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Embedded real-time systems consist of hardware and software along with functional and timing

constraints for the interaction with the environment. They are ubiquitous in today’s technological

landscape, however, typical domains of embedded real-time systems include telecommunication,

nuclear power plants, avionics, and medical technology. These systems are often critical because

of the high human and economic stakes. Therefore, the development of such systems requires

highly reliable approaches. The synchronous approach is one possible answer for this demand. Its

mathematical basis provides formal concepts that favor the trusted design of embedded real-time

systems. The multi-clock or polychronous model stands out from other synchronous specification

models by its capability to allow the design of systems where each component holds its own activa-

tion clock as well as single-clocked systems in a uniform way. A great advantage is its convenience

for component-based design approaches that allow modular development of increasingly complex

modern systems. The expressiveness of its underlying semantics allows to deal with several issues

on real-time design.

This article exposes insights gained during recent years from the design of real-time applications

within the polychronous framework. In particular, it shows promising results about the design of

applications from the avionics domain.

Categories and Subject Descriptors: D.2.1 [Requirements/Specifications]: Methodologies;

D.2.2 [Design Tools and Techniques]: Computer-aided software engineering; D.2.4 [Soft-

ware/Program Verification]: Formal methods, Validation; D.4.7 [Organization and De-

sign]: Real-time systems and embedded systems

General Terms: Design, Languages, Verification

Additional Key Words and Phrases: Design methodology, synchronous approach, embedded real-

time systems, Avionics, formal methods, Signal

1. INTRODUCTION

Embedded real-time systems consist of hardware and software along with functional

and timing constraints for the interaction with the environment. They are ubiq-

uitous in today’s technological landscape, however, typical domains of embedded

real-time systems include telecommunication, nuclear power plants, avionics, and

medical technology. These systems are often critical because of the high human

and economic stakes. Therefore, the development of such systems requires highly

reliable methodologies. Over the past decade, high-level design of such systems has

gained prominence in the face of rising technological complexity, increasing perfor-
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mance requirements, and tightening time to market constraints. Broad discussions

of challenges in the design of these systems can be found in literature [Lee 2000]

[Wirth 2001] [Sifakis 2001] [Pnueli 2002]. It is now widely accepted that suitable

design frameworks must provide a means to describe systems without ambiguity,

to check desired properties of these systems, and to automatically generate code

with respect to requirements.

The synchronous approach has been proposed in order to answer this demand

[Benveniste et al. 2003]. Its basic assumption is that computation and communica-

tion are instantaneous. This assumption is often represented by the ideal vision of

zero time execution (referred to as “synchrony hypothesis”). More precisely, a sys-

tem is viewed through the chronology and simultaneity of observed events during

its execution. This is a main difference from classical approaches where the system

execution is rather considered under its chronometric aspect (i.e., duration has a

significant role). The mathematical foundations of the synchronous approach pro-

vide formal concepts that favor the trusted design of embedded real-time systems.

The multi-clocked or polychronous model [Le Guernic et al. 2003] stands out

from other synchronous specification models by its capability to allow the de-

sign of systems in which each component holds its own activation clock as well

as single-clocked systems in a uniform way. A great advantage is its convenience

for component-based design approaches that allow modular development of increas-

ingly complex modern systems. As a matter of fact, the design of each component

can be addressed separately. The expressiveness of its underlying semantics allows

to deal with several issues on real-time design.

A major part of embedded real-time design environments is based on multiple

tools for various purposes: specification, verification, evaluation, etc. While such

environments are practical, they make it difficult to guarantee the correctness of

the designed systems. As a matter of fact, the involved tools generally have differ-

ent semantic foundations and the translation process of descriptions from one tool
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to another becomes error-prone. This leads to a global coherence problem, which

affects the description, verification, and validation of systems and represents a big

obstacle to the development of safety critical systems such as embedded real-time

systems in these environments. One solution to this problem consists in considering

the same semantic model for the whole design activity.

In this article, we consider the Signal language, which is based on the poly-

chronous semantic model [Le Guernic et al. 2003] and its associated tool-set Poly-

chrony to design embedded real-time applications. The inherent flexibility of

the abstract notions defined in the polychronous framework favors the design of

correct-by-construction systems by means of well-defined transformations of sys-

tem specifications that preserve the intended semantics and stated properties of

the system under design. As application domain, we particularly focus on avionics

to address modeling and temporal evaluation issues.

Contribution. The first contribution of the work presented in this article is a de-

sign approach for embedded real-time applications using the polychronous model.

These systems often include asynchronous mechanisms (e.g. to achieve communi-

cations). The modeling of such mechanisms using the synchronous paradigm is not

trivial. Our design approach is proposed within a homogeneous framework that

uses the Signal language as description formalism. As a result, the formal tech-

niques and tools available within the Polychrony platform can be used for system

analysis. Targeting avionics, we consider the recent integrated modular avionics ar-

chitectures and their associated standard ARINC [Airlines Electronic Engineering

Committee 1997a] [Airlines Electronic Engineering Committee 1997b] to develop

a library of so-called APEX-ARINC services, providing Signal models of RTOS

functionalities. Then, we show how these models can be used to describe the dis-

tributed applications. Finally, we expose a technique for temporal evaluation of

these applications using Signal. This allows us to validate our design choices.

Outline. The rest of the article is organized as follows: Section 2 first presents
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the Signal language and its associated analysis techniques. Then, Section 3 intro-

duces avionic system architectures. Section 4 exposes the modeling of a library of

components based on the avionic APEX-ARINC standard. This library is used in

Section 5 for the design of distributed applications within Polychrony. Section

6 shows how timing issues can be addressed using a technique based on interpreta-

tions of Signal programs. In Section 7, we mention some relevant works related to

the study exposed in this article. Finally, concluding remarks are given in Section

8.

2. THE SIGNAL LANGUAGE

The basis of the Signal design is close to the stream concept such as defined in the

semantics of data-flow languages [Kahn 1974]. The main difference lies in the way

streams are built from traces. A trace is a stream in which the bottom (⊥) value

(stating for “no event”) may occur between two defined values. In the following,

we present the Signal language and its associated concepts.

2.1 Synchronized data-flow

Consider as an example the following program expressed in some conventional data-

flow language:

if a > 0 then x = a; y = x + a

What is the meaning of this program? In an interpretation where the communi-

cation links are considered as FIFO queues [Arvind and Gostelow 1978], if a is a

sequence with non-positive values, the queue associated with a will grow forever,

or (if a is a finite sequence) the queue associated with x will eventually be empty

although a is non-empty. It is not clear that the meaning of this program is the

meaning that the author had in mind! Now, suppose that each FIFO queue consists

of a single cell [Dennis et al. 1974]. Then as soon as a negative value appears on

the input, the execution can no longer go on: there is a deadlock. This is usually

represented by the special undefined value ⊥.

It would be somewhat significant if such deadlocks could be statically prevented.
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For that, it is necessary to be able to statically verify timing properties. Then

the ⊥ should be handled when reasoning about time, but it has to be considered

with a non standard meaning. In the framework of synchronized data-flow, the ⊥

corresponds to the absence of value at a given logical instant for a given variable

(or signal). In particular, it must be possible to insert several ⊥ symbols between

two defined values of a signal. Such an insertion corresponds to some resynchro-

nization of the signal. However, the main purpose of synchronized data-flow is that

the whole synchronization should be completely handled at compile time, in such

a way that the execution phase has nothing to do with ⊥. This will be assumed

by a static representation of the timing relations expressed by each operator. Syn-

tactically, the timing will be implicit in the language. Signal describes processes

that communicate through (possibly infinite) sequences of typed values with im-

plicit timing: the signals. For example, x denotes the infinite sequence {xt}t≥0

where t denotes a logical time index. Signals defined with the same time index are

said to have the same clock, so that clocks are equivalence classes of simultaneous

signals. A Signal program consists of a set of processes recursively composed from

elementary processes. An elementary process is an expression defining one signal.

Consider a given operator that has, for example, two input signals and one out-

put signal. We shall speak of synchronous signals if they are logically related in the

following sense: for any t, the tth token on the first input is evaluated with the tth

token on the second input, to produce the tth token on the output. This is precisely

the notion of simultaneity. However, for two tokens on a given signal, we can say

that one is before the other (chronology). Then, for the synchronous approach, an

event is a set of instantaneous calculations, or equivalently, of instantaneous com-

munications. A process is a system of equations over signals. A Signal program

is a process.

2.2 Signal constructs

Signal relies on a handful of primitive constructs, which can be combined using

a composition operator. These core constructs are of sufficient expressive power

to derive other more elaborated constructs for comfort and structuring. Here, we
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give a sketch of the primitive constructs (bold-faced) and a few derived constructs

(italics) often used. For each of them, the corresponding syntax and definition are

mentioned.

Functions/Relations. Let f be a symbol denoting a n-ary function [[f ]] on

instantaneous values (e.g., arithmetic or boolean operation). Then, the Signal ex-

pression

y:= f(x1,...,xn)

defines an elementary process such that:

yt 6=⊥⇔ x1t 6=⊥⇔ ... ⇔ xnt 6=⊥, ∀t : yt = f(x1t, ..., xnt),

where xik denotes the kth element of the sequence denoted by {xit}t≥0.

Delay. This operator defines the signal whose tth element is just the (t − 1)th

element of its input, at any instant but the first one, where it takes an initialization

value. Then, the Signal expression

y:= x $ 1 init c

defines an elementary process such that:

xt 6=⊥⇔ yt 6=⊥, ∀t > 0 : yt = xt−1, y0 = c.

At the first instant, the signal y takes the initialization value c. Then, at any in-

stant, y takes the previous value of x.

Under-sampling. This operator has one data input and one boolean “control”

input, but it has a different meaning when one of the inputs holds ⊥. In this case,

the output is also ⊥; at any logical instant where both input signals are defined,

the output will be different from ⊥ if and only if the control input holds the value

true. Then, the Signal expression

y:= x when b

defines an elementary process such that:
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yt = xt if bt = true, else yt =⊥.

The derived statement y:= when b is equivalent to y:= b when b.

Deterministic merging. The unique output provided by this operator is defined

(i.e., it has a value different from ⊥) at any logical instant where at least one of its

two inputs is defined (it is not defined otherwise); a priority makes it deterministic.

Then, the Signal expression

z:= x default y

defines an elementary process such that:

zt = xt if xt 6=⊥, else zt = yt.

Parallel composition. Resynchronizations (that is to say, possible insertions of

⊥) have to take place when composing processes with common signals. However,

this is only a formal manipulation. If P and Q denote two processes, the composition

of P and Q defines a new process, denoted by

(| P | Q |)

where common names refer to common signals. Then, P and Q communicate through

their common signals.

Restriction. This operator allows one to consider as local signals a subset of the

signals defined in a given process. If x is a signal defined in a process P,

P where x

defines a new process where signals for external communication with other processes

are those of P, except x. Note that when different processes Pi,i∈1..k contain local

signals of the same name, these signals are implicitly renamed in the composition

of the Pi’s so as to distinguish the local signals in each Pi.

Derived operators are defined from the kernel of primitive operators, for example:

Clock extraction: h := ^x specifies the clock h of x, and can be defined as:

h := (x = x).
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Synchronization: x1 ^= x2 specifies that x1 and x2 have the same clock, and is

defined as: (| h := (^x1 = ^x2) |) where h.

Clock union: h:= x1 ^+ x2 specifies the clock union of x1 and x2, which is also

defined as: h:= ^x1 default ^x2.

Memory: y:= x cell b init y0 allows to memorize in y the latest value carried

by x when x is present or when b is true. It is defined as:

(| y := x default (y$1 init y0) | y ^= x ^+ (when b) |).

2.3 A simple example

The purpose of the following process is to define a signal v which counts in the

decreasing order the number of occurrences of the events at which a boolean signal

reset holds the value false; v is reinitialized (with a value v0) each time reset is

true.

(| zv := v $ 1 init 0

| vreset := v0 when reset

| zvdec := zv when (not reset)

| vdec := zvdec - 1

| v := vreset default vdec

| reach0 := true when (zv = 1)

|) where integer zv, vreset, zvdec, vdec;

Comments : v is defined with v0 each time reset is present and has the value

true (operator when); otherwise (operator default), it takes the value of zvdec-1,

zvdec being defined as the previous value of v (delay), zv, when this value is present

and moreover, when reset is present and has the value false (operator when). The

boolean signal reach0 is defined (with the value true) when the previous value of

v is equal to 1. Notice that v is decremented when reset has a value false.

Program abstraction allows one to declare a given process, together with its ways

of communication, stated explicitly. As an example, the above process may be

declared as

process RCOUNT =

{ integer v0; }
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( ? boolean reset;

! boolean reach0;

integer v; )

(| zv := v $ 1 init 0

| vreset := v0 when reset

| zvdec := zv when (not reset)

| vdec := zvdec - 1

| v := vreset default vdec

| reach0 := true when (zv = 1)

|)

where

integer zv, vreset, zvdec, vdec;

end;

It may be referred to as, for example, RCOUNT(10) (v0 is a formal parameter of

the process; “?” stands as a tag for the input signals and “!” for the output ones).

Here, there are one input signal, reset, and two output signals, reach0 and v.

2.4 Compiling Signal programs

What are the relevant questions when compiling Signal programs?

—Is the program deadlock free?

—Does it have an effective execution?

—If so, what scheduling may be statically calculated (for a multiprocessor imple-

mentation)?

To be able to answer these questions, two basic tools are used before execution on a

given architecture. The first one is the modeling of the synchronization relations in

the set of polynomials with coefficients in the finite field Z/3Z of integers modulo

3 (see Section 2.4.1). In the following, the set Z/3Z is also denoted by F3. The

second one is the directed graph of data dependencies.

2.4.1 The synchronization space. First, let us consider Signal processes re-

stricted to the single domain of boolean values. The expression

x3 := x1 when x2
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expresses the following assertions:

—if x1 is defined, and x2 is defined and true, then x3 is defined and x1 = x3,

—if x1 is not defined, or x2 is not defined, or x2 is defined and false, then x3 is

not defined.

It appears that useful informations are (if x is a signal):

—x is defined and false,

—x is defined and true,

—x is not defined.

They can be respectively encoded in the finite field Z/3Z of integers modulo 3 as

the following values: −1, 1 and 0. Then, if x is the encoding value associated with

the signal x, the presence of the signal x may be clearly represented by x2. This

representation of an indeterminate value of x (true or false) leads to an immediate

generalization to non boolean values: their presence is encoded as 1 and their ab-

sence as 0. In this way, x2 may be considered as the proper clock of the signal x.

This principle is used to represent synchronization relations expressed through

Signal programs. In the following, each signal and its encoding value are denoted

by the same variable. The coding of the elementary operators is deduced from their

definition. This coding is introduced below:

—The equations

y2 = x2
1 = . . . = x2

n

denoting the equality of the respective clocks of signals y, x1, . . . , xn are as-

sociated with y := f(x1, . . . , xn) (all the synchronous processes are encoded in

this way, however, “dynamical systems” in F3 must be used to encode boolean

delays - this is not detailed here [Benveniste and Le Guernic 1990]). Boolean

relations may be completely encoded in F3. For instance, x2 = −x1 corresponds

to x2 := not x1: if x1 = true, then x1 = 1 and −(x1) = −1, which is associated

with false.
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—The equation

x3 = x1(−x2 − x2
2)

is associated with x3 := x1 when x2 (x1, x2, x3 boolean signals); it may be

interpreted as follows: x3 holds the same value as x1 (x3 = x1) when x2 is true

(when −x2 − x2
2 = 1).

—The equation

x2
3 = x2

1(−x2 − x2
2)

is associated with x3 := x1 when x2 when x1, x3 are non-boolean signals.

—The equation

x3 = x1 + (1 − x2
1)x2

is associated with x3 := x1 default x2 (x1, x2, x3 boolean signals); it is in-

terpreted as follows: x3 has a value when x1 is defined, i.e., when x2
1 = 1

(then x3 holds the same value as x1: x3 = x2
1x1 = x1), or when x2 is defined

but not x1, i.e., when (1 − x2
1)x

2
2 = 1 (then x3 holds the same value as x2:

x3 = (1 − x2
1)x

2
2x2 = (1 − x2

1)x2).

—The equation

x2
3 = x2

1 + (1 − x2
1)x

2
2

is associated with x3 := x1 default x2 when x1, x2, x3 are non-boolean signals.

Then the composition of Signal processes collects the clock expressions of every

composing process.

2.4.2 The clock calculus. The algebraic coding of the synchronization relations

has a double function. First, it is the way to detect synchronization errors. Consider

for example the following program (which is that of Section 2.1):

(| c := a>0 | x := a when c | y := x+a |)
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The meaning of this program is “add a to (a when a > 0)”. Its algebraic coding

is

c2 = a2

x2 = a2(−c− c2)

y2 = x2 = a2

which results in c2 = a2 = y2 = x2 = a2(−c− c2) and by substitution

c2 = c2(−c− c2) and then c = 1 or c = 0.

This means: c must be either present and true or absent. But c is the result of

the evaluation of the non boolean signal a. The program induces some constraints

on a (or c). Either it can be proved that the environment in which the program will

be executed satisfies these constraints and the program is valid, or the environment

does not and then the program is rejected.

The other function of this coding is to organize the control of the program. An

order relation may be defined on the set of clocks: a clock h2 is said to be greater

than a clock k2, which is denoted by h2 ≥ k2, if the set of instants of k is included

in the set of instants of h (k is an under-sampling of h). The set of clocks with this

relation is a lattice. The purpose of the clock calculus is to synthesize the upper

bound of the lattice, which is called the master clock, and to define each clock by a

calculus expression, i.e., an under-sampling of the master clock according to values

of boolean signals. However, for a given Signal process, the master clock may not

be the clock of a signal of the process. In this case, several maxima (local master

clocks) will be found.

For some processes, the partial order induced by the inclusion of instants, re-

stricted to the under-samplings by a free boolean condition (input boolean signal

or boolean expression on non-boolean signals), can be a tree, whose root is the

most frequent clock. Such processes, also referred to as endochronous1, can be

executed in an autonomous way (master mode). Otherwise, when there are several

1A more formal characterization of endochrony can be found in [Le Guernic et al. 2003].
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Ck_iCk_1

T_i

Ck

Fig. 1. Clock hierarchy of an endochronous program.

local master clocks in a process, this process needs extra information from its envi-

ronment in order to be executed in a deterministic way. An endochronous process

is deterministic [Le Guernic et al. 2003]. Fig. 1 illustrates the clock hierarchy of

an endochronous program. It is described by a unique tree where the root node

represents the master clock (Ck). We can notice that from this global tree, one can

derive several “endochronous” sub-trees (for example T i).

Clock expressions can be rewritten as boolean expressions of a Signal program.

The operator default represents the sum of clocks (upper bound) and the operator

when represents the product (lower bound). Then, any clock expression may be

recursively reduced to a sum of monomials, where each monomial is a product of

under-samplings (otherwise, the clock is a root).

2.4.3 An example. Consider again the process RCOUNT of Section 2.3. The clock

calculus finds the following clocks:

reset2

vreset2 = −reset− reset2

v2 = zv2 = α2 = (−reset− reset2) + (reset− reset2)v2

vdec2 = zvdec2 = v2(reset− reset2)

reach02 = −α − v2
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where α is the coding of zv = 1.

The clock calculus does not synthesize a master clock for this process. In fact,

it is not endochronous (and it is non-deterministic): when reset is false, then

zvdec is defined if zv is defined, i.e., if v is defined; but v is defined (when reset

is false) if vdec is defined, i.e., if zvdec is defined, and then, when reset is false,

an occurrence of v may occur, but does not necessarily occur.

The hierarchy of clocks is represented by the following Signal process, which

defines several trees (whose roots are ck_1, ck_2 and ck_3):

(| (| ck_1 ^= reset

| (| ck_1_1 := true when reset

| ck_1_1 ^= vreset

| ck_1_2 := true when (not reset)

|)

|)

| (| ck_2 := ck_1_2 when ck_3

| ck_2 ^= vdec ^= zvdec

|)

| (| ck_3 := ck_1_1 default ck_2

| ck_3 ^= v ^= zv}

| (| ck_3_1 := true when(zv=1)

| ck_3_1 ^= reach0

|)

|)

|)

The hierarchy is syntactically represented here by the composition embeddings.

The variables ck i represent names of the clocks considered as signals (the numbers

i are given by the compiler).

Now, we consider the following process, where RCOUNT is used in some context
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process USE_RCOUNT =

{ integer v0; }

( ? boolean h;

! boolean reach0;

integer v; )

(| h ^= v

| reset := (^reach0 when (^h)) default (not (^h))

| RCOUNT (v0)

|)

where

event reset;

end

An external clock h defines the instants at which v has a value. The reset

signal is also synchronous with h and it has the value true exactly when reach0 is

present. There is a master clock (h2 = v2 = reset2) and a tree may be built by

the compiler. Therefore, the program becomes endochronous.

2.4.4 The graph of conditional dependencies. The second tool necessary to im-

plement a Signal program on a given architecture is the graph of data depen-

dencies. Then, according to criteria to be developed, it will be possible to define

subgraphs that may be distributed on different processors. However, a classical

data-flow graph would not really represent the data dependencies of a Signal pro-

gram. Since the language handles signals whose clocks may be different, the de-

pendencies are not constant. For that reason, the graph has to express conditional

dependencies, where the conditions are nothing but the clocks at which depen-

dencies are effective. Moreover, in addition to dependencies between signals, the

following relation has to be considered: for any signal x, the values of x cannot be

known before its clock; in other words, x depends on x2. This relation is assumed

implicitly below.

The Graph of Conditional Dependencies (GCD) calculated by the Signal com-

piler for a given program is a labeled directed graph where
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—the vertices are the signals, plus clock variables,

—the arcs represent dependence relations,

—the labels are polynomials on F3 which represent the clocks at which the relations

are valid.

The following describes the dependencies associated with elementary processes.

The notation c2 : x1 → x2 means that x2 depends on x1 exactly when c2 = 1.

Then, we consider only processes defining non-boolean signals:

y := f(x1, . . . , xn) y2 : x1 → y, . . . , y2 : xn → y

y := x when b y2 : x → y, y2 : b → y2

z := x default y x2 : x → z, y2 − x2y2 : y → z

Notice that the delay does not produce data dependencies (nevertheless, remember

that any signal is preceded by its clock).

The graph, together with the clock calculus, is used to detect incorrect depen-

dencies. Such a bad dependency will appear as a cycle in the graph. However,

since dependencies are labeled by clocks, some cycles may not occur at any time.

An effective cycle is such that the product of the labels of its arcs is not null. This

may be compared with the cycle sum test of [Wadge 1979], to detect deadlock on

the dependence graph of a data-flow program.

All the above properties checked by the Signal compiler during the clock calculus

are mainly static. For more information on issues related to the clock calculus, the

reader may refer to [Amagbegnon et al. 1994] and [Amagbegnon et al. 1995], which

discuss in depth the capabilities of the compiler to address typical Signal programs.

Dynamic properties such as reachability or liveness cannot be addressed by the

compiler. For that, the tool Sigali, which implements a symbolic model checking

technique can be used [Marchand et al. 2000]. Basically, a Signal program denotes

an automaton in which states are described by the so-called “state variables” that

are defined by the delay operator. At each logical instant, the current state of
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a program is given by the current values of its state variables. The technique

adopted in Sigali consists in manipulating the system of equations resulting from

the modeling of Signal programs in F3 instead of the sets of its states. This

avoids the enumeration of the state space, which can potentially explode. So, each

set of states is uniquely characterized by a predicate and operations on sets can be

equivalently performed on the associated predicates. Experiments show that the

symbolic model-checking technique adopted by Sigali enables to check properties

on automata with several millions of states within a reasonable delay. More details

on Sigali can be found in [Marchand et al. 2000]. Finally, some case studies using

Sigali for verification can be found in [Benveniste et al. 2002] and [Gamatié and

Gautier 2003a].

2.5 Temporal analysis of Signal programs

A technique has been defined in order to address timing issues of Signal programs

on different implementation platforms [Kountouris and Le Guernic 1996]. Basically,

it consists of formal transformations of a program into another Signal program

that corresponds to a so-called temporal interpretation of the initial one. The new

program O(P) serves as an observer of the initial program P in which we only specify

the properties we want to check. In particular, we are interested in temporal prop-

erties. As shown in Figure 2, the observer receives from the observed program the

signals required for analysis and indicates whether or not the considered properties

have been satisfied (this can be expressed, e.g., through boolean output signals like

in Lustre programs [Halbwachs et al. 1993]). The use of observers for verification

is very practical because they can be easily described in the same formalism as the

observed program. Thus, there is no need to combine different formalisms as in

other analysis techniques such as some model-checking techniques, which associate

temporal logics with automata [Daws and Yovine 1995]. In Section 6, we present

in a detailed way how the temporal interpretation O(P) of a program P is defined

and used for temporal evaluation.

The Polychrony environment [ESPRESSO-IRISA. ] associated with the Sig-

nal language offers several functionalities including all the facilities mentioned in
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O(P)

P

Fig. 2. Composition of a program P together with its observer O(P).

the above sections.

3. AVIONIC ARCHITECTURES

Traditional architectures in avionic systems are called federated [Airlines Electronic

Engineering Committee 1997a] [Rushby 1999]. Functions with different criticality

levels are hosted on different fault-tolerant computers. Fig. 3 illustrates such an

architecture where n functions are considered. A great advantage of such archi-

tectures is fault containment. However, this potentially leads to massive usage of

computing resources since each function may require its dedicated computer. Con-

sequently, maintenance costs can increase rapidly.

...

function_1 function_n

computer system ncomputer system 1

Fig. 3. Federated architectures: each avionics function has its own fault-tolerant computers.

Integrated Modular Avionics (IMA). The recent IMA architectures propose

a new way to deal with major obstacles inherent to federated architectures [Airlines

Electronic Engineering Committee 1997a]. In IMA, several functions with possibly

different criticality, are allowed to share the same computer resources (see Fig. 4).
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They are guaranteed a safe allocation of shared resources so that no fault propaga-

tion occurs from one component to another component. This is achieved through

a partitioning of resources with respect to available time and memory capacities.

...

computer system k (k < n)computer system 1

Partitioning

function_1

function_2
function_3

function_n−1

function_n

Fig. 4. Integrated Modular Avionics: different functions can share a fault-tolerant computer.

A partition is a logical allocation unit resulting from a functional decomposition

of the system. IMA platforms consist of modules grouped in cabinets throughout

the aircraft. A module can contain several partitions that possibly belong to func-

tions of different criticality levels. Mechanisms are provided in order to prevent a

partition from having “abnormal” access to the memory area of another partition.

A processor is allocated to each partition for a fixed time window within a major

time frame maintained by the module-level OS. A partition cannot be distributed

over multiple processors either in the same module or in different modules. Finally,

partitions communicate asynchronously via logical ports and channels. Message

exchanges rely on two transfer modes: sampling mode and queuing mode. In the

former, no message queue is allowed. A message remains in the source port until

it is transmitted via the channel or it is overwritten by a new occurrence of the

message. A received message remains in the destination port until it is overwritten.

A refresh period attribute is associated with each sampling port. When reading a

port, a validity parameter indicates whether the age of the read message is consis-

tent with the required refresh period attribute of the port. In the queuing mode,
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ports are allowed to store messages from a source partition in queues until they

are received by the destination partition. The queuing discipline for messages is

First-In First-Out (FIFO).

processor_2processor_1

semaphore

buffer

����

�
�
�

�
�
�

��
��
��

��
��
��

Process_1

Process_1

Process_2

ports

channel

Process_1

Process_2

Process_3

Partition_3

Partition_2

Partition_1

blackboard

Fig. 5. An example of application partitioning.

Partitions are composed of processes that represent the executive units2. Pro-

cesses run concurrently and execute functions associated with the partition in which

they are contained. Each process is uniquely characterized by information (like its

period, priority, or deadline time) useful to the partition-level OS which is re-

sponsible for the correct execution of processes within a partition. The scheduling

policy for processes is priority preemptive. Communications between processes are

achieved by three basic mechanisms. The bounded buffer allows to send and re-

ceive messages following a FIFO policy. The event permits the application to notify

processes of the occurrence of a condition for which they may be waiting. The black-

board is used to display and read messages: no message queues are allowed, and any

message written on a blackboard remains there until the message is either cleared

or overwritten by a new instance of the message. Synchronizations are achieved

2An IMA partition/process is akin a UNIX process/task.
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using a semaphore. Fig. 5 illustrates an example of IMA partitioning.
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...

Specific
System
Functions

OS

Hardware

Application_1 Application_n
Application 

APEX
Interface

Software

Core
Software

Fig. 6. The APEX interface within the core module Software.

Several standards for software and hardware have been defined for IMA. Here,

we particularly concentrate on the APEX-ARINC 653 standard [Airlines Electronic

Engineering Committee 1997b], which proposes an OS interface for IMA applica-

tions, called Avionics Application Software Standard Interface (see Fig. 6). It

includes services for communication between partitions on the one hand and be-

tween processes on the other hand, synchronization services for processes, partition

and process management services, and time and error management services.

4. MODELING OF ARINC CONCEPTS IN SIGNAL

The polychronous design of avionic applications relies on a few basic blocks [Gamatié

and Gautier 2003b], which allow us to model partitions:

(1) APEX-ARINC 653 services (they describe communication and synchronization,

partition, process and time management...);

(2) an RTOS model (it is partially described using complementary services provid-

ing functionalities that are not provided via APEX-ARINC 653 services, such

as process scheduling);

(3) executive entities (they mainly consist of generic process models).
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Fig. 7. Basic building blocks for partition modeling.

These building blocks are summarized in the Uml diagram illustrated in Fig. 7.

In the following, we show for each block, the way its corresponding Signal model

is obtained.

4.1 APEX services

The modeling approach adopted here is illustrated by considering a typical APEX

service: the read blackboard service. It enables messages to be displayed and read

in a blackboard. Input parameters are the blackboard identifier and a time-out du-

ration (that limits the waiting time on a request, when the blackboard is empty).

Output parameters are a message (defined by its address and size) and a return

code (for the diagnostics of the service request). A typical informal specification of

the service [Airlines Electronic Engineering Committee 1997b] is given in Fig. 8.

In the following, the modeling of the read blackboard service is presented through

different steps. From one step to another, we progressively detail the service de-

scription in Signal (here, we only discuss two steps).

A first Signal description of read blackboard. Fig. 9 shows an abstract for-

mal specification corresponding to the service. This specification mainly expresses
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If inputs are invalid (that means the blackboard identifier is

unknown or the time-out value is ‘‘out of range’’) Then

Return INVALID_PARAM (as return code);

Else If a message is currently displayed on the specified

blackboard Then

send this message and return NO_ERROR;

Else If the time-out value is zero Then

Return NOT_AVAILABLE;

Else If preemption is disabled or the current process is the error

handler Then

Return INVALID_MODE;

Else

set the process state to waiting;

If the time-out value is not infinite Then

initiate a time counter with duration time-out;

EndIf;

ask for process scheduling (the process is blocked and will

return to ‘‘ready’’ state by a display service request on

that blackboard from another process or time-out

expiration);

If expiration of time-out Then

Return TIMED_OUT;

Else

the output message is the latest available message

of the blackboard;

Return NO_ERROR;

EndIf;

EndIf

Fig. 8. An informal specification of the read blackboard service.

interface properties. For example, (s.2) specifies logical instants at which a re-

turn code is produced. The variable C_return_code is a local boolean signal that

carries the value true whenever a return code is received on a read request (in

other words, C_return_code represents the clock of the return code signal). In-

deed, on a read blackboard service request, a return code retrieval is not systematic.

For instance, when the blackboard is empty and the value of the input parameter
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timeout is not infinite (represented in [Airlines Electronic Engineering Committee

1997b] by a special constant INFINITE TIME VALUE ), the requesting process

is suspended. In this case, C return code carries the value false. The suspended

process must wait: either a message is displayed on the blackboard, or the expi-

ration of the active time counter initialized with timeout (hence, the return code

carries the value TIMED OUT ). For the moment, C_return_code appears in the

read blackboard description as a local signal. It will be defined during refinements

of thisread blackboardread blackboardread blackboardread blackboardread blackboard

abstract description. At this stage, we assume that there only exist signals such

that properties in which it is involved are satisfied. Property (s.1) states that

C_return_code and all input parameters are synchronous (i.e., whenever there is

read request, C_return_code indicates whether or not a return code should be

produced). Property (s.3) expresses the fact that messages are received on a read

request only when the return code value is NO ERROR.

Lines (d.1) and (d.2) give dependency relations between input and output

parameters. In Signal, the notation x --> y expresses a dependency relation be-

tween two signals x and y within a logical instant (y is also said to be preceded by x).

For instance, (d.2) states that message and length are preceded by timeout and

board_ID, at the logical instants where the return code carries the value NO_ERROR.

The level of detail provided by a description like the one given in Fig. 9 is expres-

sive enough to check, for instance, the conformance of a component model during

its integration in a system described in the same formalism. Here, the description

exhibits the interface properties of the read blackboard service. In particular, it

gives conditions that describe when a message is received by a process on a read

request. However, the description does not specify exactly how messages are ob-

tained.

The specifications given in [Airlines Electronic Engineering Committee 1997b]

are sometimes imprecise. As a result, this leads to ambiguities, which are not
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process READ_BLACKBOARD =

{ ProcessID_type process_ID; }

( ? Comm_ComponentID_type board_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code; )

(| (| { {board_ID, timeout} -->

return_code } when C_return_code (d.1)

| { {board_ID, timeout} --> {message, length} }

when (return_code = #NO_ERROR) (d.2)

|)

| (| board_ID ^= timeout ^= C_return_code (s.1)

| return_code ^= when C_return_code (s.2)

| message ^= length ^= when (return_code = #NO_ERROR) (s.3)

|)

|) where boolean C_return_code

Fig. 9. Abstract description of the read blackboard service .

easily perceptible. Here, two possible implementations are distinguished for the

read blackboard service. They mainly depend on the interpretation of message re-

trieval. Let us consider a process P1, which was previously blocked on a read request

in a blackboard, and now released on a display request by another process P2:

(1) some implementations assume that the message read by P1 (the suspended

process) is the same as the one just displayed on the blackboard P2;

(2) there are other implementations that display the message retrieved by P1 when

the execution of P1 gets resumed (as a matter of fact, a higher priority process

could be ready to execute when P1 gets released). So, P1 will not necessarily

read the message displayed by P2 since the message may have been overwritten

when its execution is resumed.

The level of detail of the model described in Fig. 9, although very abstract,
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allows to cover both interpretations of the read blackboard service. In practice, we

observe that these interpretations can be useful depending on the context.

—Implementations of type (1) may be interesting when all the messages displayed

on the blackboard are relevant to the process P1. Every message must be re-

trieved. However, even if using a blackboard for such message exchanges appears

cheaper than using a buffer (in terms of memory space required for message

queuing, and of blocked processes management), it would be more judicious to

consider a buffer for such communications since it prevents the loss of messages.

—On the other hand, implementations of type (2) find their utility when P1 does

not need to retrieve all displayed messages. For instance, P1 only needs to read

refreshed data of the same type. In that case, only latest occurrences of messages

are relevant.

The presence of ambiguities as illustrated above justifies a model refinement

design approach: abstract descriptions are progressively refined in order to de-

rive particular implementations. Here, the way messages are retrieved during the

read blackboard service call is not fixed (there are two possibilities). The Sig-

nal specification given in Fig. 9 captures such a situation.

In the next step, the more general model defined previously is refined by precising

more properties in the Signal specification. In particular, we make a choice on

how messages are retrieved: the second interpretation.

A more detailed Signal description of read blackboard. A more detailed

version of the service is now illustrated in Fig. 10. It is represented by a graphical

description of the service defined using the Polychrony graphical user interface.

In this figure, we did not report the interface properties specified at the previous

step. However, they are still considered. So, the model in Fig. 10 gives more

precisions on how the service model is defined. In other words, internal properties

can now be specified in addition to interface properties.

We consider a decomposition that allows us to separate concerns. Here, four
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main sub-parts are distinguished based on the service informal specification. they

are represented by inner boxes in the graphical description (see Fig. 10). The sub-

parts CHECK_BOARD_ID and CHECK_TIMEOUT verify the validity of input parameters

board_ID and timeout. If these inputs are valid, PERFORM_READ tries to read the

specified blackboard. Afterward, it has to send the latest message displayed on the

blackboard. The area and size of the message are specified by message and length.

PERFORM_READ also transmits all the necessary information to GET_RETURN_CODE,

which defines the final diagnostic message of the service request.

At this stage, we have specified global interface properties and identified the dif-

ferent sub-parts of the service model. Each sub-part is only characterized by its

interface. Its internal properties are not yet defined. We can specify some rela-

tions between the interface signals of the identified sub-parts. For instance, this

is what equations (s1), (s2), (s3), (s4) and (s5) express by synchronizing

some signals. In addition to these equations, we can also define the boolean sig-

nal C return code, which was only declared at the previous step. As a matter of

fact, we have now enough information to be able to determine its values. This is

described by the equation (s6). So, logical instants where C return code carries

the value true denote the presence of a return code.

In a similar way, we can specify the internal properties of each sub-part. Fi-

nally, a complete Signal specification of the service is obtained as illustrated in

[Gamatié and Gautier 2002]. The other APEX services are modeled following the

same approach as the read blackboard service. One major advantage of such an

approach is that we are able to specify complex programs without omitting any

behavioral aspect of a program. Furthermore, the different levels of specification

resulting from each step may be used for various purpose as discussed in the first

step.

The modeled APEX-ARINC 653 services can be used to describe process manage-

ment, communication and synchronization between processes, etc. The next section
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board_ID

timeout

message

length

present

board

CHECK_BOARD_ID{}

outofrange

available

CHECK_TIMEOUT{}

timeout

message

length

is_err_handler

empty

preemp_enabled

PERFORM_READ{}

return_code

GET_RETURN_CODE{}

(| board_ID ^= timeout ^= present ^= outofrange ^= available ^=

C_return_code (s1)

| board ^= empty ^= when present (s2)

| message ^= length ^= when (not empty) (s3)

| is_err_handler ^= when empty when available (s4)

| preemp_enabled ^= when (not is_err_handler) (s5)

| C_return_code := (when ((not present) or outofrange)) default

(when empty when (not available)) default

(when ((not preemp_enabled) default is_err_handler)) default

(when (not empty)) default

false (s6)

| return_code ^= when C_return_code (s7)

|)

Fig. 10. Refined description of the read blackboard service and clock relations between signals.

presents the modeling of the partition-level OS, which is in charge of controlling

the execution of processes within a partition.

4.2 Partition-level OS

The role of the partition level OS is to ensure the correct concurrent execution

of processes within the partition (each process must have exclusive control on the

processor). A sample model of the partition level OS is depicted in Fig. 11.
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Active_partition_ID

dt

Timedout

Active_process_ID

Partition−level OSinitialize

Fig. 11. Interface of the partition level OS model.

The notions taken into account for the modeling of the partition level OS are

mainly: process management (e.g. create, suspend a process), scheduling (includ-

ing the definition of process descriptors and a scheduler), time management (e.g.

update time counters), communications, and synchronizations between processes.

The APEX interface provides a major part of required services to achieve the no-

tions mentioned above. However, in order to have a complete description of the

partition level OS functionalities, we added additional services to our library. These

services allow us to describe process scheduling within a partition and they also al-

low to update time counters. Their description can be found in [Gamatié and

Gautier 2003b]. A case study using these services is presented in [Gamatié et al.

2004]. Here, we only present the generic interface of the partition level OS (cf. Fig.

11). We explain how it interacts with processes within a partition.

In Fig. 11, the input Active_partition_ID represents the identifier of the

running partition selected by the module-level OS, and it denotes an execution

order when it identifies the current partition (the activation of each partition de-

pends on this signal. It is produced by the module-level OS, which is in charge

of the management of partitions in a module). The presence of the input signal

initialize corresponds to the initialization phase of the partition. It comprises

the creation of all mechanisms and processes contained in the partition. Whenever

the partition executes, the PARTITION_LEVEL_OS selects an active process within

the partition. The process is identified by the value carried by the output signal

Active_process_ID, which is sent to each process. The signal dt denotes dura-

tion information corresponding to process execution (more precisely, the duration
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of the current “block” of actions executed by an active process, see Section 4.3

for more details). It is used to update time counter values. The signal timedout

produced by the partition-level OS carries information about the current status of

the time counters used within the partition. For instance, a time counter is used for

a wait when a process gets interrupted on a service request with time-out. As the

partition-level OS is responsible for the management of time counters, it notifies

each interrupted process of the partition with the expiration of its associated time

counter. This is reflected by the signal timedout.

....

....

.....

....

Inputs

Outputs

Active_process_ID

timedout dt

CONTROL

COMPUTE

Block

Block

Block

Block

Fig. 12. ARINC process model.

4.3 IMA processes

The definition of an IMA process model basically takes into account its computation

and control parts. This is depicted in Fig. 12. Two sub-components are clearly

distinguished within the model: CONTROL and COMPUTE. Any process is seen

as a reactive component, which reacts whenever an execution order (denoted by

the input Active_process_ID) is received. The input timedout notifies processes

of time-out expiration, while the output End_Processing is emitted by the pro-

cess after completion. In addition, there are other inputs (respectively outputs)

needed for (respectively produced by) the process computations. The CONTROL

and COMPUTE sub-components cooperate to achieve the correct execution of the

process model.

The CONTROL sub-component specifies the control part of the process. Basi-

cally, it is a transition system that indicates which statements should be executed
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when the process model reacts. It can be encoded easily by an automaton in Sig-

nal. Whenever the input Active_process_ID (of numeric type) identifies the IMA

process, this process “executes”. Depending on the current state of the transition

system representing the execution flow of the process, a block of actions in the

COMPUTE sub-component is selected to be executed instantaneously (this is rep-

resented by the arrow from CONTROL to COMPUTE in the figure).

The COMPUTE sub-component describes the actions computed by the process.

It is composed of blocks of actions. They represent elementary pieces of code to be

executed without interruption. The statements associated with a block are assumed

to complete within a bounded amount of time. In the model, a block is executed

instantaneously. Therefore, one must take care of what kinds of statements can be

put together in a block. Two sorts of statements are distinguished. Those which

may cause an interruption of the running process (e.g. a read blackboard request)

are called system calls (in reference to the fact that they involve the partition level

OS). The other statements are those that never interrupt a running process, typi-

cally data computation functions. They are referred to as functions.

The process model proposed here is very simple. However, for a correct execution,

we suggest that at most one system call can be associated with a block, and no

other statement should follow this system call within the same block. As a matter

of fact, since a block is executed instantaneously, what would happen if the system

call interrupts the running process? Typically it is not required to re-execute the

whole block when the process gets resumed. Here, all other statements within the

block would be executed in spite of the interrupt, and this would not be correct.

On the other hand, we note that the suggested restriction can be avoided by using

appropriate control mechanisms of Signal. Typically, a boolean state variable

could be introduced within each block. Then, the execution of statements would

be under-sampled by values of this variable. This solution potentially increases the

number of state variables in a program. It is therefore expensive. One can imagine

further possibilities but for the sake of simplicity, we rather advocate to avoid the
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combination of system calls and other statements in the same block.

rtcsa:gamatie.

4.4 Partitions

Fig. 13. An example of partition model composed of three processes.

Fig. 13 roughly shows a global view of a partition composed of three processes.

In this model, the component GLOBAL_OBJECTS appears for structuring. In particu-

lar, communication and synchronization mechanisms used by processes (e.g. buff,

sema) are created there.

The Uml sequence diagram3 depicted in Fig. 14 illustrates how the partition-

level OS interacts with a process during the execution of the partition. After the

initialization phase, the partition gets activated (i.e. when receiving Active parti-

tion ID). The partition-level OS selects an active process within the partition.

Then, the CONTROL subpart of each process checks whether or not the con-

cerned process can execute. In the diagram, this is denoted by the optional action

(represented by a box labeled opt). When a process is designated by the OS, this

3Uml Specification version 2.0: Superstructure – Object Management Group (www.omg.org).
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action is performed: the process executes a block from its COMPUTE subpart, and

the duration corresponding to the executed block is returned to the partition-level

OS in order to update time counters. The execution of the model of the parti-

tion follows this basic pattern until the module-level OS selects a new partition to

execute.

sd execution

Active_partition_ID

Active_process_ID, timedout

active_block

dt

Active_partition_ID

Active_process_ID, timedout

active_block

dt

initialize

opt

opt

:Partition−level OS :CONTROL :COMPUTE

Fig. 14. A sketch of the model execution.

5. DESIGNING APPLICATIONS USING ARINC CONCEPTS MODELS

We now present an approach where the ARINC concepts previously modeled are

used to design distributed applications. The approach consists of a set of transfor-

mations that, starting from an initial description P (a Signal program), progres-

sively define less abstract Signal programs in the following way: at each step, a

new description Q is obtained through the “instantiation” of intermediate variables

by adding equations to P. These transformations modify non functional properties

of P (e.g. temporal properties by introducing delays during the execution or by

relaxing some synchronization relations), but its functional properties are strictly

preserved.
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5.1 Preliminary notions

The notions presented below have been introduced during the European project

Sacres [Gautier and Le Guernic 1999] whose goal was to define ways for generating

distributed code from synchronous specifications (particularly Signal programs).

Further technical details on this topic can be found in [Benveniste 1998].

In the following, an application is represented by a Signal program

P = P1 | P2 | ... | Pn

where each sub-program Pi can be itself recursively composed of other sub-programs

(i.e., Pi = Pi1 | Pi2 | ... | Pim). The following hypotheses are assumed:

(1) considered programs P are endochronous (see Section 2.4.2), hence deterministic.

(2) they do not contain any definition leading to cycles;

(3) a set of processors q = {q1, q2, ..., qm}; and

(4) a function locate : {Pi} −→ P(q), which associates with each subpart of an

application P = P1 | P2 | ... | Pn a non empty set of processors (the allocation

can be done either manually or automatically).

First transformation. Let us consider a Signal program P = P1 | P2, as

illustrated in Fig. 15. Each sub-program Pi (represented by a circle) is itself

composed of four sub-programs Pi1, Pi2, Pi3 and Pi4. The program P is distributed

on two processors q1 and q2 as follows:

∀i ∈ {1, 2} ∀k ∈ {1, 2}, locate(Pik) = {q1}, and

∀i ∈ {1, 2} ∀k ∈ {3, 4}, locate(Pik) = {q2}

Hence, P can be rewritten into P = Q1 | Q2, where Q1 = P11 | P12 | P21 | P22 and

Q2 = P13 | P14 | P23 | P24:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, November 2005.



36 · A. Gamatié, et al.

P = P1 | P2

= (P11 | P12 | P13 | P14) | (P21 | P22 | P23 | P24)

= (P11 | P12) | (P13 | P14) | (P21 | P22) | (P23 | P24)

= (P11 | P12) | (P21 | P22) | (P13 | P14) | (P23 | P24) (commutativity of |)

= (P11 | P12 | P21 | P22) | (P13 | P14 | P23 | P24)

= Q1 | Q2

Remark 5.1. The above transformation remains valid even if locate(Pik) is not a

singleton. In that case, Pik is split into new sub-programs which are considered at

the same level as Pjl’s where locate(Pjl) is a singleton. For instance, let us consider

the program P , it can be rewritten as:

P = P11 13 | P12 | P14 | P21 | P22 | P23 | P24

where locate(P11 13) = {q1, q2}. Then it follows that

P = P11 | P13 | P12 | P14 | P21 | P22 | P23 | P24 (P11 13 is split)

= P11 | P12 | P13 | P14 | P21 | P22 | P23 | P24 (commutativity of |)

= P1 | P2

Finally, one can easily derive Q1 and Q2 from P .

The sub-programs Q1 and Q2 resulting from the partitioning of P are called

s-tasks [Gautier and Le Guernic 1999]. This transformation yields a new form of

the program P that reflects a multi-processor architecture. It also preserves the

semantics of the transformed program (since it simply consists of program rewrite).

Remark 5.2. A critical question in the above transformation is how hidden sig-

nals are handled. The obvious concern is name capture. For instance, let us consider

the example from Fig. 15, if the channel between P11 and P13 was hidden, and

P21 has a signal of the same name, there could be a conflict when P11 and P21 are

in the same process Q1. In fact, this situation can never happen here since local

signals of the same name, from different processes, are implicitly renamed in the
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P11

P23

P24

P22
P12

P14

P13

P2P1

P21

Q1 ≡ s-task1

P

Q2 ≡ s-task2

Fig. 15. Decomposition of a Signal process into two s-tasks Q1 and Q2.

composition of such processes (see Section 2.2).

Second transformation. We want to refine the level of granularity resulting from

the above transformation. For that, let us consider descriptions at processor level

(in other words, s-tasks). We are now interested in how to decompose s-tasks into

fine grain entities. An s-task can be seen as a set of nodes (e.g. P11, P12, P21 and P22

in Q1). In order to have an optimized execution at the s-task level, nodes are gath-

ered in such a way that they can be executed atomically. By atomic execution, we

mean nodes execution completes in its entirely without interruption. So, we distin-

guish two possible ways to define such subsets of nodes, also referred to as clusters

: either they are composed of a single Signal primitive construct, or they contain

more than one primitive construct. The former yields a finer granularity than the

latter. However, from the execution point of view, the latter is more efficient since

more actions can be achieved at a same time (i.e. atomically).

The definition of atomic nodes uses the following criterion: all the expressions

present in such a node depend on the same set of inputs. This relies on a sensitivity

analysis of programs. We say that a causality path exists between a node N1 (resp.

an input i) and a node N2 if there is at least one situation where the execution of

N2 depends on the execution of N1 (resp. on the occurrence of i). In that case, all

the possible intermediate nodes are also executed.

Definition 5.3. Two nodes N1 and N2 are sensitively equivalent iff for each input

i: there is a causality path from i to N1 ⇔ there is a causality path from i to N2.
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P11

P22

P12

P21

Q1 ≡ s-task1

L1
L2

Fig. 16. Decomposition of an s-task into two clusters L1 and L2.

Sensitively equivalent nodes belong to the same cluster. Inputs always precede

outputs within a cluster. If a transformed program is endochronous, the resulting

clusters are also endochronous. As a matter of fact, the clock hierarchy associated

with each cluster is an endochronous sub-tree of the global clock tree character-

izing the program. Hence, this ensures a deterministic execution of each cluster.

Fig. 16 shows a decomposition of the s-task Q1 into two clusters L1 and L2. The

input of the sub-program P11 (bold-faced arrow) is originally an input of P . The

other arrows represent communications between s-tasks (These message exchanges

are local to P ). We can notice that after this second transformation, the semantic

equivalence of the initial program and the resulting one is strictly preserved.

The two transformations presented above describe a partitioning of Signal pro-

grams following a multi-task multi-processor architecture. The instantiation of such

a description in the IMA model consists in using the ARINC component models

we have described in Section 4 (APEX services, processes, partitions).

5.2 Instantiation of Signal programs in the IMA model

We first present this instantiation at processor level then the approach could be gen-

eralized to the multi-processor level. From the above transformations, a processor

can be considered as a graph where nodes are represented by clusters. Therefore,

the partitioning of a given Signal program following the IMA architecture model

is obtained through the following steps :

—Step 0: Distribute the program on the available processors. Here, we

assume a given distribution function. The program is transformed into s-tasks.
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p − OS (partition-level OS)

conti (“control“ part of a process pi)

bij (block)

p ::= p − OS | p1 | ... | pn (partition)

pi ::= conti | compi (process)

compi ::= bi1 | ... | bimi
(“compute” part of a process pi)

Fig. 17. Modeling rules of IMA partitions.

In practice, this step is often an expert matter. However, there exist tools that

can help to achieve this kind of task (e.g SynDEx [Grandpierre and Sorel 2003]).

—Step 1: For each processor, transform the associated s-task into a

graph of clusters. This task is automatically performed by the Signal com-

piler.

—Step 2: For each processor, associate clusters with partitions/processes.

The first decision about the graph of clusters resulting from the previous step

consists in choosing a partitioning of clusters into IMA partitions/processes. In

other words, we have to identify clusters that can be executed within the same

partition/process. In our simple example, we decide to model the graph associ-

ated with Q1 (cf. Fig. 16) by one partition. Once partitions are chosen, the

graph corresponding to each of them is decomposed into sub-graphs. These con-

tain the clusters that should be executed by the same process. In the example,

clusters associated with the “partition Q1” form the set of instruction blocks of

a single process. The decomposition of the graph of clusters into partitions and

processes relies on the following criterion: clusters that strongly depend on each

other are first associated with the same process; then, the resulting processes (i.e.

sub-sets of clusters), which strongly depend on each other are also put together

in the same partition. This repartition has the advantage to greatly reduce inter-

process communication costs. In the next step, the program can be effectively

instantiated using our library of models (see Section 4).
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—Step 3: Instantiate the program in the IMA model. Two phases are con-

sidered: first, we instantiate processes then partitions. An overview of the basic

components used is given in Fig. 17. The symbol “|” denotes the synchronous

composition. The following transformations are defined:

(1) Description of the process associated with a set of clusters:

—The definition of the CONTROL part of the process relies on dependencies

between clusters. Clusters are executed sequentially with respect to these

dependencies.

—Each cluster is “embedded” in a block within the COMPUTE part of the

process.

—The internal communications between the clusters of a sub-graph asso-

ciated with a process are modeled using local state variables (i.e. those

defined by the delay construct). These variables enable to memorize ex-

changed data. On the other hand, communications between sub-graphs

of clusters from different processes are modeled with APEX services. For

each entry point (resp. exit point) of a sub-graph, a block containing

a suitable communication or synchronization service call is added in the

COMPUTE part of the associated process model. When the process be-

comes active, this block is executed just before (resp. after) the block that

contains the cluster concerned by the entry point (resp. the exit point).

The choice of the suitable service to call here depends on the desired type

of communication. The program by itself is not enough to decide which

service suits better. So, an expert knowledge is required. If the type of

communication needs to store messages in a bounded queue, services asso-

ciated with a buffer will be preferred to those related to a blackboard. On

the contrary, if the communication only requires one memory-place, the

blackboard will be more appropriate. Events are preferred to the two pre-

vious communication mechanisms when the exchanged data is specifically

used to notify a process about certain condition. The services associated

with semaphores are used for synchronization.

(2) Description of the partition associated with a set of clusters:
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—The component corresponding to the partition-level OS (containing among

other things the scheduler, which manages process execution within the

partition) is added to the processes defined at the previous phase.

—The communication and synchronization mechanisms used by the APEX

services added in the previous phase are created (e.g. for a send buffer ser-

vice call, a buffer should be created in which the messages can be stocked).

This creation is done for example within the GLOBAL OBJECTS sub-part of

the partition, as illustrated in Fig. 13.

Example. On the right, we outline a process

model resulting from the transformation of Q1.

There are six blocks where two contains clusters

L1 and L2. The other blocks have been added for

communication: r, s and w respectively denote

a read request (receive buffer or read blackboard),

an event notification (set event), and an event

notification waiting (wait event). Of course, the

way blocks are added is determined by the struc-

ture of Q1. But, the choice of the communica-

tion mechanisms (e.g. buffer or blackboard for the

block r) contained in these blocks requires expert

decisions. For instance, the process is supposed

here to wait for some event notification between

L1 and L2. So, we use w instead of r, etc. The

automaton described in the control part gives the

execution order of the blocks with respect to the

precedence constraints of the cluster graph. The

corresponding partition is obtained by considering

the phase 2 of Step 3, in the current section.

L1

L2

s

w

s

r
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On each processor with multiple partitions, a model of a partition scheduler is

required. Partition management is based on a time sharing strategy. Therefore, we

have to compose a component (corresponding to the module-level OS - see Section

3) with partition models. A model of such a component is similar to the partition-

level OS in that its definition relies on the use of APEX services, except that the

scheduling policy differs.

To conclude this section, we briefly mention another study in which our ARINC

concepts models have been used [Talpin et al. 2003]. We defined a technique in order

to import resource constrained, multi-threaded, Real-Time Java programs, together

with their runtime system API, into Polychrony. We put this modeling tech-

nique to work by considering a formal, refinement-based, design methodology that

allows for a correct by construction remapping of the initial threading architecture

of a given Java program on either a single-threaded target or a distributed architec-

ture. One advantage of the technique is the generation of stand-alone (JVM-less)

executables and remapping of threads onto a given distributed architecture or a

prescribed target real-time operating system. This allows for a complete separa-

tion of the virtual threading architecture of the system described in Java and its

actual real-time and resource constrained implementation.

In Section 2, we mention that a great advantage of Signal-based modeling is the

possibility to formally analyze descriptions. Both functional and temporal proper-

ties can be addressed using different techniques. For instance, the compiler allows

to check the absence of cyclic definitions in a program or the endochrony property

of this program. These properties are necessary if one needs to generate the code

associated with the program, e.g., for simulation. In [Gamatié and Gautier 2003a],

we show how the Sigali model-checker can be used to verify safety properties.

In the next section, we rather concentrate on timing issues. We expose a high-

level technique, which is entirely defined in Signal that allows to approximate the

execution time of modeled applications.
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6. A MODULAR APPROACH FOR TIMING ANALYSIS

Timing issues can be addressed using the performance evaluation technique imple-

mented in Polychrony [Kountouris 1998]. The temporal analysis of the SAT-

MAINT application presented in Section 6.2 is based on this technique. It relies on

the principle introduced in Section 2.5, which consists in using an observer program,

referred to as program interpretation in the sequel, to check properties of a given

program. Section 6.1 presents how these interpretations are defined for any Sig-

nal process. On the other hand, the timing analysis is considered on a lower level.

It enables to check the latency of programs so as to validate the synchrony assump-

tion. The main advantage is that we don’t need to wait for the implementation

phase for this validation.

6.1 General principle

An interpretation of a Signal process is another process that exposes a different

view of the initial one while preserving its control part. The temporal interpre-

tation allows to check how an implementation of a specified application behaves

over time. Let us consider a Signal process P , its temporal interpretation for an

implementation I is denoted by T (PI), where PI is the Signal process that models

an implementation I of P . Thus, if an application specified by P may have different

implementations I(1) to I(k), these implementations are modeled by PI(i),i∈[1,k],

and for each PI(i) a temporal interpretation T (PI(i)) can be derived. This way, a

comparative performance evaluation of the implementations can be performed and

their corresponding design space can be effectively explored before committing the

design to one particular implementation. Such an approach permits to concentrate

the design effort on a set of candidate implementations.

For a Signal process P , we have:

P = CP |DP

where CP and DP are respectively the control and data parts of P . Similarly for

an interpretation of P , we have:

T (P ) = CT (P )|DT (P )
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In particular, for the control part, we have:

CT (P ) = CP .

Ib

Ib

T(I)

H

ODB

ID

H

B

O

T(O)O

I

H
DT(P)

C C
P

PP

P
T

T(P)

D

Fig. 18. Temporal interpretation of a Signal process P.

The process of obtaining an interpretation T (P ) of a process P is graphically

depicted in Figure 18. The data part DP of the process P computes output values

OD from input values I. The computations are conditioned by activation events

H computed in the control part CP . To compute the activation conditions H , CP

uses boolean input signals Ib and intermediate boolean signals B computed by DP .

Finally, there are output events HO computed by CP . We can observe that the

control parts of P and its interpretation T (P ) are identical while the data computa-

tion parts differ. In T (P ), data computations are devoted to temporal information

whereas in P they strictly concern functional information.

Temporal interpretation of a simple process. As a general observation, a

Signal program is recursively composed of sub-processes, where elementary sub-

processes are primitive constructs, called atomic nodes. A transformation of such a

program substitutes each of its signals x with a new signal representing its times-

tamp (i.e. its availability dates) tsp x, automatically replacing atomic nodes with

their temporal model counter-part. The resulting time model is composed with the

original functional description of the application (using the standard synchronous

composition). Each signal x has the same clock as its associated date information

tsp x. The simulation of the resulting program reflects both the functional and

timing aspects of the original program. Obviously, a less strict temporal model

can be designed in order to perform faster simulation (or formal verification). It is
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sufficient to consider more abstract representations either of the program or of its

temporal model.

clkz

z

x

y

begini

donei

tsp z

tsp clkz

tsp x

tsp y

+ ∆+

Fig. 19. Node associated with z := x + y (left); and its temporal model (right).

The temporal interpretations of Signal primitive constructs are collected in a li-

brary of parameterized cost functions. For a program to be interpreted, the library

is extended with interpretations of external function calls and other separately

compiled processes, which appear in the program. To illustrate the technique, we

consider a simple Signal program. For more complex examples, the reader may

refer to [Kountouris 1998]. So, let us consider the following primitive construct: z

:= x + y. It is represented by the atomic node depicted by Figure 19, on the left

hand side. Besides the input values x and y, this node also requires a clock infor-

mation, denoted by the signal clk_z, which triggers the computation of the output

value z. The associated temporal model is represented by the node illustrated on

the right hand side. The Signal program corresponding to this temporal model,

called T Plus, is depicted by Figure 20. In this model, MAXn denotes a Signal pro-

cess that returns the maximum value of n inputs among those that are present

at a given instant (i.e., inputs are not constrained to be simultaneously present).

The notations type x and type y represent the types of x and y respectively. The

input signal tsp clk z is associated with the trigger clock clk z. Signals begin i

and done i have been added in order to express the end of execution of a given

node so that the following nodes could be executed. The presence of begin i in a

node means that the preceding ones (following the scheduling order chosen for node

execution), have already produced all their output timestamps. The presence of
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done i means that the current node has calculated all its output timestamps (i.e.,

done i becomes begin i+1). The timestamp of z, denoted by tsp z, is the sum of

the maximum timestamp of inputs and the delay of the addition operation, some

∆+. This quantity ∆+ depends on the desired implementation, on a specific plat-

form. It has to be provided in some way by the user, with respect to the considered

platform. In the current implementation in Polychrony, the value ∆+ is provided

by a function DELTA ADD which has the types of the operands as parameters and

which fetches the required value from some table. Following the same idea, each

primitive construct of Signal has been associated with its temporal interpretation.

As a result of the compositionality of Signal specifications, the same principle can

be applied at any level of granularity.

process T_Plus{ type_x, type_y; }

( ? tsp_type tsp_x, tsp_y, tsp_clk_z, begin_i;

! tsp_type tsp_z, done_i; )

(| tsp_z := MAX2( MAX3( tsp_x, tsp_y, tsp_clk_z),

begin_i when ^tsp_z) + DELTA_ADD{type_x, type_y}()

| done_i := (tsp_z default begin_i) cell ^done_i

|);

Fig. 20. A temporal interpretation of z := x + y in Signal.

In addition to the library of cost functions of primitive constructs, the implemen-

tation also requires platform-dependent information (e.g. the delay of the addition

of two integer numbers on a given processor). For instance, the sum of integer

numbers coded on 32 bits will take one cycle on a processor with a 32-bit adder

(this is the case of the Intel Pentium IV processor). On the other hand, the same

operation requires more than one cycle on a processor with only a 16-bit adder (like

the Intel 8086 processor). In the example exposed in Figure 20, this information is
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obtained via the DELTA_ADD call.

In the following, we are interested in determining an approximation of the exe-

cution time of a real world application specified in Signal.

6.2 Application to a real world case study

Let us consider an application, called SATMAINT, represented by a single partition

model as it has been shown in [Gamatié et al. 2004]. Fig. 21 shows a co-simulation

of this application together with its temporal interpretation T SATMAINT (the

prefix notation “T ” stands for temporal).

Analysis

vk

cost fonctions

Generic basic

platform-depend.

Informations

generator
Input

Date
generator

Ii
Oj

date(Oj)date(Ii)

[c1, ..., cq ]

SATMAINT

T SATMAINT

Fig. 21. Co-simulation of SATMAINT with its temporal interpretation.

At each simulation step, the timestamp of outputs tsp(Oj) depends on the times-

tamp of inputs tsp(Ii) and on the control configuration, represented by a “valuation”

of boolean signals vector [c1, . . . , cq] computed in the original program (represented

by B in Fig. 18). The boolean ci are mainly signals that are defined by numerical

expressions with comparison, for instance, c1 in the primitive construct c1:= x>5.

Typically, c1 may be used as control information in the program.

In fact, the control parts of SATMAINT and T SATMAINT are identical, only

data parts differ: in SATMAINT, the data part computes functional results while in

T SATMAINT, it yields timestamp informations. The vector [c1, . . . , cq] contains

intermediate boolean signals evaluated by the data part of SATMAINT that are
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needed by T SATMAINT to compute output information. Note that in a straight-

forward approach, it is possible to provide a set of vectors that covers all the possible

combinations for the control flow. A better way is to take into account the exist-

ing relationships between these booleans such as provided by the clock calculus of

Signal (this is expressed through the composition of the original program and its

temporal interpretation).

In practice, we mainly raise one difficulty about the implementation of the schema

illustrated in Figure 21. It is due to the scalability issue which can become prob-

lematic when compiling large application programs. For example, the program

resulting from the composition of the application model together with its temporal

interpretation - (| SATMAINT | T SATMAINT |) - can be huge and may not facil-

itate the compilation. This issue is widely addressed in [Amagbegnon et al. 1994]

and [Amagbegnon et al. 1995] where authors present several experiments on the

analysis of typical Signal application programs using the compiler. The results

are given in different tables that show the time and memory limits depending on

the size of each studied application. The solution we adopt here consists in using a

modular evaluation approach, which is exposed in the sequel.

The modularity of the Signal language allows to construct a program from other

programs by composition. Therefore, this principle also applies to the construction

of the temporal interpretation of the partition SATMAINT, which is quite large.

For that, we consider a splitting of the corresponding Signal model into subparts

with reasonable size (e.g. such a subpart could be an IMA process). This makes

them easier to address. For each subpart, we therefore define an associated tem-

poral interpretation. Afterwards, the resulting model can be composed with the

concerned subpart. The program obtained from this composition is abstracted in

order to take into account only information that is relevant for the considered ob-

servation (abstractions also contribute to reduce the size of a program). Finally, the

global model that consists of the composition of the application with its temporal

interpretation is obtained by composing abstracted subprograms.
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Let P ≡ P1 | ... | Pn denote the program corresponding to the application con-

sidered for temporal analysis. We want to define the program P’ ≡ (| P | T_P |)

that is used for the analysis, where T_P is the temporal model of P. The same pro-

gram can be also rewritten as: P’ ≡ P’1 | ... | P’n. Each P’i denotes the

composition of a subprogram Pi of P, with its associated temporal interpretation

T_Pi. The following steps are identified in order to carry out experiments:

(1) Partial definition of temporal interpretations : for each sub-program Pi,i∈{1,...,n}

of P, we define the corresponding temporal model T_Pi.

(2) Composition of each subpart of the application with its associated temporal

interpretation, then abstraction: this step defines the subprograms P’i (i ∈

{1, ..., n}), which constitute the simulation program P’ that we want to con-

struct. The abstraction aims to keep only relevant information of these sub-

programs for the co-simulation. It follows that P’i ≡ α(Pi | T_Pi), where α

denotes the abstraction (e.g. a program can be abstracted by considering only

its control part—boolean and synchronization signals—or by approximating the

value of numerical signals—for instance, by dealing with domains of intervals

instead of point-wise domains).

(3) Construction of the global model for simulation: this model results from the

composition of subprograms P’i, defined at the previous step, i.e.

P’ ≡ P’1 | ... | P’n.

On the other hand, we notice that the above method can be applied in a re-

cursive way. Still considering the above program P, if the size of subprograms Pi

(i ∈ {1, ..., n}) is important, we can also use the same method for each one in order

to define the corresponding P’i (i ∈ {1, ..., n}). The global simulation model then

results from the composition of P’is.

To apply the method to the partition SATMAINT, we first decomposed it into

subparts, represented by its processes (it contains eight processes). For instance,

its process identified as PROC 8 is composed of eight blocks. We begin by defining
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the interpretation of the COMPUTE subpart of this process:

T COMPUTE ≡ T_BLOCK_0 | ... | T_BLOCK_7.

In this composition, we suppose that the temporal model of each block is obtained

without necessarily having to consider its decomposition as is done for subprograms

of a larger size. The temporal interpretation of the CONTROL subpart of the

process is determined in a similar way. The composition of both temporal models

gives the model for PROC 8:

T_PROC_8 ≡ T_COMPUTE_8 | T_CONTROL_8.

We proceed in the same way for the other subparts of the partition. Then, we

compose the resulting temporal model with its associated program subpart. For

PROC 8, it follows:

(| PROC_8 | T_PROC_8 |).

This process can now be simplified by considering approximations (or abstrac-

tions). This facilitates the compilation of the global program. It is important to

consider approximations that do not affect the computed timing information by

increasing the set of possible behaviors of a program. In particular, a good approx-

imation must preserve the control part of a program. Given a Signal program P,

the compiler is able to generate such an approximation in which the only specified

information are clock relations and dependencies between the signals of P. Hence,

the resulting program could be considered for co-simulation with the temporal in-

terpretation of P.

On the other hand, we can consider approximations of the temporal interpreta-

tion of a program. Here also, the control part must be preserved. Only the data

part needs to be redefined in order to be reduced. For instance, let us consider

a subpart of the application that performs a complex operation, which requires a

constant duration δ on a target platform (by “complex”, we mean an operation

that requires several elementary operations, e.g. product of two matrices). The

temporal model of such a subpart can be defined in a simple way by adding the
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constant δ to the timestamps corresponding to inputs availability in order to com-

pute timestamps associated with outputs. This interpretation is simpler than the

one obtained by composing the temporal models of all intermediate operations that

are carried out by the considered subprogram. We can also mention other simplifi-

cations, which consist in considering worst case execution times (WCET) [Puschner

and Burns 2000] in the definition of the temporal interpretation of a sub-program.

Over the recent years, there have been several promising studies that address major

issues in WCET computation such as branch prediction [Bodin and Puaut 2005] or

caching [Puaut and Decotigny 2002]. Finally, instead of considering a single WCET

value for approximations, one may use a range of possible execution times. This

last possibility provides more accurate information since the order of execution of

statements reflected by the control part is taken into account.

Global observations. Modularity and abstraction play a central role for scal-

ability in our design approach. Basically, the description of a large application is

achieved by specifying first, either completely or partially (by using abstractions),

sub-parts of the application. After that, the resulting programs can be composed

in order to obtain new components. These components can be also composed and

so on, until the application description is complete. The construction of the global

simulation model of SATMAINT for temporal issues relies on the same principle as

the description of the application itself. A crucial issue about the design of safety

critical systems, such as avionics, is the correctness of these systems. In Poly-

chrony, the functional properties of a system can be checked using tools like the

compiler or the model checker Sigali. Here, we address temporal aspects of pro-

grams. For that, we used a technique consisting in co-simulating the program under

analysis with an associated observer (also referred to as temporal interpretation)

defined in Signal. The observer is another program which has the same control as

the observed one, but its data part reflects the temporal dimension of the analyzed

program. Using Signal for both the model of an application and its associated

temporal interpretation results in unified descriptions upon which available tools

and techniques remain applicable.
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7. RELATED WORK

Over the past decade, several approaches have been proposed for the design of

embedded real-time systems. We first mention typical ones from different families

of approaches that are related to our work. Then, we present a few studies dedicated

to avionic systems.

7.1 On the design of embedded real-time application in general

Taxys [Closse et al. 2001] has been proposed for the design and validation of real-

time embedded applications. It is partly based on the synchronous approach by

using the synchronous language Esterel with an associated compiler. The model

checker Kronos is used for timing and schedulability analysis. Taxys combines

the synchronous approach and timed automata theory.

The Giotto approach [Henzinger et al. 2001] considers a specific language for

the design that is used to define abstract models of embedded control systems. The

language has a time-trigger semantics that facilitates time predictability for system

analysis. The associated compiler and a runtime library enable the implementation

on a target platform. One interesting common characteristic of the Giotto for-

malism and the synchronous ones is that they both allow platform-independent

specifications.

Component-based design techniques have revealed advantages, re-usability being

the most prominent. We mention a few approaches such as MetaH [Vestal 1997],

Vest [Stankovic et al. 2003] and Cadena [Hatcliff et al. 2003]. In the former,

the design activity relies on the architecture description language MetaH. The ap-

proach addresses embedded real-time, distributed avionic applications. It proposes

a tool-set for the description and combination of software and hardware compo-

nents to construct a system. Facilities are also provided for real-time analysis. The

Vest approach is similar with MetaH. It also provides a tool that supports infras-

tructure creation, embedded system composition, and mapping of passive software
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components to active run-time structures (such as tasks). A set of analysis tools

is also available for real-time and reliability analysis. To enable this, a library

of micro-components, components, and infrastructures has been defined. Micro-

components are passive software such as interrupt handlers, dispatchers, and plug

and unplug primitives. The tool supports dependency checks and composition.

However, Vest does not support formal proof of correctness. Finally, Cadena of-

fers a framework for CORBA component model development, which allows a user

to explore how static analysis and model-checking can be integrated. In [Hatcliff

et al. 2003], an illustration is given of its application to simple avionics systems

based on the Boeing Bold Stroke architecture [Sharp and Roll 2003].

Other approaches consider a separation of concerns in system design. The Syn-

DEx approach [Grandpierre and Sorel 2003] separates aspects inherent to an ap-

plication from those related to the implementation platform. SynDEx proposes a

methodology called algorithm architecture adequation (AAA) supported by system-

level Computer-Aided Development software called for the design of distributed em-

bedded real-time systems. The AAA methodology covers the whole design steps:

from the specification of functionalities (i.e. the software level) to the deployment

on target multi-processor architectures including specific integrated circuits (i.e. the

hardware level). This is achieved using a graphical environment, which allows the

designer to manually and/or automatically identify efficient ways to distribute ap-

plication functionalities on the target architecture (the criterion is to satisfy timing

requirements and to minimize hardware resources). The distribution relies on graph

representations, and takes non-functional requirements inputs (e.g. real-time per-

formances). Finally, a possibility of automatically generating code corresponding

to the specified system is offered. In addition to SynDEx, there is the AutoFo-

cus approach [Romberg 2002], which follows similar ideas. It addresses distributed

system design by offering integrated hierarchical description techniques for different

views of a systems: the structure of a system (its components and communication

between them), its behavioral description and the way the system interacts with

its environment.
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Among approaches dedicated to the design of embedded real-time systems, only

a few of them address both continuous and discrete activities of such systems. The

approach based on the Charon language [Alur et al. 2003] enables modular spec-

ifications of interacting hybrid systems based on the notions of agent (a building

block) and mode (an hierarchical state machine). The description of a system fol-

lows a two level hierarchy: the architectural level provides the structure of the

system in terms of composed agents whereas the behavioral level indicates the in-

teraction modes.

Finally, we mention the Ptolemy approach [Lee 2001], which supports the mod-

eling, simulation, and design of embedded systems. It integrates several compu-

tation models (e.g. synchronous/reactive systems, continuous time, etc.) in order

to deal with concurrency and time. A key point is that the designer can simulate

different kinds of interactions between active components. Therefore, the focus is

mainly on the choice of suitable computation models for an appropriate type of

behavior in the system.

7.2 On the design of avionic applications

We mention a few studies addressing the design of embedded real-time systems

in the avionic domain. The main objective of the Cotre approach [Berthomieu

et al. 2003] consists in providing the designer with a methodology, an Architecture

Description Language (Adl) called Cotre, and an environment to describe, verify

and implement embedded avionic systems. The Cotre language distinguishes two

different views for descriptions: a user view expressed using the Cotre for User lan-

guage (termed U-Cotre) and a view for verification (termed V-Cotre). In fact, the

latter plays the role of an intermediate language between U-Cotre and certain ex-

isting verification formalisms (e.g. timed automata, timed Petri nets). The authors

argue that the use of formal techniques is one of the main differences between the

Cotre language and other Adls. Cotre is closely related to the approach based on

the Avionics Architecture Description Language (Aadl), which is developed by the

International Society of Automotive Engineers (SAE) [AADL Coordination Com-
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mitee 2002]. It is dedicated to the design of the software and hardware components

of an avionic system and the interfaces between those components. The Aadl def-

inition is based on MetaH (an Adl developed by Honeywell) [Vestal 1997]. It

permits the description of the structure of an embedded system as an assembly of

software and hardware components in a similar way. The Aadl draft standard

also includes a Uml profile of the Aadl. This enables the access to formal analysis

and code generation tools through Uml graphical specifications. While these ap-

proaches combine various formalisms and tools for the design of embedded real-time

systems, our approach relies on the single semantic model of the Signal language.

It is very important to have a common framework in order to guarantee the cor-

rectness of the designs.

Scade is one of the most established formal design environments in avionics do-

main [Camus and Dion 2003]. It is also based on the synchronous technology. It

supports correct by construction methodology and automated generation of qualifi-

able implementation (level A with respect to DO-178B guidelines) from a high-level

formal model of embedded applications. A main advantage is drastic savings in the

development and validation efforts. Among important avionic projects in which

the Scade suite has been used, we can mention the Airbus A380 and Eurocopter.

Among specific studies related to IMA, we mention those concerning the two-

level hierarchical scheduling aspects within IMA systems. In [Lee et al. 2000] Lee

et al. present algorithms that provide cyclic partition and channel schedules for

IMA systems. In the same context, Audsley and Wellings analyze response times

of IMA applications [Audsley and Wellings 1996]. They point out the possibility of

a large amount of jitter and discuss possible ways to reduce the jitter by checking

process periods with respect to partitions periods. One of the techniques illustrated

in this article for temporal analysis provides information on execution times of

partitions. Thus, this information can be used when taking decisions in processor

allocation to partitions. Further expected benefits of defining our approach in

a formal framework are the available techniques and tools that help to address
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some critical issues of IMA such as the partitioning, which still need to be further

explored by researchers. Indeed, in current industrial practices, avionic functions

with high critical level are designed using federated architectures (for instance,

this is the case for the future Airbus A380). This is likely due to the fact that

partitioning raises several questions that are not sufficiently addressed yet. Among

these questions, we can mention the correctness of a partitioning, which is crucial.

A formal description of partitioning requirements is proposed by Di Vito [Di Vito

1999], using the language of PVS (Prototype Verification System). However, this

description only concerns space partitioning (time partitioning is not addressed).

The use of Signal enables to define a correct-by-construction partitioning, based

on the sensitivity analysis [Sacres Consortium 1997]. Being able to guarantee the

correctness of a given partitioning helps to reduce IMA certification efforts. A

study addressing this last issue has been done by Conmy and McDermid [Conmy

and McDermid 2001], who propose a high level failure analysis of IMA. The analysis

is part of an overall IMA certification strategy. Finally, a presentation of the IMA-

based communication network designed for the future Airbus A380 is given by

Sánchez-Puebla and Carretero in [Sánchez-Puebla and Carretero 2003].

8. CONCLUSIONS

In this paper, we argue that the polychronous framework favors reliable designs

of embedded real-time systems. The central idea is the definition of a library of

polychronous models of architecture components. As in MetaH [Vestal 1997] or

Vest [Stankovic et al. 2003], this library includes active run-time components such

as processes and functionalities of a real-time operating system.

We advocate a seamless design methodology including high level specifications us-

ing the modularity and re-usability features of the polychronous language Signal,

formal verification and performance evaluation, and automatic code generation. In

such a context, the formal basis of Signal is a key aspect for validation. This is

essential to the design of safety critical systems.
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Beyond the formal framework promoted by the present work for the design ac-

tivity, it suggests a possible way to address the crucial issue of partitioning in

integrated modular avionics architectures. Most modern aircraft still massively

adopt the federated approach instead of IMA for highly critical functions. It seems

that one main difficulty of that arises from the partitioning itself in such systems.

We believe that the ideas exposed in this paper help to overcome this difficulty.

For instance, the sensitivity analysis we use in our approach allows us to easily

identify dependencies between sub-parts of a system, in a correct way. In this

sense, the SynDEx approach [Grandpierre and Sorel 2003] can be also mentioned

here. In SynDEx, the partitioning of an application relies on the performance of

the implementation platform. This can be combined with our sensitivity analysis

within a new version of our methodology where the distribution function previously

assumed at Step 0 (see Section 5) is now replaced by a strategy based on quan-

titative criteria. We then observe a complementarity of SynDEx and our approach.

From a scientific point of view, the main contribution of this paper concerns the

modeling of (bounded) asynchronous mechanisms using the synchronous approach.

There have been many studies on this topic [Berry and Sentovich 1998] [Caspi 2001]

[Halbwachs and Baghdadi 2002] [Gamatié and Gautier 2003a]. They turn out to

promote globally asynchronous locally synchronous architectures (GALS) where a

system is composed of sub-systems/components that execute synchronously and

communicate asynchronously. In the current study, we presented how a typical

asynchronous architecture and its associated mechanisms can be modeled using

Signal for validation.

From a methodological point of view, various design approaches have been com-

bined within a unique general framework. We first considered a component-based

approach in order to define a library of models. Then, we used these models to

derive from a given Signal description of an application, its corresponding IMA

model by refining the initial description. We also show how temporal issues or the

resulting description can be addressed in a modular way.
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Finally, from an implementation point of view, this work leads to the definition

of synchronous models of APEX-ARINC 653 services. They are freely available

together within the Polychrony platform at [ESPRESSO-IRISA. ]. We faced

the scalability question of the proposed approach by trying it out for a real world

application.
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