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A b s t r a c t  

We present the chaos router, an asynchronous 
adaptive router, which under certain circumstances 
can send messages farther from their destinations. 
The chaos router greatly simplifies the routing logic 
by removing the livelock protection of previous 
schemes. Through an effective use of random- 
ness, whose sources include that due to the adap- 
tively processed load, the natural timing differ- 
ences of selftimed circuitry and explicitly injected 
randomization, the chaos router avoids long mes- 
sage routes with high probability. In this paper 
the router is described, it is argued that the chaos 
router is deadlock free and probabilistically live- 
lock and starvation free, and simulation results are 
presented showing that the chaos router performs 
well. 

I n t r o d u c t i o n  

The problem of message routing in multicomput- 
ers, where processors communicate and synchro- 
nize by exchanging messages, has long been stud- 
ied. In this model of computation routing is as- 
sumed to be local, where routing nodes have no 
knowledge of the traffic load in other nodes, and 
continuous, where nodes inject messages indepen- 
dently of each other and without knowledge of the 
state of the network as a whole. 

State-of-the-art routers for MIMD machines 

*This  work was s u p p o r t e d  in p a r t  by  the  Defense 
Advanced  P r o j e c t s  Agency  u n d e r  C o n t r a c t  N00014-88-K- 
0453, in p a r t  by the  Office of Naval  Resea rch  u n d e r  Con-  
t r a c t  N00014-89-J-1368 a n d  in p a r t  by a n  IBM G r a d u a t e  
Fellowship.  

Permission to copy without fee all or part of this matertial is granted pro- 
vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Associ~ion for Computing Machinery. To copy otherwi.~, or to republish, 
requires a fee and/or specific permission. 

© 1990 ACM 089791-370-1/90/0007/0021 $1.50 

79 

such as the iPSC, NCUBE and Ametek imple- 
ment oblivious routing [1], where a message's path 
is completely determined by the (source-address, 
destination-address) pair. Oblivious routers re- 
quire only relatively simple logic in order to route 
messages and to guarantee the three essential prop- 
erties of every router i.e. freedom from dead- 
lock, livelock and starvation. As a result, oblivi- 
ous routers can be very fast under light to moder- 
ate random traffic [2, 3]. However, they have an 
~(v/~/d) worst case routing delay in any N node, 
degree d network [4] and they are fault intolerant. 

Among proposed alternatives are randomized 
touters, of which Valiant and Brebner's [5] is an 
instance. It requires that messages be first routed 
from their source to a randomly selected interme- 
diate node and from there to their destination. 
This router has been analyzed and shown to have 
O(logN) expected time. The practical problem 
with this router is that it doubles the length of the 
average message path. Though negligible in the- 
ory, this factor of two is unacceptable in practice. 
Moreover, the router penalizes "average random 
traffic" to improve the worst case traffic, which is 
presumably rarer. 

Adaptive routers, another alternative to obliv- 
iousness, select message paths based on the local 
load characteristics. Thus, adaptive routers can 
diffuse local congestion by exploiting alternative 
paths to a destination; they are also more fault 
tolerant, a consideration that becomes increasingly 
important as systems get larger. Minimal adaptive 
routers, where messages are always routed closer 
to their destination, have been proposed [6]. How- 
ever, our simulations show that nonminimal adap- 
tive routers, where messages are permitted to be 
detoured or misrouted, i.e. sent further from their 
destination in the presence of congestion, are bet- 
ter at handling non-uniform traffic. Examples of 
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adaptive, nonminimai routers include Hillis' Con- 
nection Machine router [7], the Ngai and Seitz [2] 
router and the Shuffle-Exchange router suggested 
in [8]. In the class of adaptive, nonminimal touters 
one can also include Gelernter's router [9], where 
nodes can occasionally refuse messages and Grun- 
wald's [10] backtracking circuit switched router. 

Though potentially fast and robust, nonminimal 
routers are subject to firelock, a serious problem 
wherein messages fail to be delivered because they 
are repeatedly derouted. The "standard" * solution 
to livelock is to t imestamp every message; when 
multiple messages require the same channel, the 
oldest is selected; eventually any message "ages" 
enough to be delivered. The problems with this 
prioritized solution to livelock and its variants are 
(1) the t imestamp,  which must  be sufficiently large 
not to overflow, adds bits to the message, and (2) 
most critically the process of selecting the oldest 
among messages competing for a channel compli- 
cates the routing decision. It adds gate delays, 
slows the router and would seem to prejudice the 
chances that  adaptive routers could replace oblivi- 
ous routers. 

The chaos router, proposed here, is an asyn- 
chronous adaptive, nonminimal router that  elim- 
inates the need for livelock protection. The in- 
tuit ion is that  the router exploits randomness to 
keep the network "chaotic," thereby causing the 
repetitious routing patterns,  typical of livelocked 
messages, to decay. 

The principal new ideas in the chaos router are 
as follows. First, the chaos router is fully asyn- 
chronous; not only do nodes operate independently 
of each other but even channels operate indepen- 
dently of each other and the router's internal logic. 
This asynchrony makes all of the routers effectively 
independent  of one another and it should be con- 
trasted with synchronous routers like the CM [7] 
and with other asynchronous routers like the Ngai 
and Seitz [2] router where a variety of dependences 
exist within the router and between routers. 

Second, the circuitry of the touters is selftimed, 
i.e. not clocked. Thus  the touters will run at differ- 
ent rates because of differences in the tasks being 
performed as well as variations in the electronics. 
Though selftiming has been used before, the im- 

*In SIMD m a c h i n e s  such  as the  C o n n e c t i o n  Machine ,  
l ivelock can  b e  addres sed  by global  measures .  

portance here is that  because of the asynchrony 
just mentioned these t iming differences propagate 
and lead to differences in when and how the touters 
perform various activities. These t iming differences 
are in addition to the behavioral differences engen- 
dered by the dynamic characteristics of the load. 

Third,  the chaos router explicitly randomizes its 
message selection during derouting. This means 
that  unlike other nonminimal routers the chaos 
router guarantees a nonzero probability that  a mes- 
sage can avoid derouting. We should note that  
the concept of randomly selecting which message 
to deroute was also suggested in [8, 11, 12] al- 
though in an entirely different context. In par- 
ticular, the context was message switching on a 
synchronous shuffle-exchange network and its vari- 
ants (multiple-layer, multiple-stage, buffered). In 
all these cases, when necessary, one of the two con- 
flicting messages at the inputs of a switch was ran- 
domly selected for derouting. Livelock issues were 
not considered. 

The principal effect of this chaos, besides as- 
suring network unpredictability and removing the 
overhead of livelock protection, is to make the 
router probabilistically livelock free, i.e. the proba- 
bility of a message remaining in the network longer 
than t seconds goes to zero as t increases. In prac- 
tice, as the simulations show, probabilistic live- 
lock freedom can be considered to be operationally 
equivalent to absolute livelock freedom. 

In this paper we describe the chaos router. 
We abstract chaotic routing and argue that  chaos 
routers are deadlock free and probabilistically live- 
lock and starvation free. Finally, we present simu- 
lations illustrating the performance of a 256 node 
chaotic network. The chaotic network always runs 
faster than the prioritized network and exhibits 
substantially less derouting. 

A n  a s y n c h r o n o u s ,  r a n d o m i z e d ,  a d a p t i v e  
r o u t e r  

In this section, we will present our routing algo- 
rithm. For the presentation we assume a binary hy- 
percube topology, al though the same routing con- 
cepts can be used with any k-ary d-cube. 

We assume that  our router implements an asyn- 
chronous computat ional  model. Each node oper- 
ates at its own rate. It communicates with its cor- 
responding processor using an injection and deliv- 
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ery buffer and with each of its log N neighbors via 
an asynchronous channel protocol, using an input  
and an output  buffer per channel, called the Input  
and Output  Frames, capable of holding one mes- 
sage each. 

Let us consider a hypercube with N nodes, D = 
logN dimensions and nodes A and B, neighbors 
along dimension i, 0 < i < D. We assume that  
nodes A and B are connected along dimension i by 
a bidirectional channel .  If node A wants to send a 
message to B, it places the message in its Output  
Frame(i). The message can be transmitted if the 
Input  Frame(i) of B is empty  and the channel is 
available in the A to B direction. When in Input  
Frame(i) of node B, the message will remain there 
until node B is ready to read from that particular 
dimension. For the following we assume that  a 
ful l /empty bit is associated with each Input  and 
Outpu t  Frame to implement this interface. 

Besides the log N pairs of Input  and Output  
Frames, each routing node consists of a Queue and 
a source of randomness that ,  upon request, selects 
one of the messages in the Queue with equal prob- 
ability. The block diagram of a routing node is 
shown in Figure 1. 

Each routing node examines its dimensions in a 
cyclical order, executing the following infinite loop: 

current_dim=O ; 

while (True) do begin 

current_dim=current_dim+l mod D; 
while(Output Frame(current.dim)~=Full) 

current_dim=current_dim+l mod D; 
> 

Match (current_dim); 
if (Queue==Full AND no match AND 

Input Frame(current_dim)-=Fu11) 

Deroute; 
> 

Send(current_dim); 
Read(current_dim); 

end. 

where Match, Read and Send are defined as follows: 
Match examines the messages in the Queue in a 

FIFO order and selects the first message that  can 
be routed along the current dimension, if such a 
message exists. 

l l 1 
I Oframe.O O frame.1 • . . ] Oframe.k 

l l 1 

head  

tail 

I'*  ion ' J I 

1 l l 

( ( 1 
Figure 1: Block diagram of a routing node. 

Deroute randomly selects a message to be der- 
outed from the Queue. This operation is invoked 
if the previous Match fails to produce a message 
to be routed, the Queue is full and a message has 
to be read from the Input  Frame of the current 
dimension. 

Send removes from the Queue the message se- 
lected by the previous Match or Deroute opera- 
tion, if such a message exists, and places it into 
the Output  Frame of the current  dimension. 

Read removes a message from the Input  Frame of 
the current dimension, if such a message exists. If 
the message has reached its destination, it is deliv- 
ered, otherwise it is added to the end of the Queue. 
If the Queue is not Full and there is a message wait- 
ing in the injection buffer, it is added to the end 
of the Queue. Notice that  one might choose to 
control the injection rate by limiting the frequency 
of injection or by requiring that  new messages are 
injected iff the Queue capacity is below some pre- 
determined threshold. 
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D e a d l o c k ,  l i v e l o c k  a n d  s t a r v a t i o n  f r ee -  
d o m  

In every multicomputer network with finite size 
buffers and continuous, local routing one would like 
to guarantee the following properties: 

• Deadlock freedom - no message is permanently 
stalled. 

• Livelock freedom - every injected message is 
eventually delivered. 

Input 

Frame 

Output 

Frame 

Node P 

I 

Node Q 

Input 

-[ Mqi Frame 

Output 

I Mqo Frame 

• Starvation freedom - every node is able to in- 
ject a message. Figure 2: Deadlock configuration. 

In the following, we will examine in detail the 
chaos router with respect to these three proper- 
ties. Before proceeding, we should emphasize that 
we are describing a practical router; all its primi- 
tive operations, like a channel transmission, Match, 
Read etc., take a bounded amount of time to com- 
plete. Thus in the following, whenever we men- 
tion that an event is of finite duration, this means 
that there is a maximum amount of time such that 
the event is guaranteed to complete in time less or 
equal than the maximum. 

F r e e d o m  f r o m  dead lock .  Freedom from 
deadlock is in general easy to guarantee in non- 
minimal routers such as the chaos router. As op- 
posed to previously suggested nonminimal routers 
that guarantee progress at the node level, the chaos 
router guarantees progress along each dimension 
of a node. We believe this is a major strength 
of our router and significantly increases its fault- 
tolerance. 

Let us consider message M that has already been 
injected into the network and is currently in some 
node P. Within node P,  message M can be in one 
of three places 

• In some Output Frame(i), 0 _< i < log N. 
• In some Input Frame(j),  0 _< j < log N. 
• In the Queue. 

In order to show that it is impossible for a mes- 
sage to be stalled in any of the above cases, we will 
need the following two lemmas. 

L e m m a  1: Consider node P and dimension 
i,0 _< i < logN, such that node P last examined 
dimension i at time to. Then, node P will examine 
dimension i at time to + ~f where $ is finite. 

Proof :  By the construction of our algorithm, 
node P executes an infinite loop, examining its 
dimensions in a cyclical order. For each dimen- 
sion, if the Output Frame of that dimension is full 
the node proceeds to examine the next dimension, 
otherwise it performs one or more of the follow- 
ing operations: Match, Deroute, Send and Read. 
The duration of each one of these operations, al- 
though not constant, depends only on the state of 
node i; there is no need for communication or syn- 
chronization between neighboring nodes in order 
for these operations to complete. Thus, it takes a 
finite amount of time for a node to service each di- 
mension and as a result, the elapsed time ~ between 
two subsequent examinations of some dimension i 
is finite. 

L e m m a  2: Consider nodes P and Q, neighbors 
along dimension i,0 _< i < logN,  such that neither 
P nor Q is currently examining dimension i. Then 
one of the four I/O Frames (the Input and Output 
Frame(i) of P and Input and Output Frame(i) of 
Q) must be empty. 

P roof :  For the sake of contradiction let us as- 
sume that all four I/O Frames are full. Let Mpl 
be the message in the Input Frame(i) of P, Mpo 
the message in the Output Frame(i) of P, Mq~ the 
message in the Input Frame(i) of Q, and Mqo the 
message in the Output Frame(i) of Q. This con- 
figuration is shown in Figure 2. We will show that 
this configuration is impossible. 

Let us consider the order in which the messages 
were placed in the I/O Frames. Message Mp~ was 
placed in the Input Frame of node P after message 
~VIpo was placed in the Output Frame of node P. 
Otherwise, by the construction of the algorithm, 
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Mp~ would have been read following the Send op- 
eration that  placed message Mpo in the Output  
Frame(i) of P.  Let us denote this ordering of 
events as M ~  < M~ (~1). Similarly, message Mqi 
was placed in the Input  Frame(i) of node Q after 
message Mqo was placed in the Output  Frame(i) of 
node Q. Let us denote this ordering of events as 
Uqo < iq i  

Furthermore,  message Mpi was placed in the In- 
put  Frame(i) of node P before message Mqo was 
placed at the Outpu t  Frame(i) of Q. This is true 
because Mqo moved to the Output  Frame(i) of Q 
as soon as this Frame became empty, an event 
that  happened when Mpi moved from the Output  
frame(i) of Q to the Input  Frame(i) of P .  Thus 

< 
Similarly, message Mqi was placed in the Input  

Frame(i) of node Q before message Mpo was placed 
in the Outpu t  Frame(i) of P ,  thus Mqi < M~ (~4). 

By combining inequalities (~1), (~2), (~;3) and 
(~4) we have Mpo < Mpi < Mqo < Mq~ < U~ 
which is a contradiction. • 

We should note here, that  while a node is ex- 
amining dimension i, it is possible for all four I /O 
Frames to be full, but only momentarily. This can 
happen between a Send and a Read operation. It 
is easy to see, that  the Read operation will result 
in an empty  Frame. 

Now we are ready to show freedom from dead- 
lock. 

T h e o r e m  1: For every message M that  enters 
Output  Frame(i),  0 _~ i < log N of some node P 
at t ime to, M is guaranteed to leave the Output  
Frame at t ime to + 5 where 5 is finite. 

Proof:  Consider nodes P and Q that  are neigh- 
bors along dimension i, 0 _~ i < log N and message 
M that  node P placed in its Outpu t  Frame(i) at 
time to. By the construction of our router, the 
only possible move for message M is that  from the 
Output  Frame(i) of P to the Input  Frame(i) of 
Q. Thus,  there are two cases, either the Input  
Frame(i) of Q is full or empty: 

1. The Input  Frame(i) of node Q is full. Then 
there are two cases. 

a. The Output  Frame(i) of Q is full. Then 
from Lemma 2 the Input  Frame(i) of node P 
must  be empty. Thus,  the Output  Frame(i) 
of Q can transmit  its message to the Input  
Frame(i)  of node P as soon as the channel 

is t ransmitt ing in the P to Q direction. As- 
suming finite length messages, transmission 
is guaranteed to complete in a finite amount 
of time, leaving the Output  Frame(i) of Q 
empty. Then, the state of the system is de- 
scribed by the following case lb. 

b. The Output  Frame(i) of Q is empty. Then, 
the first time that  node Q examines dimen- 
sion i, an event that  is guaranteed by Lemma 
1, it will read from its Input  Frame(i). Thus, 
Input  Frame(i) of Q is guaranteed to become 
empty  within a finite amount  of time, result- 
ing in a system state as described in the fol- 
lowing case 2. 

2. The Input  Frame(i) of node Q is empty. In this 
case, the Outpu t  Frame(i) of P can transmit its 
message to the Input  Frame(i) of Q as soon as 
the channel is t ransmit t ing in the P to Q direc- 
tion, an event which is guaranteed to happen 
within a finite amount  of time. 

T h e o r e m  2: For every message M that enters 
Input  Frame(i), 0 < i < log N of some node P at 
time to, M is guaranteed to leave the Input  Frame 
at t ime to + ~ where/~ is finite. 

Proof:  By the construction of our router, there 
are two possibUities: 

1. The Output  Frame(i) of P is full. As long as 
this condition persists, each time node P exam- 
ines dimension i it will proceed to the next di- 
mension. But  by Theorem 1 we know that Out- 
put  Frame(i) is guaranteed to become empty in 
a finite amount  of time, resulting in a system 
state as described in the following case 2. 

2. The Output  Frame(i) of P is empty. Then, 
the first time node P examines dimension i, 
it will perform a Read operation on the Input 
Frame(i). If message M has reached its desti- 
nation it will be placed in the delivery buffer, 
and we assume that  this can happen in finite 
time, otherwise it will be added at the end of 
the Queue. Node P is guaranteed to have an 
empty slot in its Queue for message M since it 
can deroute a message along the empty Output  
Frame(i). 

T h e o r e m  3: For every message M that  enters 
the queue of some node P ,  M is guaranteed to leave 
the queue in a finite amount  of time. 
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P r o o f :  Let us consider message M that  enters 
the queue of some node P at t ime to; let us assume 
that  M is the i-th message in the queue, where 
1 < i < e and c is the queue capacity. Clearly, 
M can be routed along at least one dimension; let 
such a dimension be  j .  Furthermore,  there are at 
most  i - 1 messages in the queue ahead of M that  
can be routed along dimension j .  Let m be the 
number  of such messages. 

Let tl,t2,...tm, trn+X be the times that  node P 
sends a message along dimension j ,  where ti+l = 
ti + dfi, O < i < m. 

If right before t ime t,~+l message M is still in the 
queue, it is the first message in the Queue that  can 
be routed along dimension j and it will be routed 

at t ime tm+l. 
By Theorem I and Lemma 1, intervals ~fi, 0 < i < 

m are of finite length and message M is guaranteed 
to leave node P in a finite amount  of time. 

each derouting decision is -q-~-. Thus,  the prob- 
ability that  message M will be routed is at least 
e = (e-1)~ 

~, C / * 

M a i n  r e s u l t .  Using Lemma 3, we will prove in 
the following that  the probabil i ty of long paths in 
the network diminishes as their length increases. 

Let us define the path of a message in the net- 
work as a sequence of moves. At each move, mes- 
sage M either moves closer to its dest ination with 
probabil i ty p > e or further from its destination 
with probabil i ty q = 1 - p. Clearly, a message can- 
not move further than log N from its destination. 

Let us define a game as a sequence of l o g N  
moves. Message M starts  game i at distance ai 
and finishes at distance ai+l. Let li denote the 
event that  M was not delivered during game i and 
wi the event tha t  M was delivered during game i. 

Let Q(i) be the probabil i ty that  message M has 
not been delivered after i games. Then 

L i v e l o e k  a r g u m e n t s .  Having established 
freedom from deadlock, let us now consider free- 
dom from livelock. In nonminimal touters,  as mes- 
sages are allowed to move further from their des- 
tinations, some mechanism is required in order 
to guarantee  that  messages will eventually make 
progress towards their destinations. We have ar- 
gued that  the mechanism to deterministically guar- 
antee message delivery, i.e. priority routing, is 
quite expensive. In the following we will show that  
by choosing randomly a message to deroute,  the 
chaos router  guarantees message delivery with high 
probability. Lemma 3, formalizes the key idea of 
our router: no message is ever derouted with cer- 
tainty or in other  words, every message has a non- 
zero chance of avoiding derouting. 

L e m m a  3: 3~ > 0, such that  for every message 
M entering the queue of some node P , M will be  
routed with probabil i ty p > e and derouted with 
probabil i ty q = 1 - p. 

P r o o f :  By Theorem 3, there is a maximum 
amount  of time T = ~im=0 ~i that  message M can 
stay in the queue of some node P after which M 
will certainly be routed. During this time T,  node 
P makes a finite number  of routing decisions. Thus  
message M can be subjec ted  to at most a finite 
number,  r, of derouting decisions. At each derout- 
ing decision, a message is randomly selected from 
the queue with uniform probability. The prob- 
ability t h a t  message  M can escape  de rou t i n g  at  

Q(i)  = P(t i l i -1 . . l l )  = P(l i  l l i -a . .h)"  P(t i -1 . . t l )  

For simplicity,  let us subs t i tu te  Fk for lk...1211 , 
1 < k < i and let us define P(ll [ Fo) =- P(ll) and 

P(wi I F  o) .~ P ( w l ) .  Then 

Q(i) = P(l i l  F i_ l ) .P( l i - l  l F i - 2 ) " ' P ( l l )  (1) 

Clearly, P(tj l Fi-1) = 1 -  e ( w j  l Fj-1), 
1 < j < i. In the following we will est imate 
P(wj [ Fj-1). Let Sj,k denote the event that  mes- 
sage M starts  game j at Hamming  distance k from 
its destination. Events  Sj,k are mutual ly  exclusive 
and one of them necessarily happens. Thus 

P(wj [ Fj-a) = P(wjSj,11.3 .. u wjSj,logN I Fj-1) 

log N 
P(wj l Fj_x) = ~ P(wjSj,k I Fj-1) :0 

k=l 

log N 
P(wj l Fj-1) = ~ P(wj l Sj,kFj-1)'P(Sj,k [ F j - l ) .  

k=l 

Bu t  P(wj ] Sj,kFj-1) > ¢logN, thus  

log N 

P(wj  l Fj-1) > e l°gN Z P(Sj, k [ Fj-1). 
k=l 

V'I°gN P(Sj,k I F  j - l )  = 1 Since Z-,k=1 

P(w  I F -i) _> 
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P(li I F j -1)  _< 1 - e l°gN (2) 

Finally, (1),(2) ::0 Q(i) < (1 - el°gN) i. 

Thus the probabili ty tha t  M will not have been 
delivered after i games, where i ~ c<~ is: 

lim Q(i) = (1 - E l ° g N )  i = 0 
i..-~ o o  

The probabili ty P(i) that  M will be delivered 
after i games, where i ~ oo is: 

lim P ( i ) =  1. 

S t a r v a t i o n  a r g u m e n t s .  As described previ- 
ously, nodes are allowed to inject messages in the 
network iff the Read operation finds the Queue not 
full. Consider the following scenario. A node starts 
with a full queue and every time it services some 
dimension, it has to read a message that  has not 
reached its dest ination yet.  Such a node will be 
prevented from injecting. Different solutions have 
been suggested that  address this problem. 

The first solution is based on the observation 
that  any message delivered to a node, gives the 
node the right to inject a new message into the 
network. It requires that  for every message deliv- 
ered by the network, a Return  message is sent back 
to the original sender [Ngai and Seitz 89]. Clearly, 
this method increases the network traffic dramati-  
cally, flooding the network with messages that  con- 
tain no information. 

A different solution [Ngai and Seitz 89] requires 
that  nodes notify their neighbors each time they in- 
ject a message. If a node's injection rate is higher 
than the injection rate of its neighbors, the node 
has to stop injecting. This method is also expen- 
sive, requiring record-keeping and dedicated pins 
per channel for nodes to exchange injection rate 
information. 

In the following we present a new, simple and ef- 
ficient injection policy. Our method is based on the 
concept of an injection token that  visits all nodes 
in some predetermined order giving them the right 
to inject. 

Let us consider a hypercube with N nodes and 
a directed Hamiltonian cycle containing the N 
nodes. For each node i, 0 < i < N,  let us define 
Neighbor(i) = j, with 0 < j < N such that  (i,j) 

is an edge of the Hamiltonian cycle. Furthermore,  
let us consider a message marked in some unique 
way, called the injection token. When node i re- 
ceives the injection token, it determines whether it 
has been prevented from injection longer than some 
predetermined time Td. If not, it sends the injec- 
tion token to node j ,  where Neighbor(i) = j. Oth- 
erwise, it consumes the injection token thus creat- 
ing one empty  slot in the queue which can be filled 
by a newly injected message. A message injected 
into the network following the consumption of the 
injection token has to be marked appropriately; let 
us call such a message a tagged message. Upon de- 
livery of a tagged message, the injection token has 
to be regenerated. Then there are two cases: 

. Nodes can compute  the address of any Neighbor 
in the t tamil tonian cycle. Then,  the recipient of 
a tagged message can regenerate the injection 
token and send it directly to the Neighbor of 
the sender of the tagged message. 

. Nodes are assigned ra ther  than compute  the ad- 
dress of their Neighbors. In this case the recipi- 
ent of a tagged message has to send a null mes- 
sage to the sender in order to give it the chance 
to regenerate the injection token. The transmis- 
sion of this null message can be avoided iff every 
node knows the Neighbor of every other  node in 
the network. The advantage of assigning rather 
than computing Neighbors is fault-tolerance. In 
the presence of one or more faulty nodes, a new 
Hamiltonian cycle can be computed that  avoids 
the faulty nodes. Then  a new assignment of 
neighbors can take place. 

Clearly, our injection policy guarantees access to 
the network subject to guaranteed delivery of the 
three marked messages required to implement the 
protocol. Thus,  our injection policy guarantees ac- 
cess to the network in a probabilistic way. Finally, 
we should mention that  more than one token can be 
used, each one visiting either all nodes as described 
previously or different subsets of the nodes. 

P e r f o r m a n c e  e v a l u a t i o n  

The key issues for any practical router are imple- 
mentat ion efficiency and performance. In the pre- 
vious sections we presented the novel livelock and 
starvation prevention schemes of the chaos router. 

85 



Both these schemes can be efficiently implemented 
and greatly simplify the node's logic. In this sec- 
tion we will address the performance issue. We will 
present performance measurements of the chaos 
router and compare it with the performance of two 
other routers of similar nature: the priority router 
and the natural router. 

The priority router, differs from the chaos router 
in that it assumes age information for every mes- 
sage, assigns higher priorities to older messages and 
routes messages according to their priority in order 
to guarantee message delivery. In order to imple- 
ment this age-priority scheme, a priority queue is 
used in each node. Although the priority router 
has to pay the overhead of comparing the ages of 
messages, it does have one performance advantage 
over the chaos router. In particular, in the chaos 
router messages are serviced in a FIFO order; thus 
older messages can "loose" to younger messages. In 
order for the chaos router to outperform the prior- 
ity router, the overhead of age comparisons of the 
priority router should outweigh the possible "out 
of order" delays of the chaos router. 

The natural router, is almost identical to the 
chaos router except for the way it deroutes mes- 
sages. The natural router always deroutes the last 
message in the Queue. The performance of the nat- 
ural router is of interest, as it allows us to evaluate 
the relative performance effect of randomization in 
the chaos router. 

We measured performance using an event-based 
simulator of a 256 node ncube. More than 150,000 
messages (at least 600/node) were injected in each 
simulation run. The routers were specified at a fine 
grain. All three routers were assumed to have the 
same basic structure and execute similar Match, 
Read, Send and Deroute operations. Time was 
measured in units of a "step", which is defined to 
be the time for a router to decide if a message can 
be routed along dimension k; this is likely to be a 
few gate delays. 

The routers were compared assuming both fast 
channels (5 steps per transmission) and slow chan- 
nels (100 steps per transmission). Thus, for the 
same message size, fast channels can be interpreted 
as "wide" or high bandwidth channels and slow 
channels can be interpreted as "narrow" or low 
bandwidth channels. Similarly, for the same chan- 
nel bandwidth, the performance of fast and slow 
channels is an indicator of the effect of message 

size. Tables la-3a show the results under fast chan- 
nels and tables lb-3b the results under slow chan- 
nels. In each category (fast, slow) the same load 
was applied to all routers, that load being the max- 
imum sustained load by the slowest router. 

Three types of traffic patterns were used: 

• Destinations selected uniform randomly (Ta- 
bles la  and lb). 

• A randomly selected set of nodes 3 times more 
likely to be destinations than other nodes (Ta- 
ble 2a and 2b). 

Transpose pattern, i.e. the destination is the 
source address bit-sequence with the front and 
back halves exchanged (Table 3a and 3b). 

The first case is the standard (and probably un- 
likely) random traffic. The second corresponds to 
a mild form of "hot spots." The third case is de- 
signed to incur substantial congestion in the "mid- 
dle" of the message routes. 

The quantities reported are the average message 
delay in steps, the worst observed delay of any mes- 
sage in steps, the maximum number of times any 
message is derouted and the fraction of derouting 
moves versus total moves. 

The available results show the chaos router to be 
at least 20~ and as much as 70% faster than the 
priority scheme. Thus, the latency of performing 
comparisons in a priority router far outweighs the 
benefits of "in order" delivery. 

C o n c l u s i o n s  

We have presented the chaos router, an adaptive, 
nonminimal, randomized router. By randomly se- 
lecting which message to deroute, the chaos router 
eliminates the need for priority routing. This 
greatly simplifies the router's logic. More impor- 
tantly, while priority-based routers have to prior- 
itize messages all the time, in the chaos router 
the overhead of the livelock prevention mecha- 
nism is introduced only when a message has to be 
derouted. We also presented an efficient scheme 
for starvation prevention that significantly reduces 
the communication requirements of previously sug- 
gested schemes. Simulation results exhibit the 
good performance of the chaos router under ran- 
dom traffic and traffic known to create hot-spots. 
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Router 

priority 

chaos 592.68 

natural 544.58 

Fast channels 

delay delay Drt 
I 

733.85 6180 2 

1563 2 

1558 1 

Deroute 
fraction 

7.6 10 -4 

7.8 10 -s 

4.9 10 -s 

Router 

priority 2179.42 

chaos 1885.42 

natural 1809.86 

S l o w  channels 

[IAverage W o r s t [ M a x [  
delay delay Drt 

11078 2 

5191 2 

4559 2 

Deroute 
fraction 

0.011 

1.5 10 -3 

1.1 10 -3 

Table la: Performance measurements under 
uniform random traffic. 

Average 
Router delay 

priority 790.99 

chaos 626.59 

natural 570.25 

Worst I Max Deroute 
delay Drt ~action 

8016 2 3.8 10 -3 

1943 2 2.6 10 -4 

1690 2 2.6 10 -4 

Table lb: Performance measurements under 
uniform random traffic. 

I [  w°rst I Oer°ute 
Router delay delay Drt fraction 

priority 2250.18 

chaos 1892.69 

natural 1820.92 

13492 3 0.019 

! 
6035 3 3.5 10 - 3  

5200 2 3.0 10 -3 

Table 2a: Performance measurements for 3X 
hot-spots. 

Router I Averagedelay ] 

priority 1597.57 

chaos 894.60 

natural 911.82 

Worst Max ] Deroute 
delay Drt I fraction 

6039 3 5 10 -2 

2389 2 

2127 2 

1.9 10 - 3  

2.2 10 -3 

Table 2b: Performance measurements for 3X 

Router 

priority 3432.93 

chaos 2425.49 

natural 2362.90 

hot-spots. 

I ]Ave rage lW°r s t  IMax  I 
delay delay Drt 

13540 

7346 

5951 

Deroute 
fraction 

3 0.06 

4 7.5 10 - 3  

2 5.7 10 - 3  

Table 3a: Performance measurements for 
"Transpose." 

Table 3b: Performance measurements for 
"Transpose." 
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Variants of chaotic routing, currently under in- 
vestigation include a router which, when in the der- 
outing state, selects the last message in the queue 
and deroutes it along a randomly chosen dimen- 
sion, and a router where no randomization is in- 
troduced but the randomness of the system is ex- 
ploited to prevent livelock. 
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