
A COMBINED REGISTER-STACK ARCHITECTURE

Richard L. Sites
Computer Science Division

Dept. of Applied Physics and Information Science
University of California, San Diego

La Jolla, California 92093

A stack Is the simplest mechanism for evaluating
arithmetic expressions, while a group of general re-
gisters is the simplest mechanism for quick access to
a small number of common subexpressions or loop control
variables. Until now, computers have been designed
around either a stack mechanism or a register mecha-
nism, but no machine has included both in a convenient
way. In this paper, we propose a new combination ar-
=hltecture in which there are general registers, but
one of these registers is the top of an evaluation
stack. This combination is intended entirely for cal-
eulatlon, and is not related to the use of stacks in
main memory for holding activation records of Algol-
llke procedures, or to the use of stacks for holding
subroutine linkage information. The mechanism can be
implemented entirely in a fixed number of hardware
registers, with no elaborate stack spilling mechanism.
The combination architecture meshes perfectly with ex-
isting general-register architectures, while providing
the advantages of a stack for expression evaluation.
One way to view the combination architecture is that
it provides access to about twice as many fast regis-
ters with no increase in the number of instruction
bits needed to address them.

Figure I. Combination architecture, with standard
general registers Ri-Rn, and R0 defined to be the top
of an expression evaluation stack.

Assuming that RO is the stack register, the ex-
pression A := B - C would be evaluated entirely in
the stack as: stack depth after

Load RO+B 1
Load R0+C 2
Sub RO+R0-R0 1
S t o r e R0-~A 0

As a more complicated example, consider the com-
plex product of A * B. In a straight-forward evalua-
tion, the real and imaginary parts (At and Ai, res-
peetlvely) of each number are fetched twice, for a
total of eight memory references instead of the mini-
mum four. On a straight stack machine, little im-
provement is possible, while on a straight register
machine, at least five registers are needed to do the
evaluation without refetching any operands. On the
combination architecture , only four registers are
needed, as shown below, and an evaluation with only
two extra fetches can be done with two registers.

stack depth
Load Ri+Ar • 0
Load R2÷Ai 0
Load R3+Br 0
Mpy RO~R2*R3 Ai*Br i
Mpy RO~Ri*R3 Ar*Br 2
Load R3+Bi 2
Mpy RO+R2*R3 Ai*Bi 3
Sub RO~-RO-RO Ar*Br-Ai*Bi 2
Store RO-~PRODr I
Mpy RO+RI*R3 Ar*Bi 2
Add R0~-RO+R0 Ai*Br+Ar*Bi I
S t o r e RO-~PRODI 0

after

The combination architecture is easy to compile
code for -- if an operand or result is to be used only
once, put it into the stack register; otherwise put it
into one of the other registers. Common stack-machlne
operations such as DUPL, SWAP, and POP are not needed,
although it is convenient to supply unary operators
Rx~-Rx*Rx and Rx~-Rx+Rx, so that the top of stack can be
squared or doubled.

If a stack register is grafted into an existing
architecture, only small changes are needed when saving
registers across subroutine calls or interrupts. Most
often, subroutines and functions can be called with the
stack empty, so saving and restoring is no problem. If
the stack isn't empty, or if the entire machine state
must be saved on interrupt, then a series of Stores
from the stack register will pop out all the elements,
and a aeries of Loads will restore them.

The stack register can be usedwlth existing
2-address and 3-address register architectures, but it
also can be used quite effectively with a one-address
architecture consisting of (opcode, flag, register #).
The opcode and register # are standard, and the flag
is two bits, specifying one of four operations:
i. Stack+Stack o~ Reg (Reg 0 = Stack)
2. Stack+Reg o~Stack (allows reverse DIV, SUB)
3. Reg +Stack o~ Stack (create common expression)
4. Rag +Reg o~ Stack (update loop variable)
These arithmetic instructlons would be augmented with
Moves to/from main memory or a register.

The stack register can either be defined to wrap
around (pushing the ninth element into an S-deep stack
overwrites the first element), or it can be defined to
generate an error trap on overflow/underflow. The
error trap can either be interpreted strictly as an
error, or a software routine can move half the stack
to/from a backup area in main memory.

For expression evaluation, only one stack is
needed, but the concept could be extended to make all
the other registers stacks which are pushed and popped
only at subroutine calls. For example, 16 registers
built as 16-deep stacks each could be used; R0 is an
evaluation stack and its depth fluctuates while the
other 15 registers stay fixed; at a subroutine call,
Ri-Ri5 are pushed down one element and popped on re-
turn. This could be combined with overflow/underflow
interrupts (one for RO, and a separate one for Ri-Ri5),
so that no register save/restore is done at all in the
normal user code, but the interrupt routine would dump
blocks of registers if the subroutine call level
reached 16, or if an especially complicated arithmetic
expression reached an evaluation depth of 16.

Conclusion

A combination architecture can be implemented
easily and cheaply these days, and it makes expression
evaluation, register allocation, and subroutine link-
ages more straightforward.

]9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1216467.1216471&domain=pdf&date_stamp=1978-04-01

