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As transistors keep shrinking and on-chip caches keep growing, static power dissipation resulting

from leakage of caches takes an increasing fraction of total power in processors. Several techniques

have already been proposed to reduce leakage power by turning off unused cache lines. However,

they all have to pay the price of performance degradation. This paper presents a cache architecture,

the snug set-associative (SSA) cache, that cuts most of static power dissipation of caches without

incuring performance penalties. The SSA cache reduces leakage power by implementing the mini-
mum set-associative scheme, which only activates the minimal numbers of ways in each cache set,

while the performance losses caused by this scheme are compensated by the base-offset load/store
queues. The rationale of combining these two techniques is locality: as the contents of the cache

blocks in the current working set are repeatedly accessed, same addresses would be computed

again and again. The SSA cache architecture can be applied to data and instruction caches to re-

duce leakage power without incurring performance penalties. Experimental results show that SSA

can cut static power consumption of the L1 data cache by 93%, on average, for SPECint2000 bench-

marks, while the execution times are reduced by 5%. Similarly, SSA can cut leakage dissipation

of the L1 instruction cache by 92%, on average, and improve performance over 3%. Furthermore,

when SSA is adopted for both L1 data and instruction caches, the normalized leakage of L1 data

and instruction caches is lowered to 8%, on average, while still accomplishing a 2% reduction in

execution times.
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1. INTRODUCTION

As the minimum feature size gets smaller and more transistors are densely
packed onto processors, static power dissipation resulting from leakage takes an
increasing fraction of total power in processors. Since static power dissipation is
a function of the number of transistors, the VLSI technology, and circuit design
style [Butts and Sohi 2000], the 7.5 times increases in the total leakage current
each generation result in the leakage power increasing about 5 times [Borkar
1999]. Consequently, leakage power will soon be the dominant form of power
dissipation [Doyle et al. 2002; Kim et al. 2004a]. Furthermore, currently on-
chip caches comprise most of the transistor counts of processors. As a result,
leakage power of caches accounts for a significant fraction of the overall chip
energy. For instance, it is projected that in a 70-nm CMOS process, leakage
power will amount to more than 60% of power consumed in L1 caches, if left
unchecked [Kim et al. 2004a].

Several techniques have already been proposed to reduce leakage power of
caches [Albonesi 1999; Flautner et al. 2002; Hanson et al. 2001; Hu et al. 2003;
Kaxiras et al. 2001; Kim et al. 2002; Zhou et al. 2003]. They all have developed
polices and implementations to turn off or put to sleep cache lines that are not
likely to be reused. The rationale of this strategy is that cache lines usually have
a period of “dead time” before their contents are discarded, and the activity in
caches is only centered on a small subset of cache lines during a fixed period
of time because of the property of locality. However, these methods all incur
performance penalties, since reloading data to cache or waking up cache lines
takes time and energy. To alleviate this problem, this paper presents a cache
architecture, the snug set-associative (SSA) cache, that does not only cut most
of static power dissipation but also improves performance.

The SSA cache reduces leakage power by implementing the minimum set-
associative (MSA) scheme, which only activates the minimal numbers of ways in
every cache set. Similar to those proposed techniques, this theme turns off the
cache lines that are idle over a preset number of cycles. However, this scheme
does not activate an additional cache block right away once a cache miss occurs,
as done by these techniques. Instead, an additional way is activated only when
the target block of the current miss has been referenced before within a certain
time interval. On the other hand, if the data of the current miss had not been
recently accessed, the data will be loaded to a cache line in the target cache
set and the least recently used (LRU) cache block in the same cache set will
be deactivated. In other words, the number of active ways remains the same.
An additional way is allocated only to avoid thrashing in the same cache set.
As a result, only the minimal number of ways in each cache set remain active.
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This scheme turns off more cache lines than these existing techniques and,
consequently, reduces more leakage power.

The performance losses caused by the MSA scheme will be compensated
by the base-offset load/store queue (BO–LSQ) design. In addition to storing
the effective address of a load or store instruction, the default load/store queue
(LSQ) is modified to accommodate the offset and the content of the base register
in the same entry as well. The design is developed based on locality: as data in
the cache blocks of the current working set are accessed repeatedly, redundant
addresses computations are performed again and again. In other words, the
load/store instruction currently being dispatched might find an entry in BO–
LSQ with the same offset and base value. As a result, a couple of pipeline stages
for address computation of some load/store instructions can be bypassed and,
hence, execution times can be reduced.

The SSA cache architecture can be applied to data and instruction caches,
and this paper has exploited three possibilities: data caches only, instruction
caches only, and both data and instruction caches. Experimental results show
that SSA can cut static power consumption of the L1 data cache by 93%, on
average, for SPECint2000 benchmarks, while the execution times are reduced
by 5%. Similarly, SSA can cut leakage dissipation of the L1 instruction cache by
92%, on average, and improve performance over 3%. Furthermore, when SSA
is adopted for both L1 data and instruction caches, the normalized leakage
of L1 data and instruction caches is lowered to 8%, on average, while still
accomplishing a 2% reduction in execution times.

Further improvement can be made if data of previous load operations are
buffered in the unused data field of BO–LSQ entries as well, as done by cached
LSQ [Nicolaescu et al. 2003]. In addition to bypassing pipeline stages of address
computation, the cached BO–LSQ could load the data directly from matched en-
tries and, hence, avoids accessing cache lines. As a result, it can further speedup
execution as one more pipeline stage can be skipped. Experimental results
demonstrate that an extra 1% of performance improvement can be obtained by
the cached BO–LSQ. Meanwhile, average access rates of L1 data caches are
reduced by 11%. The implication is that the dynamic power consumption of L1
data cache will be lowered as well, since dynamic power dissipation of caches
is proportional to the access rates [Zhang et al. 2003].

The main results of this paper are as follows:

� The MSA scheme of SSA can significantly cut static power consumption
of L1 data and L1 instruction caches by more than 92% for SPECint2000
benchmarks. The average active ratios of cache blocks are less than 4%.

� BO–LSQ can recover the performance losses caused by the MSA scheme.
In fact, performance gains of 2 to 5% have been observed when the default
32-entry LSQ is modified to the BO–LSQ design.

� Cached BO–LSQ can further extend the performance improvement by about
1%. Meanwhile, average access rates of L1 data caches are reduced by 11%.
As a result, the dynamic power consumption of L1 data cache will be lowered
as well, since dynamic power dissipation of caches is proportional to the
access rates [Zhang et al. 2003].
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The rest of this paper is organized as follows. Section 2 introduces the min-
imum set associative scheme and Section 3 presents the modifications made
to implement the base-offset load/store queues. Experimental results will be
presented in Section 4, and Section 5 explores the possibilities and assesses the
potential of applying some new leakage-reduction techniques to SSA. Section 6
surveys the related work and Section 7 concludes this paper.

2. MINIMUM SET-ASSOCIATIVE SCHEME

Locality is a property that is shared by most programs: programs tend to
reuse data and instructions they have used recently [Hennessy and Patter-
son 2003]. Because of locality and higher speed of cache memories, caches can
bridge the processors-memory performance gap and, hence, substantially im-
prove performance of processors. On the other hand, caches are very power
inefficient because of locality since on most of SPEC benchmarks the working
set—the fraction of unique cache lines accessed during an interval of thousands
of instructions—is small [Flautner et al. 2002]. In addition, a cache block is not
likely to be referenced in the future when it leaves the active window [Burger
et al. 1995; Kaxiras et al. 2001]. Therefore, it is reasonable to deactivate cache
blocks when they hold data not likely to reused.

2.1 Policy

The SSA cache reduces leakage power of caches by deploying the minimum set-
associative (MSA) scheme, which tries to activate as few cache blocks as pos-
sible. The MSA scheme differs from the existing leakage-reducing techniques
in the timing of when to activate an extra cache block in the target cache set.
Both cache decay and drowsy cache allocate a new block when a miss occurs
and deactivate a block when its time window expires [Flautner et al. 2002;
Kaxiras et al. 2001]. As a result, the numbers of active ways in a four-way set-
associative cache will follow the state diagram shown in Fig. 1a. On the other
hand, an extra way is allocated by MSA only when the new block and currently
active blocks might be accessed in the near future. The reason is because it has
been observed that the cache “efficiency” is low, which is the fraction of data
that will be a read hit in the future before any evictions or writes [Burger et al.
1995]. In other words, cache blocks that are not actively accessed are not likely
to be used in the future.

Since set-associative caches are introduced to solve the thrashing problem
of direct-mapped caches, MSA exploits this idea and activates more ways only
when it can be identified the situation has occurred that a piece of code re-
peatedly alternates between accessing different locations that map to the same
cache set [Tanenbaum 1999]. In other words, MSA increases the number of
active ways of a cache block only if the data of current miss has been accessed
before within the time window. In order to determine whether the thrashing
problem might occur, MSA classifies all misses within a time interval into two
categories:

� repeated: the miss to a block that was active before within the current win-
dow, and
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Fig. 1. Set-associative versus minimum set-associative (four-way).

� fresh: the miss that is not repeated.

When a fresh miss occurs, no extra way will be activated in the target cache
set. Instead, an active block chosen by the LRU policy in the cache set will be
deactivated and a new block will be allocated to accommodate the new data.
On the other hand, when a repeated miss is identified, an extra way will be
activated to avoid the thrashing problem. As as result, the numbers of active
ways in a four-way MSA cache will follow the state diagram shown in Fig. 1b.
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Fig. 2. States of SSA cache blocks.

Consider a four-way set-associative cache with only two sets that is refer-
enced by a sequence of addresses mapped to memory blocks 1 to 8 and then
blocks 1 and 2. When block 3 is referenced, the set-associative scheme will ac-
tivate another block in set 1 and, hence, two cache lines are active to hold the
data of blocks 1 and 3 (the shaded blocks), as shown in Fig. 1a. On the other
hand, the MSA scheme considers it as a fresh miss and then disables the cur-
rently active block after allocating a new cache line in set 1 for block 3. As a
result, there is still only one active way in set 1 after time step 3, as depicted
in Fig. 1b. After block 8 is accessed, all the cache block in the cache are active
for the set-associative scheme, while MSA has only two working cache lines.
When blocks 1 and 2 are rereferenced, the set-associative scheme will do noth-
ing, since both cache lines are active. On the other hand, MSA will reactivate
cache lines for blocks 1 and 2, as both are repeated misses.

2.2 Implementation

In order to differentiate fresh from repeated misses, there must be a way to
tell if the cache block of the current miss was active within the current time
interval. This paper solves this problem by placing a third state, called the sleep
state, between the active and off states. In the sleep state, the data field of a
cache block is inactive while the tag field remains active. Consequently, when
a miss happens, the miss will be categorized as a repeated miss if the tag field
of the request matches the tag fields of any sleep blocks in the target cache set.
Otherwise, the miss will be classified as a fresh miss.

Figure 2 depicts the state transitions of an SSA cache block under MSA.
When a fresh miss happens, an off block will be activated and enters the active
state. On the other hand, when a repeated miss takes place, the tag field of the
request will match one of sleep blocks in the cache set and the matched block
will make the transition from the sleep to the active state. An active block will
be put to sleep when one of two conditions occurs: (1) when a fresh miss happens

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 6, Publication date: March 2007.
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Fig. 3. SSA organization.

and this block is the LRU block in the set, or (2) when the preset time slot Tsleep

expires. Finally, a block in the sleep state will be turned off when it is idle over
a preset time window Toff.

These three states can be implemented by combining the techniques in cache
decay [Kaxiras et al. 2001] and drowsy cache [Flautner et al. 2002], since they
can be modeled as

� active: normal mode
� sleep: data field is put into a low-power drowsy mode so that it can be reac-

tivated with only one-cycle delay when necessary
� off : both tag and data fields are turned off as the decayed (off) mode in cache

decay

Furthermore, cache decay can be implemented using the same circuit fabric as
in drowsy cache [Li et al. 2004]. Therefore, the dynamic voltage scaling (DVS)
technique implemented in drowsy cache can be extended to supply three types
of voltages: VDD (1V), VDDLow (0.3V), and VSS (0V), which correspond to active,
sleep, and off states, respectively.

Figure 3 displays the organization of SSA. The ticks for 4-bit cache-line coun-
ters are fed from a 10-bit global counter, which would come for free from on-chip
hardware performance monitors [Dean et al. 1997; Zagha et al. 1996]. When
a local counter reaches zero, one of two bits, drowsy and decay, will be set to
signal a state transition. Both bits are cleared when the cache line is active
and the output of DVS will be VDD. When Tsleep is up, the drowsy bit will be set
and the DVS output will be dropped to VDDLow to put the cache line into the
drowsy mode. Finally, when Toff is up, the decay bit will be set as well and the
cache line will be turned off by lowering the DVS output to VSS.
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2.3 Energy

Static power dissipation of an SSA cache consists of the leakage power of active
blocks, the leakage power dissipated by blocks in the sleep mode, and the energy
consumption incurred by the extra L1 misses that are introduced when off
cache lines are accessed. The leakage power of active blocks Eactive is equal to
the product of the number of all active blocks during the run of the program
Bactive and the static energy consumed by a cache line on every clock cycle Eblock,
i.e.,

Eactive = Bactive × Eblock

Bactive =
NewTotalCycles∑

i=1

ActiveBlocksi

where NewTotalC ycles is the total number of clock cycles for the program
when MSA is applied and ActiveBlocksi is the number of active blocks on ith
clock cycle.

Static energy of cache lines in sleep mode Esleep is the sum of energy generated
by the active tag fields and the drowsy data fields:

Esleep = Bsleep × (Ftag + Fdata × Rsleep) × Eblock

Bsleep =
NewTotalCycles∑

i=1

DrowsyBlocksi

where Ftag is the fraction of the tag field in the cache line, Fdata is the fraction of
the data field (Ftag+Fdata = 1), and Rsleep is the ratio of static energy of a drowsy
block relative to an active block. In addition, turning off cache blocks introduces
extra L1 misses and, hence, incurs dynamic energy overhead EL2access:

EL2access = ExtraMisses × RL2 × Eblock

where RL2 is, in fact, the ratio L2Access:leak (range: 5 to 100) used in cache
decay, which relates the dynamic energy because of an additional miss (or write-
back) to static leakage energy of a single clock cycle in the L1 cache [Kaxiras
et al. 2001]. This ratio models the amount of dynamic power dissipated in the
L2 cache and beyond because of an L1 cache miss. Multiplying this ratio to
Eblock and the number of additional L1 misses ExtraMisses gives the dynamic
energy overhead induced by extra L1 misses.

Performance of SSA caches will be evaluated by normalized leakage power
Leakage, which uses the static power consumption of the original cache
organization Eorigin as the base:

Leakage = Eactive + Esleep + EL2access

Eorigin

Eorigin = BlockNumber × Eblock × TotalCycles

where BlockNumber is the number of cache blocks in the cache and TotalCycles
is the original number of clock cycles for the program.
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Fig. 4. Base-offset load/store queue.

3. BASE-OFFSET LOAD/STORE QUEUE

3.1 BO–LSQ

A dynamically scheduled processor usually embeds a load/store queue (LSQ)
to provide the following functions: (1) buffering store addresses and values for
in-order retirement, (2) forwarding in-flight store values to load, (3) detection of
load/store ordering violations, and (4) detection of consistency violations [Baugh
and Zille 2004; Park et al. 2003]. Recently, a couple of techniques have been
proposed to reduce power consumption or improve cache load time by buffering
data in the LSQ [Nicolaescu et al. 2003; Peng et al. 2004]. This section presents
a base-offset load/store queue (BO–LSQ) design, that can improve performance
by modifying the base LSQ to accommodate the offsets and the contents of the
base registers of load or store instructions. The design is developed, based on the
observation that store-load and load-load memory dependences exist in many
programs [Peng et al. 2004]. The dependences can be correlated directly if the
same base and offset are identified in any entry of the BO–LSQ; then a couple
of pipeline stages of load instructions can be bypassed to achieve speedup.

Figure 4 depicts the details of the BO–LSQ organization. The L/S flag iden-
tifies the instruction as being a load or a store. The address field contains a
memory address to access, the data field contains the data to store for store
instructions, and the status bit contains the execution state of the instruction
[Nicolaescu et al. 2003].

BO–LSQ adds two more fields to the base LSQ: the base field that keeps the
content of the base register and the offset field that holds the offset value of
a load or store instruction. The design is based on the format of the load and
store instructions of Alpha [Kessler 1999]:

load Ra, disp (Rb)
store Ra, disp (Rb)

where the effective address is computed by adding the value of disp and the
content of the base register Rb. As a result, a load or store instruction is executed
in two phases: address computation (AGEN) and memory access (L/S).

Figure 5 shows the pipeline stages of Alpha 21264 simulated by the Sim-
pleScalar [Austin et al. 2002]. In the Dispatch stage, multiple instructions are
decoded, dependences among instructions are detected, and the decoded in-
structions are renamed to reorder buffer (RUU) entries. In addition, the instruc-
tions will be put to the issue queue and the values of register operands will be
loaded in the Dispatch stage, if they are available. The Execute stage, performs
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Fig. 5. Pipeline stages and bypassing.

the computation when operands are ready and the result will be broadcast in
the WriteBack stage.

When a load or store instruction enters the pipeline, the AGEN and L/S
phases will be treated as two consecutive and dependent instructions. After
the effective address is computed at the Execute stage, the result will be sent to
the next pipeline stage and meanwhile be forwarded to the Dispatch stage of the
L/S phase as well. Therefore, the WriteBack stage of AGEN and the Dispatch
stage of L/S can then be executed simultaneously on the same clock cycle. In
the Execute stage, the computed address will be compared with the addresses
in the base LSQ and the tags of L1 cache to determine if the operand can be
obtained from a normal store-to-load forwarding in LSQ or be read from a cache
block.

The Bypass path in Fig. 5 shows that a load or store instruction can jump
to the Execute stage of its L/S phase from the the Dispatch stage of the AGEN
phase if the effective address can be looked up from the BO–LSQ. Currently,
two possible conditions are checked:

� if the offset and the content of the base register of the instruction match both
the offset and base fields of any entry of the BO–LSQ, or

� if either the offset or the content of the base register of the instruction is
equal to zero.

If one of these conditions is met, two pipeline stages can be bypassed and the
execution of this instruction can be sped up by two clock cycles.

3.2 Cached BO–LSQ

The source of performance gain seen by SSA comes from the bypassing path of
load/store instructions shown in Fig. 5. It avoids unnecessary address computa-
tions when they are available in the address field of BO–LSQ entries. Further
runtime saving can be observed if the data of load instructions are buffered in
the unused data field of BO–LSQ entries as well, i.e., the same technique as
the cached LSQ proposed by Nicolaescu et al. [2003]. When the offset and the
content of the base register of a load instruction match both the offset and base
fields of any entry of the BO–LSQ, the value can be looked up directly from the
data field. As a result, the instruction can jump directly to the WriteBack stage
of its L/S phase and broadcast the loaded value. Figure 6 depicts this bypassing
path from the the Dispatch stage of the AGEN phase to the WriteBack stage of
its L/S phase, which would translate to an extra saving of one pipeline stage.
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Table I. Configuration of Simulated Processor

Processor core

Instruction window 64 RUU, 32 LSQ

Issue width 4 instructions/cycle

Functional units 4 IntALU, 1 IntMult, 4 FpALU, 1 FpMult

2 Memory Ports

Pipeline 5 Stages: Fetch/Dispatch/Execute/WriteBack/Commit

Memory hierarchy

L1 D-cache 64KB, 64B blocks, 1/2/4/8/16/32 ways, one-cycle latency

L1 I-cache 64KB, 64B blocks, 1/2/4/8/16/32 ways, one-cycle latency

L2 cache 1MB, 64B blocks, 8-way LRU, 6-cycle latency

Memory 100-cycle latency

Fetch (L/S)

WriteBack
(L/S)

Execute (L/S)Dispatch (L/S) Commit (L/S)

Commit 
(AGEN)

WriteBack
(AGEN)

Execute 
(AGEN)

Dispatch 
(AGEN)

Bypass

Fig. 6. Bypassing of cached BO–LSQ.

4. EXPERIMENTAL RESULTS

4.1 Setup

Experiments are conducted by executing the SPECint2000 benchmarks [Stan-
dard Performance Evaluation Corporation 2000] on SimpleScalar v3.0d [Austin
et al. 2002]. The simulated processor is an Alpha 21264 [Kessler 1999] and the
parameters of the processor and memory hierarchy set by SimpleScalar are
listed in Table I. The values of these parameters are set according to the Al-
pha 21264 specification and, hence, are different from the default values set
by the SimpleScalar distribution. The SPECint2000 binaries with SPEC peak
settings were downloaded from the University of Michigan through a link at
the SimpleScalar home page [Weaver]. Table II lists the numbers of instruc-
tions executed by the sim-outorder simulator using the TRAIN data set, which
is smaller than the REF set and larger than the TEST set. Instead of just col-
lecting a small trace of each program as done by other researchers, this paper
chose to simulate the entire program of every SPECint2000 benchmark to avoid
the pitfall that a program’s locality behavior is not constant over the run of the
entire program [Hennessy and Patterson 2003].

All the SPECint2000 benchmarks will be executed respectively on 1-, 2-, 4-,
8-, 16-, and 32-way L1 instruction and data caches. Caches with up to 32-way as-
sociativity are simulated because modern embedded processors use data caches
with high degrees of associativity in order to increase performance. For exam-
ple, Transmeta Crusoe [Transmeta Corporation 2004] has 8-way set-associative
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Table II. Instruction Counts (TRAIN

Data Set)

Program Instructions (in billions)

gzip 58.97

vpr 10.71

gcc 5.12

mcf 9.17

crafty 27.22

parser 13.43

eon 2.64

perlbmk 27.65

gap 9.52

vortex 18.81

bzip 61.13

twolf 13.20

Table III. Setups of Experiments

Name Experiment setup

Original Set-associative, LSQ, Tsleep=∞
MSA Minimum set-associative, LSQ, Tsleep = 1 K cycles, Toff = 16K cycles

SSA Minimum set-associative, BO–LSQ, Tsleep = 1 K cycles, Toff = 16K cycles

Decay01 Cache decay [Kaxiras et al. 2001], LSQ, Toff = 1 K cycles

Decay04 Cache decay, LSQ, Toff = 4 K cycles

Decay16 Cache decay, LSQ, Toff = 16 K cycles

Drowsy01 Drowsy cache [Flautner et al. 2002], LSQ, Tsleep = 1 K cycles

Drowsy04 Drowsy cache, LSQ, Tsleep = 4 K cycles

Drowsy16 Drowsy cache, LSQ, Tsleep = 16 K cycles

caches and Intel XScale [Intel Corporation 2001] has 32-way set-associative
caches. In addition, both the cache decay and drowsy cache techniques have
been implemented in the SimpleScalar as well, and their impact on static
power consumption and execution times will be used as the baseline compar-
ison. Table III lists the configurations used in this paper with different Tsleep

and Toff settings to evaluate the performance of these three leakage saving
techniques.

Since the SSA cache architecture can be deployed onto data and instruc-
tion caches, this section will present performance evaluations of the following
three configurations: data caches only (Section 4.2), instruction caches only
(Section 4.3), and both data and instruction caches (Section 4.4).

4.2 Data Caches

4.2.1 Active Ratios. Since the MSA scheme of SSA activates an extra cache
line only when a repeated miss has occurred, SSA should have fewer active
blocks than cache decay and drowsy cache. Figure 7 shows on average only
about 3.85% of cache blocks are active for SSA caches when the active window
is set to 1 K cycles, while the average active ratios for cache decay and drowsy
cache with the same active window are 5.99 and 3.88%, respectively.
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Fig. 8. Average miss rates.

4.2.2 Performance Evaluation

4.2.2.1 Miss rates. Turning off cache lines definitely increases miss rates.
However, the extra miss rates introduced by SSA are very small. Figure 8
shows the average miss rates of SPECint2000 benchmarks observed on the
configurations listed in Table III with 1-, 2-, 4-, 8-, 16-, and 32-way caches. The
average miss rates of the original configuration on 1-, 2-, 4-, 8-, 16-, and 32-
way caches are 4.6, 3.7, 3.5, 3.5, 3.5, and 3.5%, respectively. SSA caches with
Tsleep = 1 K cycles and Toff = 16 K cycles introduce an additional miss rate of
about 0.5% to each case, and the average miss rates are 5.1, 4.2, 4.0, 4.0, 4.0,
and 4.0%.

Cache decay with Toff = 16 K raises average miss rates about 0.6%, but the
average miss rates are almost doubled when Toff is reduced to 1 K cycles. On
the other hand, drowsy cache does not increase miss rates, since it does not
turn off cache lines. Instead, it puts cache lines into a state-preserving drowsy
state. However, drowsy cache lines still dissipate static power.

4.2.2.2 Static energy. Figure 9 plots the normalized cache leakage energy
for the SPECint2000 benchmarks. In this graph, the ratio of static energy of
a drowsy block relative to an active block Rsleep is set to 0.08 and the relative
overhead resulting from an additional miss RL2 is 50. The bars in the graph are
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Fig. 9. Average normalized leakage power.

normalized to the static energy dissipated by the original L1 data cache with
1-, 2-, 4-, 8-, 16-, or 32-way organization.

SSA can significantly reduce the leakage power of L1 data cache, up to 93%
when Tsleep = 1 Kc and Toff = 16 Kc. Cache decay usually saves more leakage
energy than drowsy cache, since even drowsy cache blocks still produce leakage.
When the time window is set to 1, 4, and 16 K cycles, the normalized leakage
powers of drowsy cache configurations are about 15, 19, and 29%, respectively.
This figure reveals that even though a drowsy cache line dissipates only 8% of
leakage of an active line, the overall effect is still substantial, since most cache
lines are drowsy.

4.2.2.3 Runtime impact. Turning off or putting to sleep cache lines to reduce
leakage power will definitely incur performance penalties, since reloading data
or waking up cache lines takes time and energy. With 1 Kc time window, cache
decay causes the average execution times to increase by 3% and drowsy cache
about 1%, as shown in Fig. 10. Similarly, the MSA scheme of SSA alone degrades
the performance by about 1% (the MSA configuration). With 1% of performance
degradation, MSA reduces the leakage power by 93%, whereas cache decay
(Toff = 4 K cycles) and drowsy cache (Tsleep = 1 K cycles) cut the static power
dissipation by roughly 87 and 85%, respectively.

SSA deploys the BO–LSQ by modifying the default LSQ design to compensate
the performance loss of the MSA scheme. Figure 10 shows that the SSA cache
with the BO–LSQ design (i.e., the SSA configuration) can not only recover the
1% performance loss, but also improves the average runtime by 5%.

Figures 9 and 10 together demonstrate that SSA can outperform the original
configuration by 5% while just dissipating 7% of leakage power. It provides
an approach to improve both leakage power of data caches and performance.
On the contrary, cache decay and drowsy cache reduce cache leakage power
while compromising performance. Cache decay can cut the cache leakage power
down to 6%, but average execution times will rise about 3%. On the other
hand, drowsy cache can contain performance penalties within 1%. However,
the normalized leakage energy might reach 15∼29%.
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Fig. 10. Average runtime impact.
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4.2.3 BO–LSQ Bypassing. The performance gain observed in the SSA con-
figuration comes from the bypassing of pipeline stages by BO–LSQ. The saving
comes from two sources:

� Load or store instructions with zero offsets or bases, which account for 42%.
� Load or store instructions with offsets or bases matched entries in BO–LSQ,

which account for 14% in a 32-entry BO–LSQ.

Consequently, the address computation phase of 56% of load or store instruc-
tions can be bypassed in a 32-entry BO–LSQ, as shown in Fig. 11.

Figure 11 indicates that 39% of load and store instructions do not match any
entries in the BO–LSQ and the address computation phase can not be bypassed.
The rest (5%) is flushed by branch prediction before addresses are computed.

4.3 Instruction Caches

This section presents the efficacy of applying SSA to instruction caches only.
The time window Tsleep for instruction caches is set to 2 K cycles, while the
interval Toff remains 16 K cycles.
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4.3.1 Active Ratios. Figure 12 shows the average active ratios of 64 KB
1-, 2-, 4-, 8-, 18-, and 32-way instruction caches. It depicts that the average ac-
tive ratios of L1 instruction SSA caches are only 6.9% for SPECint2000 bench-
mark programs, which are about one half of the numbers observed by “drowsy
instruction caches” [Kim et al. 2002].

4.3.2 Performance Evaluation

4.3.2.1 Miss rates. Figure 13 compares the average miss rates of L1 instruc-
tion SSA caches for SPECint2000 benchmarks with the original L1 instruction
caches. The average miss rates of the original L1 instruction caches are very
small—about 0.05%. SSA caches with Tsleep = 2 K cycles and Toff = 16 K cycles
introduce an additional miss rates of about 0.09%. Consequently, the average
miss rates are 0.14%.

4.3.2.2 Static energy. Figure 14 presents the normalized cache leakage of
64-KB 1-, 2-, 4-, 8-, 18-, and 32-way instruction caches for the SPECint2000
benchmarks. It shows SSA can reduce the leakage power of L1 instruction
caches by more than 98% for some benchmark programs with high degrees of
locality. On average, over 92% of leakage dissipation can be cut by SSA for the
SPECint2000 benchmarks.
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Fig. 14. Average normalized leakage power (L1 instruction caches).
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4.3.2.3 Runtime impact. Figure 15 displays the runtime impact of L1 in-
struction SSA cache with 32-entry BO–LSQ, comparing to L1 instruction caches
with the default 32-entry LSQ. It demonstrates that SSA can recover the per-
formance losses caused by deactivating unused cache blocks for most of the
SPECint2000 benchmarks. In fact, an average performance gain of 3% can be
achieved by L1 instruction SSA cache.

4.4 Instruction and Data Caches

This section presents the performance evaluations of simultaneously applying
SSA to L1 instruction and L1 data caches. The time window Tsleep is set to 2 K
cycles for instruction caches and 1 K cycles for data caches, while the interval
Toff remains 16 K cycles.

4.4.1 Active Ratios. Figure 16 shows the average active ratios of 64 KB L1
instruction SSA caches and 64 KB L1 data SSA caches. It depicts that the aver-
age active ratios of L1 instruction SSA caches are only 6.8% for SPECint2000
benchmark programs, while the average active ratios of L1 data SSA caches
are only 3.8%.

4.4.2 Performance Evaluation

4.4.2.1 Static energy. Figure 17 presents the normalized cache leakage
of 64-KB L1 instruction SSA caches and 64-KB L1 data SSA caches for the
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Fig. 17. Average normalized leakage power (L1 instruction and data caches).

SPECint2000 benchmarks. While both instruction and data caches cut the leak-
age dissipation down to 7–8%, greater variations are observed for instruction
caches, as shown in Fig. 17a.

4.4.2.2 Runtime impact. Figure 18 displays the runtime impact of L1 in-
struction and data SSA caches with 32-entry BO–LSQ, comparing to L1 in-
struction and data caches with the default 32-entry LSQ. It demonstrates that
SSA can recover the performance losses caused by deactivating unused cache
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Fig. 18. Average runtime impact (L1 instruction and data caches).

blocks for most of the SPECint2000 benchmarks, except for gcc, crafty, and
perlbmk. In fact, an average performance gain of 2% can be achieved by L1
instruction and data SSA caches.

4.5 Cached BO–LSQ

Figure 19 compares the effects of cached BO–LSQ on execution times of
SPECint2000 benchmarks for different SSA configurations. When the cached
BO–LSQ is deployed on L1 data SSA caches, the average performance gain is
extended from 5 to 6%, as shown in Fig. 19a. Similarly, runtime reduction of L1
instruction SSA caches is increased from 3 to 4% when cached BO–LSQ is ap-
plied, as depicted in Fig. 19b. Finally, Fig. 19c reveals that cached BO–LSQ can
further improve performance by about 1% even when SSA is simultaneously
applied to L1 instruction and L1 data caches.

An additional advantage of the cached BO–LSQ is that it reduces dynamic
power consumption as well, since it lowers the accesses to cache lines. When
the value of a load instruction can be looked up directly from the buffer in the
cached BO–LSQ, the access to the target cache line can be avoided. Figure 20
indicates the average access rate of L1 data caches is trimmed by 11%. As a
result, the dynamic power of L1 data cache will be cut since dynamic power
dissipation of caches is proportional to the access rates [Zhang et al. 2003].

5. DISCUSSION

This paper uses cache decay and drowsy cache to implement SSA and, hence,
the efficacy of these two techniques is used as the baseline comparison of perfor-
mance evaluation presented in the previous section. However, the implemen-
tation of SSA is not limited to these two techniques. Any leakage reduction
techniques that can work together to model the state transitions of SSA can be
employed. Similarly, the methods proposed by this paper can be incorporated
into other techniques as well. This section will explore some possibilities and
assess the potential.
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Fig. 21. Normalized leakage of super drowsy caches.

5.1 Super-Drowsy Caches

Super-drowsy cache circuit is a new state-preserving technique that can signif-
icantly reduce leakage power [Kim et al. 2004b]. When VDD is lowered to 250
mV, the cell leakage power can be reduced by 98%. That is, Rsleep is equal to
0.02 for the super-drowsy caches, whereas Rsleep of the original drowsy caches
is 0.08 [Flautner et al. 2002]. This circuit technique can be adapted by SSA to
further reduce leakage dissipation of caches during the sleep state. Figure 21a
shows that the normalized leakage energy of SSA data caches can be reduced
from 7 to 5% by the super-drowsy circuit, and the normalized leakage of drowsy
data caches can be cut from 15 to 9% through the same technique. Similarly,
Fig. 21b shows that the super-drowsy circuit lowers the normalized leakage
energy of SSA instruction caches from 8 to 7%, and decreases the normalized
leakage of drowsy instruction caches from 16 to 11%.

The same work also compares the effects of the noaccess policy (only
lines that have not been accessed during a fixed period are put into drowsy
mode) and the simple policy (all lines are put into drowsy mode periodi-
cally) [Kim et al. 2004b]. These two policies can be easily implemented on
SSA and other low-leakage cache architectures. Figure 22 reveals a similar
outcome that has been observed, that is, deploying the noaccess policy on SSA
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Fig. 22. Noaccess policy versus simple policy (instruction caches).

and drowsy caches results in better performance, but slightly worse leakage
reduction.

5.2 Temperature-Aware Leakage Reduction

Kaxiras et al. [2005] have developed a temperature-aware leakage reduction
technique that can adapt the decay mode to temperature. They proposed a
triggering mechanism based on the principle of decaying 4T thermal sensors.
This triggering mechanism can be adopted by SSA as well. Figure 23 depicts
the runtime impact and normalized leakage of temperature-aware SSA at 45◦,
65◦, and 85◦C, whose decay intervals Toff are about 53 K, 13 K, and 6 K cycles,
respectively. The average normalized leakage of SSA for SPECint2000 bench-
marks at 45◦, 65◦, and 85◦C is reduced to 9.3, 6.5, and 5.4% and the average
runtime differences are −5.3, −5.0, and −4.7%, respectively.

Although the implementation of SSA is not limited to combining cache decay
and drowsy cache, performance evaluation, presented in Section 4, was based
on these two techniques. As a result, MSA is very similar to the hybrid drowsy
+ decay scheme deployed by them and even other researchers [Hu et al. 2003;
Kaxiras et al. 2005; Meng et al. 2005]. The difference is that MSA does not
activate an additional cache block right away once a cache miss occurs, as done
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Fig. 23. Temperature-aware SSA based on the delay4T sensors.
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Fig. 24. Drowsy rates over the hybrid method.

by the hybrid technique. An additional way is allocated only to avoid thrashing
in the same cache set. As a result, only the minimal numbers of ways in each
cache set remain active. Figure 24 demonstrates that MSA can put more cache
lines into the drowsy mode than the hybrid scheme, especially for caches with
high associativity.

5.3 Comparing with Optimal Leakage Saving

Recently Meng et al. [2005] have developed a model to estimate the optimal
leakage savings by combining cache decay and drowsy cache. When oracle
knowledge of future accesses is available, they estimate the upper limits of aver-
age leakage power saving that can be achieved on the six selected benchmarks
are 96% for instruction caches and 99% for data caches with no performance
losses. On the other hand, without the aide of oracle knowledge of future ac-
cesses, SSA instruction caches can accomplish 92% of leakage power saving for
the SPECint2000 benchmarks with 3% performance improvement. Similarly,
SSA data caches can reach 93% of leakage power saving for the SPECint2000
benchmarks with 5% performance improvement. Specifically, SSA can closely
approach the optimal (within 4% for instruction caches and within 6% for data
caches).
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5.4 Applying BO–LSQ to Other Techniques

BO–LSQ is the technique used by this paper to compensate the performance
loss incurred by the MSA scheme of SSA. However, this technique is not limited
only to SSA. In fact, BO–LSQ can be adopted by cache decay and drowsy cache to
offset the performance penalties as well. Figure 25 shows that BO–LSQ can re-
cover the 3 and 1% performance degradations of cache decay and drowsy cache,
respectively, and achieve performance improvement of 3 and 5%, respectively,
for the SPECint2000 benchmarks, on average.

5.5 Sensitivity to Parameters

There are two parameters used to compute normalized leakage energy of L1
caches: Rsleep is the ratio of static energy of a drowsy block relative to an active
block and RL2 relates the dynamic energy due to an additional miss (or write-
back) to static leakage energy of a single clock cycle in the L1 cache. Figure 26
shows how changes in these two ratios affect the leakage savings by the var-
ious leakage reduction techniques listed in Table III. It demonstrates that
SSA is relatively insensitive to these parameters than cache decay and drowsy
cache.

Figure 26a depicts the average normalized leakage energy of L1 data caches
for the SPECint2000 benchmarks when Rsleep is set to 2, 8, and 14%, respec-
tively. It reveals that SSA produces the best leakage reduction with Rsleep =
2%, and dissipates comparable static energy with cache decay when Rsleep is
equal to 8%. Furthermore, SSA outperforms drowsy cache even with the worst
Rsleep ratio. Another way to view Fig. 26a is to perform a breakeven analysis by
taking horizontal slices of the figure [Prybylski et al. 1988]. The configurations
in the same horizontal slice achieve the same level of leakage reduction. For
instance, the slice of 5–10% indicates that SSA with any of these three Rsleep

ratios, Decay01, and Drowsy01 with Rsleep = 2% are the best among all possible
configurations, while the slice of 30–35% exposes that Drowsy16 with Rsleep =
14% is the worst arrangement.
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Fig. 26. Impact of parameters on leakage.

Figure 26b analyzes the dynamic energy overheads of extra L1 misses in-
curred by different leakage reduction techniques with various RL2 ratios rang-
ing from 5 to 5000. Kaxiras et al. [2001] observed that the RL2 ratio could be as
low as 8.9 on Alpha 21164, and predicted this ratio would be lower because of
higher leakage in future techniques. All the experiments presented in Section 4
were conducted with RL2 = 50. RL2 = 500 and 5000 are two extreme cases that
might occur when L2 caches are not on-chip or even no L2 caches are present.
This figure shows that extra L1 misses introduced by SSA incur negligible dy-
namic energy overheads. Dynamic energy overheads of SSA are visible only at
the extreme case of RL2 = 5000, but still take only relatively small percentages.
Furthermore, performing a breakeven analysis on this figure also reveals that
SSA will be among the configurations in the horizontal slice of the best leakage
performance regardless of the RL2 values.

6. RELATED WORK

Selective cache ways proposed the first method of turning off unneeded ways to
reduce cache energy [Albonesi 1999]. It is a coarse-grain approach that can turn
off entire cache ways of set-associative caches for different programs. Recently,
several fine-grain techniques have been developed that turn off or deactivate in-
dividual cache lines to reduce power consumption [Flautner et al. 2002; Hanson
et al. 2001; Kaxiras et al. 2001; Kim et al. 2002; Zhou et al. 2003]. They all have
developed polices and implementations to turn off or put to sleep cache lines
that are not likely to be reused. However, these methods all incur performance
penalties since reloading data or waking up cache lines takes time and energy.
The MSA scheme of SSA caches follows the similar path to reduce leakage
power dissipation and, hence, suffers minor performance degradation as well.
Nevertheless, SSA caches deploy, BO–LSQ, which can obtain enough perfor-
mance gain that does not only recover the performance losses caused by MSA,
but still has an excess to reduce execution times.

Signature buffer permits load and store instructions bypassing normal mem-
ory hierarchy for fast data communication [Peng et al. 2004]. However, it has
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to copy cache blocks into the signature buffer and must deal with data align-
ment and signature synonym problems. On the other hand, BO–LSQ in this
paper skips the address computation phase by only comparing the base and
offset of the dispatched instruction with those of instructions in BO–LSQ en-
tries. Cached LSQ is another way to circumvent normal memory hierarchy that
buffers data in the data field of LSQ entries [Nicolaescu et al. 2003]. This tech-
nique can be integrated in BO–LSQ, as well, to reduce accesses to cache blocks.
The difference is that the cached LSQ still has to perform address computation
while cached BO–LSQ can skip this process if the effect addresses can be looked
up from BO–LSQ entries.

There are also other cache systems designed by other researchers to re-
duce static power dissipation of instruction caches [Allu and Zhang 2004; Kim
et al. 2002; Hu et al. 2003; Yang and Lee 2004]. They all have deployed tech-
niques similar to those used in reducing leakage power of data caches. In ad-
dition, reducing dynamic power consumption is a very important issue as well.
Researchers have implemented techniques to trim the frequencies of accessing
cache lines to save power [Powell et al. 2001; Zhang et al. 2004].

Recently Meng et al. [2005] have developed a model to estimate the optimal
leakage savings by combining cache decay and drowsy cache when the per-
fect knowledge of future trace is available. The work is closely related to this
paper, but the model requires oracle knowledge of future accesses. On the con-
trary, the SSA of this paper can improve performance without such oracle infor-
mation while significantly cutting leakage dissipation of data and instruction
caches.

7. CONCLUSIONS

This paper presents a cache architecture, the SSA cache, that can reduce leak-
age power without incurring performance penalties. The SSA cache implements
the MSA scheme, which only activates the minimal numbers of ways in every
cache set; and It cuts static power consumption of instruction and data caches
by over 92%, on average, for SPECint2000 benchmarks. In addition, the perfor-
mance losses caused by the MSA scheme are compensated by the BO–LSQ de-
sign and the average execution times of SPECint2000 benchmarks are reduced
by 2–5%. In addition, cached BO–LSQ can further extend the performance im-
provement by an additional 1%. Meanwhile, since average access rate of data
caches is trimmed by 11%, the dynamic power of data caches should be cut by
a similar proportion as well.
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