
The Chaos Router: A Practical Application of
Randomization in Network Routing

S. Kons tant in idou and L. Snyder*
Dept. of Compute r Science and Engineering

University of Washington

A b s t r a c t

We present the chaos router, an asynchronous
adaptive router, which under certain circumstances
can send messages farther from their destinations.
The chaos router greatly simplifies the routing logic
by removing the livelock protection of previous
schemes. Through an effective use of random-
ness, whose sources include that due to the adap-
tively processed load, the natural timing differ-
ences of selftimed circuitry and explicitly injected
randomization, the chaos router avoids long mes-
sage routes with high probability. In this paper
the router is described, it is argued that the chaos
router is deadlock free and probabilistically live-
lock and starvation free, and simulation results are
presented showing that the chaos router performs
well.

I n t r o d u c t i o n

The problem of message routing in multicomput-
ers, where processors communicate and synchro-
nize by exchanging messages, has long been stud-
ied. In this model of computation routing is as-
sumed to be local, where routing nodes have no
knowledge of the traffic load in other nodes, and
continuous, where nodes inject messages indepen-
dently of each other and without knowledge of the
state of the network as a whole.

State-of-the-art routers for MIMD machines

*This work was s u p p o r t e d in p a r t by the Defense
Advanced P r o j e c t s Agency u n d e r C o n t r a c t N00014-88-K-
0453, in p a r t by the Office of Naval Resea rch u n d e r Con-
t r a c t N00014-89-J-1368 a n d in p a r t by a n IBM G r a d u a t e
Fellowship.

Permission to copy without fee all or part of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Associ~ion for Computing Machinery. To copy otherwi.~, or to republish,
requires a fee and/or specific permission.

© 1990 ACM 089791-370-1/90/0007/0021 $1.50

79

such as the iPSC, NCUBE and Ametek imple-
ment oblivious routing [1], where a message's path
is completely determined by the (source-address,
destination-address) pair. Oblivious routers re-
quire only relatively simple logic in order to route
messages and to guarantee the three essential prop-
erties of every router i.e. freedom from dead-
lock, livelock and starvation. As a result, oblivi-
ous routers can be very fast under light to moder-
ate random traffic [2, 3]. However, they have an
~(v/~/d) worst case routing delay in any N node,
degree d network [4] and they are fault intolerant.

Among proposed alternatives are randomized
touters, of which Valiant and Brebner's [5] is an
instance. It requires that messages be first routed
from their source to a randomly selected interme-
diate node and from there to their destination.
This router has been analyzed and shown to have
O(logN) expected time. The practical problem
with this router is that it doubles the length of the
average message path. Though negligible in the-
ory, this factor of two is unacceptable in practice.
Moreover, the router penalizes "average random
traffic" to improve the worst case traffic, which is
presumably rarer.

Adaptive routers, another alternative to obliv-
iousness, select message paths based on the local
load characteristics. Thus, adaptive routers can
diffuse local congestion by exploiting alternative
paths to a destination; they are also more fault
tolerant, a consideration that becomes increasingly
important as systems get larger. Minimal adaptive
routers, where messages are always routed closer
to their destination, have been proposed [6]. How-
ever, our simulations show that nonminimal adap-
tive routers, where messages are permitted to be
detoured or misrouted, i.e. sent further from their
destination in the presence of congestion, are bet-
ter at handling non-uniform traffic. Examples of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F121956.121965&domain=pdf&date_stamp=1991-03-01

adaptive, nonminimai routers include Hillis' Con-
nection Machine router [7], the Ngai and Seitz [2]
router and the Shuffle-Exchange router suggested
in [8]. In the class of adaptive, nonminimal touters
one can also include Gelernter's router [9], where
nodes can occasionally refuse messages and Grun-
wald's [10] backtracking circuit switched router.

Though potentially fast and robust, nonminimal
routers are subject to firelock, a serious problem
wherein messages fail to be delivered because they
are repeatedly derouted. The "standard" * solution
to livelock is to t imestamp every message; when
multiple messages require the same channel, the
oldest is selected; eventually any message "ages"
enough to be delivered. The problems with this
prioritized solution to livelock and its variants are
(1) the t imestamp, which must be sufficiently large
not to overflow, adds bits to the message, and (2)
most critically the process of selecting the oldest
among messages competing for a channel compli-
cates the routing decision. It adds gate delays,
slows the router and would seem to prejudice the
chances that adaptive routers could replace oblivi-
ous routers.

The chaos router, proposed here, is an asyn-
chronous adaptive, nonminimal router that elim-
inates the need for livelock protection. The in-
tuit ion is that the router exploits randomness to
keep the network "chaotic," thereby causing the
repetitious routing patterns, typical of livelocked
messages, to decay.

The principal new ideas in the chaos router are
as follows. First, the chaos router is fully asyn-
chronous; not only do nodes operate independently
of each other but even channels operate indepen-
dently of each other and the router's internal logic.
This asynchrony makes all of the routers effectively
independent of one another and it should be con-
trasted with synchronous routers like the CM [7]
and with other asynchronous routers like the Ngai
and Seitz [2] router where a variety of dependences
exist within the router and between routers.

Second, the circuitry of the touters is selftimed,
i.e. not clocked. Thus the touters will run at differ-
ent rates because of differences in the tasks being
performed as well as variations in the electronics.
Though selftiming has been used before, the im-

*In SIMD m a c h i n e s such as the C o n n e c t i o n Machine ,
l ivelock can b e addres sed by global measures .

portance here is that because of the asynchrony
just mentioned these t iming differences propagate
and lead to differences in when and how the touters
perform various activities. These t iming differences
are in addition to the behavioral differences engen-
dered by the dynamic characteristics of the load.

Third, the chaos router explicitly randomizes its
message selection during derouting. This means
that unlike other nonminimal routers the chaos
router guarantees a nonzero probability that a mes-
sage can avoid derouting. We should note that
the concept of randomly selecting which message
to deroute was also suggested in [8, 11, 12] al-
though in an entirely different context. In par-
ticular, the context was message switching on a
synchronous shuffle-exchange network and its vari-
ants (multiple-layer, multiple-stage, buffered). In
all these cases, when necessary, one of the two con-
flicting messages at the inputs of a switch was ran-
domly selected for derouting. Livelock issues were
not considered.

The principal effect of this chaos, besides as-
suring network unpredictability and removing the
overhead of livelock protection, is to make the
router probabilistically livelock free, i.e. the proba-
bility of a message remaining in the network longer
than t seconds goes to zero as t increases. In prac-
tice, as the simulations show, probabilistic live-
lock freedom can be considered to be operationally
equivalent to absolute livelock freedom.

In this paper we describe the chaos router.
We abstract chaotic routing and argue that chaos
routers are deadlock free and probabilistically live-
lock and starvation free. Finally, we present simu-
lations illustrating the performance of a 256 node
chaotic network. The chaotic network always runs
faster than the prioritized network and exhibits
substantially less derouting.

A n a s y n c h r o n o u s , r a n d o m i z e d , a d a p t i v e
r o u t e r

In this section, we will present our routing algo-
rithm. For the presentation we assume a binary hy-
percube topology, al though the same routing con-
cepts can be used with any k-ary d-cube.

We assume that our router implements an asyn-
chronous computat ional model. Each node oper-
ates at its own rate. It communicates with its cor-
responding processor using an injection and deliv-

80

ery buffer and with each of its log N neighbors via
an asynchronous channel protocol, using an input
and an output buffer per channel, called the Input
and Output Frames, capable of holding one mes-
sage each.

Let us consider a hypercube with N nodes, D =
logN dimensions and nodes A and B, neighbors
along dimension i, 0 < i < D. We assume that
nodes A and B are connected along dimension i by
a bidirectional channel . If node A wants to send a
message to B, it places the message in its Output
Frame(i). The message can be transmitted if the
Input Frame(i) of B is empty and the channel is
available in the A to B direction. When in Input
Frame(i) of node B, the message will remain there
until node B is ready to read from that particular
dimension. For the following we assume that a
ful l /empty bit is associated with each Input and
Outpu t Frame to implement this interface.

Besides the log N pairs of Input and Output
Frames, each routing node consists of a Queue and
a source of randomness that , upon request, selects
one of the messages in the Queue with equal prob-
ability. The block diagram of a routing node is
shown in Figure 1.

Each routing node examines its dimensions in a
cyclical order, executing the following infinite loop:

current_dim=O ;

while (True) do begin

current_dim=current_dim+l mod D;
while(Output Frame(current.dim)~=Full)

current_dim=current_dim+l mod D;
>

Match (current_dim);
if (Queue==Full AND no match AND

Input Frame(current_dim)-=Fu11)

Deroute;
>

Send(current_dim);
Read(current_dim);

end.

where Match, Read and Send are defined as follows:
Match examines the messages in the Queue in a

FIFO order and selects the first message that can
be routed along the current dimension, if such a
message exists.

l l 1
I Oframe.O O frame.1 • . .] Oframe.k

l l 1

head

tail

I'* ion ' J I

1 l l

((1
Figure 1: Block diagram of a routing node.

Deroute randomly selects a message to be der-
outed from the Queue. This operation is invoked
if the previous Match fails to produce a message
to be routed, the Queue is full and a message has
to be read from the Input Frame of the current
dimension.

Send removes from the Queue the message se-
lected by the previous Match or Deroute opera-
tion, if such a message exists, and places it into
the Output Frame of the current dimension.

Read removes a message from the Input Frame of
the current dimension, if such a message exists. If
the message has reached its destination, it is deliv-
ered, otherwise it is added to the end of the Queue.
If the Queue is not Full and there is a message wait-
ing in the injection buffer, it is added to the end
of the Queue. Notice that one might choose to
control the injection rate by limiting the frequency
of injection or by requiring that new messages are
injected iff the Queue capacity is below some pre-
determined threshold.

81

D e a d l o c k , l i v e l o c k a n d s t a r v a t i o n f r ee -
d o m

In every multicomputer network with finite size
buffers and continuous, local routing one would like
to guarantee the following properties:

• Deadlock freedom - no message is permanently
stalled.

• Livelock freedom - every injected message is
eventually delivered.

Input

Frame

Output

Frame

Node P

I

Node Q

Input

-[Mqi Frame

Output

I Mqo Frame

• Starvation freedom - every node is able to in-
ject a message. Figure 2: Deadlock configuration.

In the following, we will examine in detail the
chaos router with respect to these three proper-
ties. Before proceeding, we should emphasize that
we are describing a practical router; all its primi-
tive operations, like a channel transmission, Match,
Read etc., take a bounded amount of time to com-
plete. Thus in the following, whenever we men-
tion that an event is of finite duration, this means
that there is a maximum amount of time such that
the event is guaranteed to complete in time less or
equal than the maximum.

F r e e d o m f r o m dead lock . Freedom from
deadlock is in general easy to guarantee in non-
minimal routers such as the chaos router. As op-
posed to previously suggested nonminimal routers
that guarantee progress at the node level, the chaos
router guarantees progress along each dimension
of a node. We believe this is a major strength
of our router and significantly increases its fault-
tolerance.

Let us consider message M that has already been
injected into the network and is currently in some
node P. Within node P, message M can be in one
of three places

• In some Output Frame(i), 0 _< i < log N.
• In some Input Frame(j), 0 _< j < log N.
• In the Queue.

In order to show that it is impossible for a mes-
sage to be stalled in any of the above cases, we will
need the following two lemmas.

L e m m a 1: Consider node P and dimension
i,0 _< i < logN, such that node P last examined
dimension i at time to. Then, node P will examine
dimension i at time to + ~f where $ is finite.

Proof : By the construction of our algorithm,
node P executes an infinite loop, examining its
dimensions in a cyclical order. For each dimen-
sion, if the Output Frame of that dimension is full
the node proceeds to examine the next dimension,
otherwise it performs one or more of the follow-
ing operations: Match, Deroute, Send and Read.
The duration of each one of these operations, al-
though not constant, depends only on the state of
node i; there is no need for communication or syn-
chronization between neighboring nodes in order
for these operations to complete. Thus, it takes a
finite amount of time for a node to service each di-
mension and as a result, the elapsed time ~ between
two subsequent examinations of some dimension i
is finite.

L e m m a 2: Consider nodes P and Q, neighbors
along dimension i,0 _< i < logN, such that neither
P nor Q is currently examining dimension i. Then
one of the four I/O Frames (the Input and Output
Frame(i) of P and Input and Output Frame(i) of
Q) must be empty.

P roof : For the sake of contradiction let us as-
sume that all four I/O Frames are full. Let Mpl
be the message in the Input Frame(i) of P, Mpo
the message in the Output Frame(i) of P, Mq~ the
message in the Input Frame(i) of Q, and Mqo the
message in the Output Frame(i) of Q. This con-
figuration is shown in Figure 2. We will show that
this configuration is impossible.

Let us consider the order in which the messages
were placed in the I/O Frames. Message Mp~ was
placed in the Input Frame of node P after message
~VIpo was placed in the Output Frame of node P.
Otherwise, by the construction of the algorithm,

82

Mp~ would have been read following the Send op-
eration that placed message Mpo in the Output
Frame(i) of P. Let us denote this ordering of
events as M ~ < M~ (~1). Similarly, message Mqi
was placed in the Input Frame(i) of node Q after
message Mqo was placed in the Output Frame(i) of
node Q. Let us denote this ordering of events as
Uqo < iq i

Furthermore, message Mpi was placed in the In-
put Frame(i) of node P before message Mqo was
placed at the Outpu t Frame(i) of Q. This is true
because Mqo moved to the Output Frame(i) of Q
as soon as this Frame became empty, an event
that happened when Mpi moved from the Output
frame(i) of Q to the Input Frame(i) of P . Thus

<
Similarly, message Mqi was placed in the Input

Frame(i) of node Q before message Mpo was placed
in the Outpu t Frame(i) of P , thus Mqi < M~ (~4).

By combining inequalities (~1), (~2), (~;3) and
(~4) we have Mpo < Mpi < Mqo < Mq~ < U~
which is a contradiction. •

We should note here, that while a node is ex-
amining dimension i, it is possible for all four I /O
Frames to be full, but only momentarily. This can
happen between a Send and a Read operation. It
is easy to see, that the Read operation will result
in an empty Frame.

Now we are ready to show freedom from dead-
lock.

T h e o r e m 1: For every message M that enters
Output Frame(i), 0 _~ i < log N of some node P
at t ime to, M is guaranteed to leave the Output
Frame at t ime to + 5 where 5 is finite.

Proof: Consider nodes P and Q that are neigh-
bors along dimension i, 0 _~ i < log N and message
M that node P placed in its Outpu t Frame(i) at
time to. By the construction of our router, the
only possible move for message M is that from the
Output Frame(i) of P to the Input Frame(i) of
Q. Thus, there are two cases, either the Input
Frame(i) of Q is full or empty:

1. The Input Frame(i) of node Q is full. Then
there are two cases.

a. The Output Frame(i) of Q is full. Then
from Lemma 2 the Input Frame(i) of node P
must be empty. Thus, the Output Frame(i)
of Q can transmit its message to the Input
Frame(i) of node P as soon as the channel

is t ransmitt ing in the P to Q direction. As-
suming finite length messages, transmission
is guaranteed to complete in a finite amount
of time, leaving the Output Frame(i) of Q
empty. Then, the state of the system is de-
scribed by the following case lb.

b. The Output Frame(i) of Q is empty. Then,
the first time that node Q examines dimen-
sion i, an event that is guaranteed by Lemma
1, it will read from its Input Frame(i). Thus,
Input Frame(i) of Q is guaranteed to become
empty within a finite amount of time, result-
ing in a system state as described in the fol-
lowing case 2.

2. The Input Frame(i) of node Q is empty. In this
case, the Outpu t Frame(i) of P can transmit its
message to the Input Frame(i) of Q as soon as
the channel is t ransmit t ing in the P to Q direc-
tion, an event which is guaranteed to happen
within a finite amount of time.

T h e o r e m 2: For every message M that enters
Input Frame(i), 0 < i < log N of some node P at
time to, M is guaranteed to leave the Input Frame
at t ime to + ~ where/~ is finite.

Proof: By the construction of our router, there
are two possibUities:

1. The Output Frame(i) of P is full. As long as
this condition persists, each time node P exam-
ines dimension i it will proceed to the next di-
mension. But by Theorem 1 we know that Out-
put Frame(i) is guaranteed to become empty in
a finite amount of time, resulting in a system
state as described in the following case 2.

2. The Output Frame(i) of P is empty. Then,
the first time node P examines dimension i,
it will perform a Read operation on the Input
Frame(i). If message M has reached its desti-
nation it will be placed in the delivery buffer,
and we assume that this can happen in finite
time, otherwise it will be added at the end of
the Queue. Node P is guaranteed to have an
empty slot in its Queue for message M since it
can deroute a message along the empty Output
Frame(i).

T h e o r e m 3: For every message M that enters
the queue of some node P , M is guaranteed to leave
the queue in a finite amount of time.

83

P r o o f : Let us consider message M that enters
the queue of some node P at t ime to; let us assume
that M is the i-th message in the queue, where
1 < i < e and c is the queue capacity. Clearly,
M can be routed along at least one dimension; let
such a dimension be j . Furthermore, there are at
most i - 1 messages in the queue ahead of M that
can be routed along dimension j . Let m be the
number of such messages.

Let tl,t2,...tm, trn+X be the times that node P
sends a message along dimension j , where ti+l =
ti + dfi, O < i < m.

If right before t ime t,~+l message M is still in the
queue, it is the first message in the Queue that can
be routed along dimension j and it will be routed

at t ime tm+l.
By Theorem I and Lemma 1, intervals ~fi, 0 < i <

m are of finite length and message M is guaranteed
to leave node P in a finite amount of time.

each derouting decision is -q-~-. Thus, the prob-
ability that message M will be routed is at least
e = (e-1)~

~, C / *

M a i n r e s u l t . Using Lemma 3, we will prove in
the following that the probabil i ty of long paths in
the network diminishes as their length increases.

Let us define the path of a message in the net-
work as a sequence of moves. At each move, mes-
sage M either moves closer to its dest ination with
probabil i ty p > e or further from its destination
with probabil i ty q = 1 - p. Clearly, a message can-
not move further than log N from its destination.

Let us define a game as a sequence of l o g N
moves. Message M starts game i at distance ai
and finishes at distance ai+l. Let li denote the
event that M was not delivered during game i and
wi the event tha t M was delivered during game i.

Let Q(i) be the probabil i ty that message M has
not been delivered after i games. Then

L i v e l o e k a r g u m e n t s . Having established
freedom from deadlock, let us now consider free-
dom from livelock. In nonminimal touters, as mes-
sages are allowed to move further from their des-
tinations, some mechanism is required in order
to guarantee that messages will eventually make
progress towards their destinations. We have ar-
gued that the mechanism to deterministically guar-
antee message delivery, i.e. priority routing, is
quite expensive. In the following we will show that
by choosing randomly a message to deroute, the
chaos router guarantees message delivery with high
probability. Lemma 3, formalizes the key idea of
our router: no message is ever derouted with cer-
tainty or in other words, every message has a non-
zero chance of avoiding derouting.

L e m m a 3: 3~ > 0, such that for every message
M entering the queue of some node P , M will be
routed with probabil i ty p > e and derouted with
probabil i ty q = 1 - p.

P r o o f : By Theorem 3, there is a maximum
amount of time T = ~im=0 ~i that message M can
stay in the queue of some node P after which M
will certainly be routed. During this time T, node
P makes a finite number of routing decisions. Thus
message M can be subjec ted to at most a finite
number, r, of derouting decisions. At each derout-
ing decision, a message is randomly selected from
the queue with uniform probability. The prob-
ability t h a t message M can escape de rou t i n g at

Q(i) = P(t i l i -1 . . l l) = P(l i l l i -a . .h)" P(t i -1 . . t l)

For simplicity, let us subs t i tu te Fk for lk...1211 ,
1 < k < i and let us define P(ll [Fo) =- P(ll) and

P(wi I F o) .~ P (w l) . Then

Q(i) = P(l i l F i_ l) .P(l i - l l F i - 2) " ' P (l l) (1)

Clearly, P(tj l Fi-1) = 1 - e (w j l Fj-1),
1 < j < i. In the following we will est imate
P(wj [Fj-1). Let Sj,k denote the event that mes-
sage M starts game j at Hamming distance k from
its destination. Events Sj,k are mutual ly exclusive
and one of them necessarily happens. Thus

P(wj [Fj-a) = P(wjSj,11.3 .. u wjSj,logN I Fj-1)

log N
P(wj l Fj_x) = ~ P(wjSj,k I Fj-1) :0

k=l

log N
P(wj l Fj-1) = ~ P(wj l Sj,kFj-1)'P(Sj,k [F j - l) .

k=l

Bu t P(wj] Sj,kFj-1) > ¢logN, thus

log N

P(wj l Fj-1) > e l°gN Z P(Sj, k [Fj-1).
k=l

V'I°gN P(Sj,k I F j - l) = 1 Since Z-,k=1

P(w I F -i) _>

84

P(li I F j -1) _< 1 - e l°gN (2)

Finally, (1),(2) ::0 Q(i) < (1 - el°gN) i.

Thus the probabili ty tha t M will not have been
delivered after i games, where i ~ c<~ is:

lim Q(i) = (1 - E l ° g N) i = 0
i..-~ o o

The probabili ty P(i) that M will be delivered
after i games, where i ~ oo is:

lim P (i) = 1.

S t a r v a t i o n a r g u m e n t s . As described previ-
ously, nodes are allowed to inject messages in the
network iff the Read operation finds the Queue not
full. Consider the following scenario. A node starts
with a full queue and every time it services some
dimension, it has to read a message that has not
reached its dest ination yet. Such a node will be
prevented from injecting. Different solutions have
been suggested that address this problem.

The first solution is based on the observation
that any message delivered to a node, gives the
node the right to inject a new message into the
network. It requires that for every message deliv-
ered by the network, a Return message is sent back
to the original sender [Ngai and Seitz 89]. Clearly,
this method increases the network traffic dramati-
cally, flooding the network with messages that con-
tain no information.

A different solution [Ngai and Seitz 89] requires
that nodes notify their neighbors each time they in-
ject a message. If a node's injection rate is higher
than the injection rate of its neighbors, the node
has to stop injecting. This method is also expen-
sive, requiring record-keeping and dedicated pins
per channel for nodes to exchange injection rate
information.

In the following we present a new, simple and ef-
ficient injection policy. Our method is based on the
concept of an injection token that visits all nodes
in some predetermined order giving them the right
to inject.

Let us consider a hypercube with N nodes and
a directed Hamiltonian cycle containing the N
nodes. For each node i, 0 < i < N, let us define
Neighbor(i) = j, with 0 < j < N such that (i,j)

is an edge of the Hamiltonian cycle. Furthermore,
let us consider a message marked in some unique
way, called the injection token. When node i re-
ceives the injection token, it determines whether it
has been prevented from injection longer than some
predetermined time Td. If not, it sends the injec-
tion token to node j , where Neighbor(i) = j. Oth-
erwise, it consumes the injection token thus creat-
ing one empty slot in the queue which can be filled
by a newly injected message. A message injected
into the network following the consumption of the
injection token has to be marked appropriately; let
us call such a message a tagged message. Upon de-
livery of a tagged message, the injection token has
to be regenerated. Then there are two cases:

. Nodes can compute the address of any Neighbor
in the t tamil tonian cycle. Then, the recipient of
a tagged message can regenerate the injection
token and send it directly to the Neighbor of
the sender of the tagged message.

. Nodes are assigned ra ther than compute the ad-
dress of their Neighbors. In this case the recipi-
ent of a tagged message has to send a null mes-
sage to the sender in order to give it the chance
to regenerate the injection token. The transmis-
sion of this null message can be avoided iff every
node knows the Neighbor of every other node in
the network. The advantage of assigning rather
than computing Neighbors is fault-tolerance. In
the presence of one or more faulty nodes, a new
Hamiltonian cycle can be computed that avoids
the faulty nodes. Then a new assignment of
neighbors can take place.

Clearly, our injection policy guarantees access to
the network subject to guaranteed delivery of the
three marked messages required to implement the
protocol. Thus, our injection policy guarantees ac-
cess to the network in a probabilistic way. Finally,
we should mention that more than one token can be
used, each one visiting either all nodes as described
previously or different subsets of the nodes.

P e r f o r m a n c e e v a l u a t i o n

The key issues for any practical router are imple-
mentat ion efficiency and performance. In the pre-
vious sections we presented the novel livelock and
starvation prevention schemes of the chaos router.

85

Both these schemes can be efficiently implemented
and greatly simplify the node's logic. In this sec-
tion we will address the performance issue. We will
present performance measurements of the chaos
router and compare it with the performance of two
other routers of similar nature: the priority router
and the natural router.

The priority router, differs from the chaos router
in that it assumes age information for every mes-
sage, assigns higher priorities to older messages and
routes messages according to their priority in order
to guarantee message delivery. In order to imple-
ment this age-priority scheme, a priority queue is
used in each node. Although the priority router
has to pay the overhead of comparing the ages of
messages, it does have one performance advantage
over the chaos router. In particular, in the chaos
router messages are serviced in a FIFO order; thus
older messages can "loose" to younger messages. In
order for the chaos router to outperform the prior-
ity router, the overhead of age comparisons of the
priority router should outweigh the possible "out
of order" delays of the chaos router.

The natural router, is almost identical to the
chaos router except for the way it deroutes mes-
sages. The natural router always deroutes the last
message in the Queue. The performance of the nat-
ural router is of interest, as it allows us to evaluate
the relative performance effect of randomization in
the chaos router.

We measured performance using an event-based
simulator of a 256 node ncube. More than 150,000
messages (at least 600/node) were injected in each
simulation run. The routers were specified at a fine
grain. All three routers were assumed to have the
same basic structure and execute similar Match,
Read, Send and Deroute operations. Time was
measured in units of a "step", which is defined to
be the time for a router to decide if a message can
be routed along dimension k; this is likely to be a
few gate delays.

The routers were compared assuming both fast
channels (5 steps per transmission) and slow chan-
nels (100 steps per transmission). Thus, for the
same message size, fast channels can be interpreted
as "wide" or high bandwidth channels and slow
channels can be interpreted as "narrow" or low
bandwidth channels. Similarly, for the same chan-
nel bandwidth, the performance of fast and slow
channels is an indicator of the effect of message

size. Tables la-3a show the results under fast chan-
nels and tables lb-3b the results under slow chan-
nels. In each category (fast, slow) the same load
was applied to all routers, that load being the max-
imum sustained load by the slowest router.

Three types of traffic patterns were used:

• Destinations selected uniform randomly (Ta-
bles la and lb).

• A randomly selected set of nodes 3 times more
likely to be destinations than other nodes (Ta-
ble 2a and 2b).

Transpose pattern, i.e. the destination is the
source address bit-sequence with the front and
back halves exchanged (Table 3a and 3b).

The first case is the standard (and probably un-
likely) random traffic. The second corresponds to
a mild form of "hot spots." The third case is de-
signed to incur substantial congestion in the "mid-
dle" of the message routes.

The quantities reported are the average message
delay in steps, the worst observed delay of any mes-
sage in steps, the maximum number of times any
message is derouted and the fraction of derouting
moves versus total moves.

The available results show the chaos router to be
at least 20~ and as much as 70% faster than the
priority scheme. Thus, the latency of performing
comparisons in a priority router far outweighs the
benefits of "in order" delivery.

C o n c l u s i o n s

We have presented the chaos router, an adaptive,
nonminimal, randomized router. By randomly se-
lecting which message to deroute, the chaos router
eliminates the need for priority routing. This
greatly simplifies the router's logic. More impor-
tantly, while priority-based routers have to prior-
itize messages all the time, in the chaos router
the overhead of the livelock prevention mecha-
nism is introduced only when a message has to be
derouted. We also presented an efficient scheme
for starvation prevention that significantly reduces
the communication requirements of previously sug-
gested schemes. Simulation results exhibit the
good performance of the chaos router under ran-
dom traffic and traffic known to create hot-spots.

86

Router

priority

chaos 592.68

natural 544.58

Fast channels

delay delay Drt
I

733.85 6180 2

1563 2

1558 1

Deroute
fraction

7.6 10 -4

7.8 10 -s

4.9 10 -s

Router

priority 2179.42

chaos 1885.42

natural 1809.86

S l o w channels

[IAverage W o r s t [M a x [
delay delay Drt

11078 2

5191 2

4559 2

Deroute
fraction

0.011

1.5 10 -3

1.1 10 -3

Table la: Performance measurements under
uniform random traffic.

Average
Router delay

priority 790.99

chaos 626.59

natural 570.25

Worst I Max Deroute
delay Drt ~action

8016 2 3.8 10 -3

1943 2 2.6 10 -4

1690 2 2.6 10 -4

Table lb: Performance measurements under
uniform random traffic.

I [w°rst I Oer°ute
Router delay delay Drt fraction

priority 2250.18

chaos 1892.69

natural 1820.92

13492 3 0.019

!
6035 3 3.5 10 - 3

5200 2 3.0 10 -3

Table 2a: Performance measurements for 3X
hot-spots.

Router I Averagedelay]

priority 1597.57

chaos 894.60

natural 911.82

Worst Max] Deroute
delay Drt I fraction

6039 3 5 10 -2

2389 2

2127 2

1.9 10 - 3

2.2 10 -3

Table 2b: Performance measurements for 3X

Router

priority 3432.93

chaos 2425.49

natural 2362.90

hot-spots.

I]Ave rage lW°r s t IMax I
delay delay Drt

13540

7346

5951

Deroute
fraction

3 0.06

4 7.5 10 - 3

2 5.7 10 - 3

Table 3a: Performance measurements for
"Transpose."

Table 3b: Performance measurements for
"Transpose."

87

Variants of chaotic routing, currently under in-
vestigation include a router which, when in the der-
outing state, selects the last message in the queue
and deroutes it along a randomly chosen dimen-
sion, and a router where no randomization is in-
troduced but the randomness of the system is ex-
ploited to prevent livelock.

A c k n o w l e d g e m e n t s

The authors thank R. Cypher for his valuable com-
ments and help with the probabilistic proof, and C.
Ebeling for many challenging discussions.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Is]

A. Borodin and J.E. Hopcroft. Routing, Merg-
ing and Sorting on Parallel Models of Com-
putation. Journal of Computer and System
Sciences, vol. 30, pp. 130-145, 1985.

J.N. Ngai and C.L. Seitz. A Framework
for Adaptive Routing in Multicomputer Net-
works. Proc. of the 1989 A CM Symposium of
Parallel Algorithms and Architectures, pp.l-9.

W.J. Dally and P. Saung. Design of a Self-
Timed VLSI Multicomputer Communication
Controller. Proceedings, International Confer-
ence on Computer Design, 1987, pp. 230-234.

C. Kaklamanis, D. Krizanc and A. Tsantilas.
Tight Bounds for Oblivious Routing in the
Hypercube. Proc. of the 1990 ACM Sympo-
sium of Parallel AIgorithms and Architectures,
(this issue).

L.G. Valiant and G.J. Brebner. Universal
Schemes for Parallel Communication. Pro-
ceedings of 13th Symposium on Theory of
Computing, ACM, pp. 263-277, 1981

Smaragda Konstantinidou. Adaptive, Mini-
mal Routing in Hypercubes. 6th MIT Con-
ference on Advanced Research in VLSI, 1990,
pp. 139-153.

W. Daniel Hillis. The Connection Machine.
MIT Press, 1985

D.A. Padua, D.J. Kuck and D.H. Lawrie.
High-Speed Multiprocessors and Compilation

[91

[10]

[11]

88

Techniques. IEEE Transactions on Comput-
ers, Vol. C-29, pp. 763-776, September 1980.

[12]

D. Gelernter. A DAG-based algorithm for
prevention of store-and-forward deadlock in
packet networks. IEEE Transactions on Com-
puters, vol. C-30, pp. 709-715, Oct. 1981.

D.C. Grunwald. Circuit Switched Multicom-
puters and Heuristic Load Placement. Ph.D.
thesis, Dept. of Computer Science, University
of Illinois at Urbana-Champaign, September
1989.

P.C. Yew. On the Design of Interconnec-
tion Networks for Parallel and Multiproees-
sot Systems. Ph.D. thesis, Dept. of Com-
puter Science, University of Illinois at Urbana-
Champaign, March 1981.

P.Y. Chen. Multiprocessor Systems: Intercon-
nection Networks, Memory Hierarchy, Mod-
eling and Simulations. Ph.D. thesis, Dept.
of Computer Science, University of Illinois at
Urbana-Champaign, January 1982.

