
Technology Projection 
Modeling of Future Com- 
puter Systems 
AI Cutaia 
Prentice-Hall, Englewood Cliffs, N J, 1990 
280 pages 
ISBN 0-13-898479-4 

Perhaps nowhere has the pace of tech- 
nological change been more evident than in ~ 
the computer industry. As such, those in- 
volved in forecasting, planning and develop- 
ing computer systems, as well as those 
looking to take advantage of capabilities 
provided by future computer systems, 
urgently need a way to influence and exploit 
those changes. This book provides such a 
way, and it does so in a concise, yet thor- 
ough, manner. 

The text is well-written and well-il- 
lustrated, and progresses in an on orga- 
nized, logical sequence. Chapters 1 and 2 of 
the book discuss the power of technological 
changes and their influence on computer 
designers, manufacturers, technologists, 
and end users. Chapters 3 and 4 present a 
selection of key technological drivers that 
will affect the development of mid-range 
and entry systems through the year 2000. 
Chapters 5 through 7 develop a system 
model and show the generic effect of tech- 
nology changes on that system model. 
Chapters 8 through 10 describe the pro- 
jected effects of new software applications 
enablers on current computer system hard- 
ware and software. The chapters include a 
discussion of parallel systems architectural 
designs, showing the significant possible 
mid-range system performance possibili- 
ties. Chapter 11 ties all the preceding ma- 
terial together, summarizing modeling 
results for the years 1987 to 2000 from a 
total systems view point. Appendix A pre- 
sents hardware specifications used to de- 
velop the generic system model in chapter 
6. These specifications change over three 
time periods: 1987-1991, 1987-1995, 
and 1987-2000. Appendix B presents the 
approximation model used to make the 
qualitative projections about how new 

technologies will affect computer system 
response times. Appendix C presents the 
model used to analyze the performance and 
capacity of the projected system model. The 
book closes with a good reference list, and a 
thorough index. 

The book is written for those interested 
in future views of system architecture, 
system design, and system component 
technologies. As intended, it will likely be 
very useful to (1) students in computer 
science or engineering focusing on computer 
architecture, (2) professional engineers 
interested in advanced hardware and soft- 
ware design, (3) computer planners and 
strategists, (4) engineers interested in 
component technology developments, and 
(5) computer users interested in future 
systems architecture and new applications. 
The book succeeds in accomplishing its two 
major objectives. First, it provides a 
methodology for computer systems devel- 
opment forecasting. This methodology in- 
cludes performance evaluation tools that 
enable quantitative evaluation of how 
technological changes will affect system 
attributes. Second, the book provides a 
flexible method for maintaining a continu- 
ally updatable understanding of expected 
technological advances through the year 
2000. In the book, the author focuses on 
entry and mid-range systems, although the 
techniques he presents can be applied to the 
analysis of other computer systems. 

The approach taken in Cutaia's method- 
ology differs from those of previous au- 
thors. Cutaia directly relates detailed 
technology changes to changes in system ar- 
chitecture and structure. He avoids the 
general notions that future technology 
changes will merely be linear extrapola- 
tions of the past and that future system 
structures will be similar to those we hold 
dear today. Instead, he goes a step further, 
and assumes that future technologies will 
affect both the developer's and end user's 
views of future computer systems. In this 
way, system planners can accurately 
forecast not only what will be technologi- 
cally feasible but also what will become 
marketable. For example, the technology 
calendar described by the author in chapter 
4, is a table that shows the expected changes 
in component technologies during a selected 

152 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F121956.773549&domain=pdf&date_stamp=1991-03-01


time period. Such a tool can be used to de- 
termine the relative position of competitors 
and which key technology drivers are criti- 
cal for an existing or future computer sys- 
tem. 

This book is a well-written and useful 
work. And it comes at a time when it is 
much-needed. Those concerned with the 
pace, direction and impact of technological 
changes on the computer industry ought to 
have a copy. 

reviewed by: 
Keith Anthony 
2278 Maryland Drive 
Xenia, OH 45385-4663 

Optimizing FORTRAN 
Programs 
C.F. Schofield 
Halstead Press, 1989 

As a practitioner of compiler opti- 
mization (ie., one who has written opti- 
mizing compilers), I was disappointed when 
I discovered that "Optimizing Fortran 
Programs" is written for users of high- 
speed computers and not for authors of 
compilers. The title may result in the book 
not being used by the audience for which it 
has the most utility. That would be unfor- 
tunate, for this 300-page volume can be 
most useful for large number of users eager 
to get maximum performance from their 
computer systems. 

Although the date of copyright of this 
book is 1989, it appears to have been 
written no later than 1984 (with occasional 
anachronisms). Consequently, subsequent 
advances in compilers have not been re- 
ported. This makes some of the advice un- 
necessary and a little bit of the advice 
counterproductive. 

The author uses five machines as rep- 
resentative of different classes of computer 
systems/computation: The CRAY 1, the 
CYBER 205, the Amdahl 470 (which also 
represents the IBM 3770), the ICL 3980, 
and the Apple Macintosh. Most of the source 
program writing techniques are described 

in terms of their effect upon each of the 
target machines and in terms of execution 
time in a "before and after" comparison. 

Chapter 1, the Introduction, sets the 
background and describes the context in 
which code optimization is done. Although 
Amdahl's Law is usually taken to refer to 
parallelism, a variant is illustrated to show 
the affect of optimization on different 
fractions of code. 

Nom Chapter 2, General Optimization, 
describes well known machine-independent 
optimization techniques. These include 
constant propagation, common sub-ex- 
pression evaluation, code motion, and 
strength reduction,. This chapter should be 
useful to all but the most knowledgeable 
scientific programmers. 

Chapter 3, Storage, explains the concept 
of banked memory and its effect on storage 
access time. Programmers are told how to 
avoid access patterns which cause bank 
conflicts. Paging and caching are similarly 
described. 

Chapter 4, Loops, begins with the gen- 
erally inaccurate statement that "Complex 
loop structures involving if and go to 
statements should be avoided (as they are) 
...unlikely to be recognized as a loop by most 
compilers, and will therefore not be opti- 
mized". This section of the book, although 
useful, is rather dated. References sug- 
gesting compilation in FORTRAN 66 are not 
useful today. The discussions of loop inter- 
change and contiguity are valuable. Although 
"parallel computers" (Hockney and 
Jesshope) is among the references, it ap- 
pears not to have contributed to the author's 
explanation of the effects of vector length on 
speed. A lengthy analysis of loop unrolling 
follows. For the careful patient reader, 
many pointers are offered. The chapter 
includes with a discussion of branching 
within loops. Unfortunately, recent com- 
piler advances, such as those found in the 
Fujitsu compiler, with its use of the "true 
ratio", readers are not mentioned. 

Chapter 5, Vectorization of Loops, dis- 
cusses material in the context of the CRAY 1 
and the CYBER 205. In 1989, these ma- 
chines are already obsolete. These general 
principles ok vectorization remain un- 
changed. However, the specific timings are 
of little value. Additionally, the space given 

153 


