jess 832 1.9 ± 1.6 1,591.4 1.0 ± 1.6 807.7 0.6 ± 1.0 523.0 0.1 ± 0.3 100.0
javac 1,274 2.3 ± 2.1 2,902.5 1.1 ± 1.8 1,366.3 0.7 ± 1.2 908.1 0.1 ± 0.3 182.3
soot 1,587 1.8 ± 1.4 2,805.4 0.8 ± 1.4 1,242.0 0.5 ± 1.0 856.7 0.1 ± 0.3 206.4
xalan 2,017 1.7 ± 1.2 3,394.4 0.6 ± 1.0 1,199.0 0.4 ± 0.8 899.9 0.1 ± 0.2 149.3
average 684 1.2 ± 1.0 740.7 0.6 ± 1.0 301.0 0.4 ± 0.9 207.7 0.1 ± 0.3 64.5

The time is in seconds. These numbers are slightly different from the “Eager” column in Table VII due to instru-
mentation artifacts.

Clone, reflection, and native upcalls are rare enough that the overhead from
instrumenting them for the pointer analysis is not a big issue. On the other
hand, they cause enough constraints to warrant an automatic approach, rather
than requiring the user to specify manually what effect they can have on points-
to relations. This is especially true for a few of the benchmarks that use these
features extensively.

8.3 Effect of Optimizations

The results presented so far enabled all of the techniques in Sections 5 and 6.2.
This section explores how they affect propagation time individually and in com-
bination.

8.3.1 Performance When Incrementalizing. Table IX shows the effect of
individual optimizations from Section 5.1. For these experiments, all of the
optimizations from Section 5.2 and all solutions to performance issues from
Section 6.2 are active. Comparing the average propagation cost of the first
incremental propagator from Section 4.5 with the average propagation cost of
the final algorithm from Section 5.1.4 shows that the incrementalizations are
effective: The average propagation time drops from 1.2 seconds to 0.1 seconds.
On average, the total propagation time drops from 750.7 seconds to 64.5 seconds,
a factor of twelve speedup.

8.3.2 Performance When Varying Sensitivity. This section evaluates the
three selective precision changes from Section 5.2, along with the technique
of using a bit set for type filtering from Section 6.2.1. The other solutions to

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

44 • M. Hirzel et al.

0%

20%

40%

60%

80%

100%

120%

m
trt

m
pe

gau
di
o

ja
va

le
x

co
m

pr
es

s db

ip
si
xq

l
ja

ck

ric
ha

rd
s

hs
ql

pse
ud

oj
bb je

ss
ja

va
c

so
ot

xa
la

n

av
er

age

All optimizations

Selectively add
context sensitivity

Selectively relax
allocation-site
sensitivity
Selectively relax
field sensitivity

Use a bit mask
for type filtering

Fig. 15. Individual optimizations: cost in time compared to the unoptimized algorithm.

performance issues had a smaller impact, and exploring these is less interest-
ing because we would want to include them in an implementation, anyway.
Therefore, for these experiments, all optimizations from Sections 5.2, 6.2.2,
and 6.2.3 are always active.

Section 8.3.2 shows the impact of individual optimizations and explores in-
teractions of multiple optimizations, and Section 8.3.3 evaluates how the opti-
mizations affect precision.

—Individual optimizations: Figure 15 gives the total propagation time when
using the techniques from Sections 5.2 and 6.2.1 individually as a percentage of
total propagation time without any of these techniques. The “All optimizations”
bars show that the techniques collectively have a dramatic effect on perfor-
mance; on average, they reduce propagation time to 6% of the propagation when
all of them are inactive, a factor of sixteen speedup. Taken individually, using
a bit mask for type filtering is the most effective and relaxing allocation-site
sensitivity is also beneficial. The other two optimizations, taken alone, slightly
degrade performance.

—Pairs of optimizations: The optimizations have obvious interactions. For ex-
ample, the optimization “selectively relax field sensitivity” is designed to al-
leviate the negative effects of context sensitivity; taken alone there is little
opportunity for applying this optimization.

Table X explores how pairs of optimizations interact. Each bar shows
min(TO1, TO2)−TO1,O2 for the pair (O1, O2) of optimizations given by the table
cell, and for the benchmark given by the order of bars specified in the caption.
All numbers are normalized to the time without any of the optimizations. The
value TO is the total propagation time when using optimization O alone, as
given in Figure 15. The value TO1,O2 is the total propagation time when apply-
ing both O1 and O2 in the same run. When min(TO1, TO2) > TO1,O2, the bar is
positive, meaning that the combined optimizations sped-up propagation more
than each individually.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 45

Table X. Interactions of Pairs of Optimizations

Selectively add Selectively relax Selectively relax
context allocation-site field
sensitivity sensitivity sensitivity

U
se

a
b
it

m
a
sk

fo
r

ty
p
e

fi
lt

er
in

g

-15%

-10%

-5%

0%

5%

10%

15%

-15%

-10%

-5%

0%

5%

10%

15%

-15%

-10%

-5%

0%

5%

10%

15%

S
el

ec
ti
v
el

y
re

la
x

fi
el

d
se

n
si

ti
v
it
y

-15%

-10%

-5%

0%

5%

10%

15%

-15%

-10%

-5%

0%

5%

10%

15%

S
el

ec
ti
v
el

y
re

la
x

a
ll
o
ca

ti
o
n
-s

it
e

se
n
si

ti
v
it
y

-15%

-10%

-5%

0%

5%

10%

15%

Here, min(TO1, TO2)−TO1,O2, how much better is it to perform both optimizations than to perform only the better
single optimization? The bars, left-to-right, are for mtrt, mpegaudio, javalex, compress, db, ipsixql, jack, richards,
hsql, pseudojbb, jess, javac, soot, and xalan.

Using a bit mask for type filtering interacts well with selectively relaxing
allocation-site or field sensitivity. This is not surprising: All three optimiza-
tions reduce analysis data structures. Selectively adding context sensitivity, on
the other hand, increases analysis data structures. When using just a pair of
optimizations, selective context sensitivity sometimes interacts positively with
bit masks or selective field sensitivity, but always interacts negatively with
selective allocation-site sensitivity.

—Triples of optimizations: Table XI explores how triples of optimizations in-
teract. Each bar shows min(TO1,O2, TO3) − TO1,O2,O3, where the row gives the
pair of optimizations (O1, O2), the column gives the third optimization O3, and
the caption tells which bar corresponds to which benchmark. All numbers are
normalized to the time without any of the optimizations. The interpretation of
this table is similar to that of Table X: When min(TO1,O2, TO3) > TO1,O2,O3, the
bar is positive, meaning that the triple (O1, O2, O3) led to better propagation
time than either (O1, O2) or O3. Each row has empty cells for the two columns
that are already involved in the pair of optimizations.

Table XI, row “Context and allocation-site”, column “Selectively relax field
sensitivity” shows the strongest positive interaction. The row itself cor-
responds to the worst pairwise interaction from Table X. This motivates
the need for the optimization “Selectively relax field sensitivity”: In our

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

46 • M. Hirzel et al.

Table XI. Interactions of Triples of Optimizations

Selectively add Selectively relax Selectively relax Use a

context allocation-site field bit mask
sensitivity sensitivity sensitivity for type filtering

B
it

m
a
sk

a
n
d

fi
el

d

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

B
it

m
a
sk

a
n
d

a
ll
o
ca

ti
o
n
-s

it
e

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

F
ie

ld
a
n
d

a
ll
o
ca

ti
o
n
-s

it
e

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

C
o
n
te

x
t

a
n
d

fi
el

d

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

C
o
n
te

x
t

a
n
d

a
ll
o
ca

ti
o
n
-s

it
e

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

B
it

m
a
sk

a
n
d

co
n
te

x
t

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

Here, min(TO1,O2, TO3) − TO1,O2,O3, how much better is it to add a third optimization than just performing a
pair or the third one alone? The bars, left-to-right, are for mtrt, mpegaudio, javalex, compress, db, ipsixql, jack,
richards, hsql, pseudojbb, jess, javac, soot, and xalan.

experiments, it was necessary for reaping the full benefit from the op-
timization “Selectively add context sensitivity”. Of course, we relax field
sensitivity for exactly those fields for which context sensitivity behaves badly
otherwise.

8.3.3 Precision. While we designed all the optimizations in Section 5 to im-
prove performance, the three optimizations in Section 5.2 also affect precision.
We evaluate their effect on the precision of our pointer analysis with respect
to a client of the pointer analysis: the partitioner in CBGC (connectivity-based

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 47

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

m
trt

m
pe

ga
ud

io

ja
va

le
x

co
m

pr
es

s db

ip
si
xq

l
ja
ck

ric
ha

rd
s

hs
ql

ps
eu

do
jb
b

je
ss

ja
va

c
so

ot

xa
la
n

av
er

ag
e

All optimizations

Selectively add
context sensitivity

Selectively relax
allocation-site
sensitivity

Selectively relax
field sensitivity

Fig. 16. Precision. How the optimizations change the number of CBGC partitions.

garbage collection [Hirzel et al. 2003]). Since these optimizations change preci-
sion in incomparable ways (they use a different heap model), it is not appropri-
ate to compare their relative effects using pointsTo or alias sets [Diwan et al.
2001].

The CBGC partitioner works by placing each allocation site in its own parti-
tion and then collapsing strongly connected components in the partition graph.
Since a less precise pointer analysis has (potentially) more points-to edges than
a more precise one, it also has fewer, larger strongly connected components.
Thus, a less precise analysis will have fewer partitions than a more precise
analysis. Figure 16 gives the change in the number of partitions relative to
using none of these optimizations.

Figure 16 shows that context sensitivity slightly improves precision, while
the other optimizations have a negligible impact on precision. In other words,
collectively, these optimizations improve both precision and performance of our
pointer-analysis client.

9. RELATED WORK

Section 9.1 discusses work related to the offline analysis from Section 3, Sec-
tion 9.2 discusses work related to the online analysis from Section 4, Section 9.3
discusses work related to the analysis optimizations from Section 5, and Sec-
tion 9.4 discusses work related to our validation technique from Section 6.1.

9.1 Offline Analysis

Section 9.1.1 puts our analysis on the map, Section 9.1.2 discusses related offline
analyses, and Section 9.1.3 describes related work on how to represent analysis
data structures.

9.1.1 Where Does Andersen Fit In?. The body of literature on pointer anal-
yses is vast [Hind 2001]. At one extreme, as exemplified both by Steensgaard

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

48 • M. Hirzel et al.

[1996] and analyses with type-based heap abstraction [Harris 1999; Tip and
Palsberg 2000; Diwan et al. 2001], the analyses are fast but imprecise. At the
other extreme, as exemplified by shape analyses [Hendren 1990; Sagiv et al.
1999], the analyses are slow, but precise enough to discover the shapes of many
data structures. In between these two extremes, there are many pointer anal-
yses offering different cost-precision tradeoffs.

The goal of our research was to choose a well-known analysis and extend
it to handle all features of Java. This goal was motivated by our need to
build a pointer analysis to support CBGC (connectivity-based garbage collec-
tion, [Hirzel et al. 2003]). On the one hand, our experiments found that analy-
ses with type-based heap abstraction are too imprecise for CBGC. On the other
hand, we felt that much more precise shape or context-sensitive analysis would
probably be too expensive in an online context. This left us with a choice be-
tween Steensgaard’s [1996] and Andersen’s [1994] analyses. Andersen’s analy-
sis is less efficient but more precise [Shapiro and Horwitz 1997; Hind and Pioli
2000]. We decided to use Andersen’s analysis because it poses a superset of the
Java-specific challenges posed by Steensgaard’s analysis, leaving the latter (or
points in between) as a fall-back option.

9.1.2 Andersen for “Static Java”. A number of papers describe how to use
Andersen’s analysis for a subset of Java without features such as dynamic
class loading, reflection, or native code [Liang et al. 2001; Rountev et al. 2001;
Whaley and Lam 2002; Lhoták and Hendren 2003]. We will refer to this subset
language as “static Java.” The aforementioned papers present solutions for
static Java features that make pointer analyses difficult, such as object fields,
virtual method invocations, etc.

Rountev et al. [2001] formalize Andersen’s analysis for static Java using
set constraints, which enables them to solve it with BANE (Berkeley ANalysis
Engine) [Fähndrich et al. 1998]. Liang et al. [2001] compare both Steensgaard’s
and Andersen’s analyses for static Java, and evaluate tradeoffs for handling
fields and the call graph. Whaley and Lam [2002] improve the efficiency of
Andersen’s analysis by using implementation techniques from CLA [Heintze
and Tardieu 2001b], and improve the precision by adding flow-sensitivity for
local variables. Lhoták and Hendren [2003] present SPARK (soot pointer analysis
research kit), an implementation of Andersen’s analysis in Soot [Vallée-Rai et al.
2000], which provides precision and efficiency tradeoffs for various components.

9.1.3 Representation. There are many alternatives for storing the flow and
pointsTo sets. For example, we represent the data flow between v-nodes and
h. f -nodes implicitly, whereas BANE represents it explicitly [Foster et al. 1997;
Rountev et al. 2001]. Thus, our analysis saves space compared to BANE, but
may have to perform more work at propagation time. As another example,
CLA [Heintze and Tardieu 2001b] stores reverse pointsTo sets at h-nodes, in-
stead of storing forward pointsTo sets at v-nodes and h. f -nodes. The forward
pointsTo sets are implicit in CLA and must therefore be computed after prop-
agation to obtain the final analysis results. These choices affect both the time
and space complexity of the propagator. As long as it can infer the needed sets

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 49

during propagation, an implementation can decide which sets to represent ex-
plicitly. In fact, a representation may even store some sets redundantly: For
example, to obtain efficient propagation, our representation uses redundant
flowFrom sets.

Finally, there are many choices for how to implement the sets. The SPARK

paper evaluates various data structures for representing pointsTo sets [Lhoták
and Hendren 2003], finding that hybrid sets (using lists for small sets, and bit
vectors for large sets) yield the best results. We found the shared bit-vector
implementation from CLA [Heintze 1999] to be even more efficient than the
hybrid sets used by SPARK. Another shared set representation is BDDs, which
have recently become popular for representing sets in pointer analysis [Berndl
et al. 2003]. In our experience, Heintze’s shared bit-vectors are highly efficient;
in fact, we believe that they are part of the reason for the good performance of
CLA [Heintze and Tardieu 2001b].

9.2 Online Interprocedural Analysis

Section 9.2.1 describes extant analysis, an offline analysis that can yield some
of the benefits of online analysis. Section 9.2.2 discusses how clients can deal
with the fact that results from online analysis change over time. Section 9.2.3
describes online analyses that deal with Java’s dynamic class loading feature.

9.2.1 Extant Analysis. Sreedhar et al. [2000] describe extant analysis,
which finds parts of the static whole program that can be safely optimized
ahead of time, even when new classes may be loaded later. It is not an online
analysis, but reduces the need for one in settings where much of the program
is available statically.

9.2.2 Invalidation. Pechtchanski and Sarkar [2001] present a framework
for interprocedural whole-program analysis and optimistic optimization. They
discuss how the analysis is triggered (when newly loaded methods are com-
piled), and how to keep track of what to deoptimize (when optimistic assump-
tions are invalidated). They also present an example online interprocedural
type analysis. Their analysis does not model value flow through parameters,
which makes it less precise, as well as easier to implement, than Andersen’s
analysis.

9.2.3 Analyses that Deal with Dynamic Class Loading. Kotzmann and
Mössenböck published a sound online escape analysis that deals with dynamic
class loading, reflection, and JNI [2005]. Their paper appeared one year after
we published our online pointer analysis. Next, we discuss some earlier anal-
yses that deal with dynamic class loading. None of these analyses deal with
reflection or JNI, nor validate its results. Furthermore, all are less precise than
Andersen’s analysis.

Bogda and Singh [2001] and King [2003] adapt Ruf’s escape analysis [2000]
to deal with dynamic class loading. Ruf ’s analysis is unification-based, and
thus, less precise than Andersen’s analysis. Escape analysis is a simpler prob-
lem than pointer analysis because the impact of a method is independent of

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

50 • M. Hirzel et al.

its parameters and the problem does not require a unique representation for
each heap object [Choi et al. 1999]. Bogda and Singh discuss tradeoffs of when
to trigger the analysis, and whether to make optimistic or pessimistic assump-
tions for optimization. King focuses on a specific client, a garbage collector with
thread-local heaps where local collections require no synchronization. Whereas
Bogda and Singh use a call graph based on capturing call edges at their first
dynamic execution, King uses a call graph based on rapid type analysis [Bacon
and Sweeney 1996].

Qian and Hendren [2004] adapt Tip and Palsberg’s XTA [2000] to deal with
dynamic class loading. The main contribution of their paper is a low-overhead
call edge profiler, which yields a precise call graph to be used by XTA. Even
though XTA is weaker than Andersen’s analysis, both have separate constraint
generation and constraint propagation steps, and thus pose similar problems.
Qian and Hendren [2004] solve the problems posed by dynamic class loading
similarly to the way we solve them; for example, their approach to unresolved
references is analogous to our approach in Section 4.3.

9.3 Varying Analysis Precision

There has also been significant prior work in varying analysis precision to
improve performance. Ryder [2003] describes precision choices for modeling
program entities in a reference analysis (pointer analysis, or weaker variants
with type-based heap abstraction). Plevyak and Chien [1994] and Guyer and
Lin [2003] describe mechanisms for automatically varying flow and context
sensitivity during the analysis. Sridharan and Bodık describe a demand-driven
analysis that automatically varies context and field sensitivity [2006]. Although
those mechanisms happen in an offline, whole-world analysis, and thus do not
immediately apply to online analysis, we believe they can inspire approaches
to automate online precision choices.

9.4 Validation

Our validation methodology compares pointsTo sets computed by our analysis
to actual pointers at runtime. This is similar to the limit studies that other
researchers have used to evaluate and debug various compiler analyses [Larus
and Chandra 1993; Mock et al. 2001; Diwan et al. 2001; Liang et al. 2002].
Kotzmann and Mössenböck use their escape analysis for stack allocation [2005].
Validation runs maintain a heap-allocated copy of each stack-allocated object.
Each field store updates both copies. Each field load retrieves both values and
asserts their equality. This methodology convincingly demonstrates that the
analysis is sound in practice.

10. CONCLUSIONS

Language features, such as dynamic generation and loading of code, reflection,
and foreign language interfaces, create the following challenges for program
analyses: (i) Dynamically generated and loaded code is, in general, not avail-
able for analysis until the application actually runs; moreover, two runs, even

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 51

with the same inputs, may use different code if, for example, the two runs are
in different environments (e.g., different classpaths). Thus a program analysis
has to gracefully handle unavailable code. (ii) With reflection we do not know
what field, method, or type a reflective action refers to until the program is ac-
tually run; moreover, two executions of a reflective action may refer to different
entities. (iii) With foreign language interfaces we have to analyze code written
in multiple languages in order to understand what a program is doing; more-
over, the foreign language code is often low-level in nature (e.g., using unsafe
casts) and thus may not even be amenable to static analysis.

This article presents and evaluates an online version of Andersen’s pointer
analysis in a Java virtual machine that handles all the aforementioned chal-
lenges. Because the analysis is online, time spent on the analysis disrupts appli-
cation execution; thus, this work presents and evaluates various optimizations
to reduce disruptions. These optimizations improve analysis performance by
two orders of magnitude. If the analysis runs every time it gets new informa-
tion (e.g., a new class is loaded), most analysis runs take under 0.1 seconds,
and the total analysis time is 64.5 seconds on our benchmarks, on average.

Finally, since writing a pointer analysis that handles all the complexities of a
modern language is hard, this article describes and employs a novel technique
to find bugs in pointer analyses.

ACKNOWLEDGMENTS

We thank Steve Fink, Johannes Henkel, Balaji Iyengar, Ondr̆ej Lhoták,
Christoph Reichenbach, and Barbara Ryder for feedback on earlier drafts of
this article. We thank the anonymous reviewers of ECOOP and TOPLAS for
their comments.

REFERENCES

AGRAWAL, G., LI, J., AND SU, Q. 2002. Evaluating a demand driven technique for call graph con-
struction. In Proceedings of the 11th International Conference on Compiler Construction (CC).
Lecture Notes on Computer Science, vol. 2304. Springer Verlag, 29–45.

ALPERN, B., ATTANASIO, C. R., BARTON, J. J., BURKE, M. G., CHENG, P., CHOI, J.-D., COCCHI, A., FINK,
S. J., GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D., LITVINOV, V., MERGEN, M. F., NGO, T., RUSSELL,
J. R., SARKAR, V., SERRANO, M. J., SHEPHERD, J. C., SMITH, S. E., SREEDHAR, V. C., SRINIVASAN, H., AND

WHALEY, J. 2000. The Jalapeño virtual machine. IBM Syst. J. 39, 1 (Feb.), 211–238.
ANDERSEN, L. O. 1994. Program analysis and specialization for the C programming lan-

guage. Ph.D. thesis, DIKU, University of Copenhagen. DIKU report 94/19. ftp://ftp.diku.
dk/pub/diku/semantics/papers/D-203.dvi.Z.

ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. 2000. Adaptive optimization in the
Jalapeño JVM. ACM SIGPLAN Not. 35, 10 (Oct.), 47–65. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

ARNOLD, M. AND RYDER, B. G. 2002. Thin guards: A simple and effective technique for reducing
the penalty of dynamic class loading. In Proceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol. 2374. Springer Verlag.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast static analysis of C++ virtual function calls. ACM
SIGPLAN Not. 31, 10 (Oct.), 324–341. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA).

BERNDL, M., LHOTÁK, O., QIAN, F., HENDREN, L., AND UMANEE, N. 2003. Points-to analysis using
BDDs. ACM SIGPLAN Not. 38, 5 (May), 103–114. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

52 • M. Hirzel et al.

BOGDA, J. AND SINGH, A. 2001. Can a shape analysis work at run-time? In Proceedings of the Java
Virtual Machine Research and Technology Symposium (JVM). 13–26.

BURKE, M., CARINI, P., CHOI, J.-D., AND HIND, M. 1994. Flow-Insensitive interprocedural alias anal-
ysis in the presence of pointers. In Proceedings of the 7th International Workshop on Languages
and Compilers for Parallel Computing (LCPC). Extended version published as Res. Rep. RC
19546, IBM T. J. Watson Research Center, September.

BURKE, M. AND TORCZON, L. 1993. Interprocedural optimization: Eliminating unnecessary recom-
pilation. ACM Trans. Program. Lang. Syst. 15, 3 (Jul.), 367–399.

CHATTERJEE, R., RYDER, B. G., AND LANDI, W. A. 1999. Relevant context inference. In Proceedings
of the 26th Symposium on Principles of Programming Languages (POPL). 133–146.

CHENG, B.-C. AND HWU, W.-M. W. 2000. Modular interprocedural pointer analysis using ac-
cess paths: Design, implementation, and evaluation. ACM SIGPLAN Not. 35, 5 (May), 57–
69. In Proceedings of the Conference on Programming Language Design and Implementation
(PLDI).

CHOI, J.-D., GROVE, D., HIND, M., AND SARKAR, V. 1999. Efficient and precise modeling of exceptions
for the analysis of Java programs. In Proceedings of the Workshop on Program Analysis for
Software Tools and Engineering (PASTE). 21–31.

CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND MIDKIFF, S. 1999. Escape analysis for
Java. ACM SIGPLAN Not. 34, 10 (Oct.), 1–19. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).

CHRISTENSEN, A. S., MøLLER, A., AND SCHWARTZBACH, M. I. 2003. Precise analysis of string expres-
sions. In Proceedings of the 10th International Static Analysis Symposium (SAS). Lecture Notes
in Computer Science, vol. 2694. Springer Verlag. 1–18.

CIERNIAK, M., LUEH, G.-Y., AND STICHNOTH, J. M. 2000. Practicing JUDO: Java under dynamic
optimizations. ACM SIGPLAN Not. 35, 5 (May), 13–26. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI).

COOPER, K. D., KENNEDY, K., AND TORCZON, L. 1986. Interprocedural optimization: Eliminating
unnecessary recompilation. ACM SIGPLAN Not. 21, 7 (Jul.), 58–67. In Proceedings of the Sym-
posium on Compiler Construction (SCC).

DAS, M. 2000. Unification-Based pointer analysis with directional assignments. ACM SIGPLAN
Not. 35, 5 (May), 35–46. In Proceedings of the Conference on Programming Language Design and
Implementation (PLDI).

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs us-
ing static class hierarchy analysis. In Proceedings of the 9th European Conference on Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol. 952. Springer Verlag.
77–101.

DETLEFS, D. AND AGESEN, O. 1999. Inlining of virtual methods. In Proceedings of the 13th European
Conference on Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol.
1628. Springer Verlag. 258–278.

DIWAN, A., MCKINLEY, K. S., AND MOSS, J. E. B. 2001. Using types to analyze and optimize object-
oriented programs. ACM Trans. Program. Lang. Syst. 23, 1 (Jan.), 30–72.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M. L. 1997. A practical framework for demand-driven
interprocedural data flow analysis. ACM Trans. Program. Lang. Syst. 19, 6 (Nov.), 992–
1030.

EMAMI, M., GHIYA, R., AND HENDREN, L. J. 1994. Context-Sensitive interprocedural points-to analy-
sis in the presence of function pointers. ACM SIGPLAN Not. 29, 6 (Jun.), 242–256. In Proceedings
of the Conference on Programming Language Design and Implementation (PLDI).

FÄHNDRICH, M., FOSTER, J. S., SU, Z., AND AIKEN, A. 1998. Partial online cycle elimination in inclu-
sion constraint graphs. ACM SIGPLAN Not. 33, 5 (May), 85–96. In Proceedings of the Conference
on Programming Language Design and Implementation (PLDI).

FERNÁNDEZ, M. F. 1995. Simple and effective link-time optimization of Modula-3 programs. ACM
SIGPLAN Not. 30, 6 (Jun.), 103–115. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI).

FINK, S. J. AND QIAN, F. 2003. Design, implementation and evaluation of adaptive recompilation
with on-stack replacement. In Proceedings of the International Symposium on Code Generation
and Optimization (CGO). 241–252.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 53

FOSTER, J. S., FÄHNDRICH, M., AND AIKEN, A. 1997. Flow-Insensitive points-to analysis with
term and set constraints. Tech. Rep. UCB/CSD-97-964, University of California at Berkeley.
August.

GHIYA, R. 1992. Interprocedural aliasing in the presence of function pointers. ACAPS Tech.
Memo 62, McGill University. December.

GROVE, D. 1998. Effective interprocedural optimization of object-oriented languages. Ph.D. the-
sis, University of Washington.

GRUNWALD, D. AND SRINIVASAN, H. 1993. Data flow equations for explicitly parallel programs. In
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming.

GUYER, S. AND LIN, C. 2003. Client-Driven pointer analysis. In Proceedings of the 10th Interna-
tional Static Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 2694. Springer
Verlag. 214–236.

HALL, M. W., MELLOR-CRUMMEY, J. M., CARLE, A., AND RODRIGUEZ, R. G. 1993. Fiat: A framework for
interprocedural analysis and transformations. In Proceedings of the 6th Workshop on Languages
and Compilers for Parallel Computing (LCPC). Lecture Notes in Computer Science, vol. 768.
Springer Verlag. 522–545.

HARRIS, T. 1999. Early storage reclamation in a tracing garbage collector. ACM SIGPLAN
Not. 34, 4 (Apr.), 46–53. In Proceedings of the International Symposium on Memory Manage-
ment (ISMM).

HEINTZE, N. 1999. Analysis of large code bases: The compile-link-analyze model. Unpublished
Rep. http://cm.bell-labs.com/cm/cs/who/nch/cla.ps.

HEINTZE, N. AND TARDIEU, O. 2001a. Demand-Driven pointer analysis. ACM SIGPLAN Not. 36, 5
(May), 24–34. In Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI).

HEINTZE, N. AND TARDIEU, O. 2001b. Ultra-Fast aliasing analysis using CLA: A million lines of C
code in a second. ACM SIGPLAN Not. 36, 5 (May), 254–263. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI).

HENDREN, L. 1990. Parallelizing programs with recursive data structures. Ph.D. thesis, Cornell
University.

HIND, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Workshop on Program
Analysis for Software Tools and Engineering (PASTE). 54–61. Invited talk.

HIND, M. AND PIOLI, A. 2000. Which pointer analysis should I use? In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA). 113–123.

HIRZEL, M., DIWAN, A., AND HERTZ, M. 2003. Connectivity-Based garbage collection. ACM SIG-
PLAN Not. 38, 11 (Nov.), 359–373. In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA).

HIRZEL, M., DIWAN, A., AND HIND, M. 2004. Pointer analysis in the pressence of dynamic class load-
ing. In Proceedings of the 18th European Conference on Object-Oriented Programming (ECOOP).
Lecture Notes in Computer Science, vol. 3086. Springer Verlag. 96–122.

HIRZEL, M., HENKEL, J., DIWAN, A., AND HIND, M. 2003. Understanding the connectivity of heap ob-
jects. ACM SIGPLAN Not. 38, 2s (Feb.), 143–156. In Proceedings of the International Symposium
on Memory Management (ISMM).

HÖLZLE, U., CHAMBERS, C., AND UNGAR, D. 1992. Debugging optimized code with dynamic deopti-
mization. ACM SIGPLAN Not. 27, 7 (Jul.), 32–43. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI).

HÖLZLE, U. AND UNGAR, D. 1994. Optimizing dynamically-dispatched calls with run-time type
feedback. ACM SIGPLAN Not. 29, 6 (Jun.), 326–336. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation (PLDI).

HUNT, G., LARUS, J., ABADI, M., AIKEN, M., BARHAM, P., FÄHNDRICH, M., HAWBLITZEL, C., HODSON, O.,
LEVI, S., MUPRHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T., AND ZILL, B. 2005. An overview
of the Singularity project. Tech. Rep. MSR-TR-2005-135, Microsoft Research.

KING, A. C. 2003. Removing synchronization (extended version). Tech. rep. 11-03, Computing
Laboratory, University of Kent.

KOTZMANN, T. AND MÖSSENBÖCK, H. 2005. Escape analysis in the context of dynamic compilation
and deoptimization. In Virtual Execution Environments (VEE).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

54 • M. Hirzel et al.

LARUS, J. R. AND CHANDRA, S. 1993. Using tracing and dynamic slicing to tune compilers. Tech.
Rep. 1174. August.

LATTNER, C. AND ADVE, V. 2003. Data structure analysis: An efficient context-sensitive heap anal-
ysis. Tech. Rep. UIUCDCS-R-2003-2340, Computer Science Department, University of Illinois
at Urbana-Champaign. April.

LE, A., LHOTÁK, O., AND HENDREN, L. 2005. Using inter-procedural side-effect information in JIT
optimizations. In Proceedings of the 14th International Conference on Compiler Construction
(CC). Lecture Notes in Computer Science, vol. 3443. Springer Verlag. 287–304.

LHOTÁK, O. AND HENDREN, L. 2003. Scaling Java points-to analysis using SPARK. In Proceedings
of the 12th International Conference on Compiler Construction (CC). Lecture Notes in Computer
Science, vol. 2622. Springer Verlag. 153–169.

LIANG, D. AND HARROLD, M. J. 1999. Efficient points-to analysis for whole-program analysis. In
Proceedings of the 7th European Software Engineering Conference, and International Symposium
on Foundations of Software Engineering (ESEC/FSE), O. Nierstraz and M. Lemoine, eds. Lecture
Notes in Computer Science, vol. 1687. Springer Verlag. 199–215.

LIANG, D., PENNINGS, M., AND HARROLD, M. J. 2001. Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. In Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering (PASTE). 73–79.

LIANG, D., PENNINGS, M., AND HARROLD, M. J. 2002. Evaluating the precision of static reference
analysis using profiling. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). 22–32.

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification, 2nd ed. Addison-
Wesley.

LIVSHITS, B., WHALEY, J., AND LAM, M. S. 2005. Reflection analysis for Java. In Proceedings of the
Asian Symposium on Programming Languages and Systems (APLAS).

MOCK, M., DAS, M., CHAMBERS, C., AND EGGERS, S. J. 2001. Dynamic points-to sets: A comparison
with static analyses and potential applications in program understanding and optimization. In
Proceedings of the Workshop on Program Analysis for Software Tools and Engineering (PASTE).
66–72.

PALECZNY, M., VICK, C., AND CLICK, C. 2001. The Java Hotspot server compiler. In Proceedings of
the Java Virtual Machine Research and Technology Symposium (JVM). 1–12.

PECHTCHANSKI, I. AND SARKAR, V. 2001. Dynamic optimistic interprocedural analysis: A framework
and an application. ACM SIGPLAN Not. 36, 11 (Nov.), 195–210. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).

PLEVYAK, J. AND CHIEN, A. A. 1994. Precise concrete type inference for object-oriented languages.
ACM SIGPLAN Not. 29, 10 (Oct.), 324–324. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA).

QIAN, F. AND HENDREN, L. 2004. Towards dynamic interprocedural analysis in JVMs. In Proceed-
ings of the 3rd Virtual Machine Research and Technology Symposium (VM). 139–150.

QIAN, F. AND HENDREN, L. 2005. A study of type analysis for speculative method inlining in a
JIT environment. In Proceedings of the 14th International Conference on Compiler Construction
(CC). Lecture Notes in Computer Science, vol. 3443. Springer Verlag. 255–270.

ROUNTEV, A. AND CHANDRA, S. 2000. Off-Line variable substitution for scaling points-to analysis.
ACM SIGPLAN Not. 35, 5 (May), 47–56. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI).

ROUNTEV, A., MILANOVA, A., AND RYDER, B. G. 2001. Points-To analysis for Java using annotated
constraints. ACM SIGPLAN Not. 36, 11 (Nov.), 43–55. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).

RUF, E. 2000. Effective synchronization removal for Java. ACM SIGPLAN Not. 35, 5 (May), 208–
218. In Proceedings of the Conference on Programming Language Design and Implementation
(PLDI).

RYDER, B. G. 2003. Dimensions of precision in reference analysis for object-oriented programming
languages. In Proceedings of the 12th International Conference on Compiler Construction (CC),
G. Hedin, ed. Lecture Notes in Computer Science, vol. 2622. Springer Verlag. 126–137.

SAGIV, M., REPS, T., AND WILHELM, R. 1999. Parametric shape analysis via 3-valued logic. In Pro-
ceedings of the 26th Symposium on Principles of Programming Languages (POPL). 105–118.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

Fast Online Pointer Analysis • 55

SHAPIRO, M. AND HORWITZ, S. 1997. The effects of the precision of pointer analysis. In Proceedings
of the 4th International Symposium on Static Analysis (SAS). Lecture Notes in Computer Science,
vol. 1302. Springer Verlag. 16–34.

SREEDHAR, V. C., BURKE, M., AND CHOI, J.-D. 2000. A framework for interprocedural optimization in
the presence of dynamic class loading. ACM SIGPLAN Not. 35, 5 (May), 196–207. In Proceedings
of the Conference on Programming Language Design and Implementation (PLDI).

SRIDHARAN, M. AND BODÍK, R. 2006. Refinement-Based context-sensitive points-to analysis for
Java. In Proceedings of the Programming Language Design and Implementation (PLDI).

STEENSGAARD, B. 1996. Points-To analysis in almost linear time. In Proceedings of the 23rd Sym-
posium on Principles of Programming Languages (POPL). 32–41.

SUGANUMA, T., YASUE, T., KAWAHITO, M., KOMATSU, H., AND NAKATANI, T. 2001. A dynamic optimiza-
tion framework for a Java just-in-time compiler. ACM SIGPLAN Not. 36, 11 (Nov.), 180–195. In
Proceedings of the Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA).

SUNDARESAN, V., HENDREN, L., RAZAFIMAHEFA, C., VALLÉE-RAI, R., LAM, P., GAGNON, E., AND GODIN, C.
2000. Practical virtual method call resolution for Java. ACM SIGPLAN Not. 35, 10 (Oct.), 264–
280. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA).

TIP, F. AND PALSBERG, J. 2000. Scalable propagation-based call graph construction algorithms.
ACM SIGPLAN Not. 35, 10 (Oct.), 281–293. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA).

VALLÉE-RAI, R., GAGNON, E., HENDREN, L., LAM, P., POMINVILLE, P., AND SUNDARESAN, V. 2000. Opti-
mizing Java bytecode using the Soot framework: Is it feasible? In Proceedings of the 9th Interna-
tional Conference on Compiler Construction (CC). Lecture Notes in Computer Science, vol. 1781.
Springer Verlag. 18–34.

VIVIEN, F. AND RINARD, M. 2001. Incrementalized pointer and escape analysis. ACM SIGPLAN
Not. 36, 5 (May), 35–46. In Proceedings of the Conference on Programming Language Design and
Implementation (PLDI).

WHALEY, J. AND LAM, M. 2002. An efficient inclusion-based points-to analysis for strictly-typed
languages. In Proceedings of the 9th International Symposium on Static Analysis (SAS). Lecture
Notes in Computer Science, vol. 2477. Springer Verlag. 180–195.

Received June 2005; revised February 2006; accepted August 2006

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 11, Publication date: April 2007.

