
R e s e a r c h a t A l ta ' i r 1

Edited by Philippe Richard

GIP Altgir
B. P. 105, 78153, Rocquencourt,

France
e-mail: philippe@bdblues.altair.fr

Altair is a five year project which began in Septem-
ber of 1986. Its goal is to design an implement a next
generation database system. The five year project was
divided in two phases: a three year prototyping phase
and a two year phase devoted for one part to the de-
velopment of a product from the prototype and for the
other part to a new research effort.

The three year phase ended by the demonstration of
the V1 prototype of the O2 object-oriented database sys-
tem which has been distributed for experimentation to
more than 40 universities and about 13 industrial part-
ners.

The contribution of the Altair group to the database
research community has been mainly in three areas: data
model and database languages, object stores, and pro-
gramming environments. Furthermore, all these efforts
have been integrated in a consistent way into the V1
prototype. The results of this research and development
effort are being summarized in a book [BDKgl] which is
a commented collection of papers, most of them already
published in the proceedings of a number of internation-
ally recognized conferences. We briefly survey in the
following the 02 activities.

1 O v e r v i e w

O2 is an object-oriented database system which inte-
grates the current database technology with an object-
oriented programming paradigm. The O2 data model
merges both objects with identity and values. Values are
manipulated through a set of predefined primitives, and
value equality is structural. Objects encapsulate val-
ues, and are manipulated through user-defined methods.
Object equality is identity. Values are built using the
set, list and tuple constructors. This feature allows the
application programmer to built complex nested data
structures. Among our research results, we. have clearly
established the power of object identity for three critical
purposes: (i) to represent data structures with sharing

1 Altair is a consortium funded by IN2 (a Siemens subsidiary),
BULL, INRIA (the French National Institute in Computer and
Control) and LRI (the Computer Science Hesearcch Laboratory of
the University of Paris XI).

and cycles, (ii) to manipulate sets and (iii} to express
database queries. Another important aspect of object-
oriented languages is the use of methods for redefining
the behavior of objects. In this context, the schema def-
inition merges both structural and behavioral aspects.
Thus, providing a consistent view of the schema is a cru-
cial problem in ease of schema updates. This problem
has been largely studied through two aspects: formaliza-
tion and use of incremental compilation techniques.

The requirements to design and to support data-
intensive applications such as office information systems,
engineering CAD~CAM systems and CASE systems im-
pose the integration of a programming language into a
database system. The solution taken by O2 is to support
two database programming languages, CO2 and BasicO2
(built from the C and Basic languages), and a query
language for end users, rather than developing a new
database programming language from scratch.

In order to efficiently implement the O2 data model
and languages, the system architecture consists of two
layers. The first one is concerned with the graphical
interface, the languages processor and the schema man-
ager. The second one is the O2 object manager which
implements structural operations on objects, provides
support for message passing, and performs associative
access operations. The 02 system has both a worksta-
tion and a server component. Problems that have been
studied deal with system distribution between the server
and the workstations, efficient access to data on disk,
clustering of objects and versioning.

In a database application, the code dedicated to
man/application communication represents up to 60%
of the overall code. Thus, an important contribution of
02 is its programming environment and its user interface
generator. The 02 programming environment supports
a browser for viewing the database schema and objects
and a debugger which offers functionalities directly at-
tached to the object-oriented features of O2. The 02 user
interface generator is a toolkit extension which allows to
display and edit multi-media complex objects. It also
mixes direct manipulation of data with query facilities.

Evaluation of the V1 prototype has also been one
of our activities. This was done by developing and ex-
perimenting with real database applications. This was
an important source of feedback for improving the func-
tionalities of the languages.

Since September 1989, Altffir has started its second
phase. The Altair group has now two goals: the first is to
build an industrial strength from the V1 prototype and
the second is both to initiate new research directions and
to pursue the research effort on 02. The presentations
which follow are the current activities of the research

S I G M O D RECORD, Vol. 20, No. 1, March 1991 53

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122050.122057&domain=pdf&date_stamp=1991-02-01

group at Altair. The research directions include data
models and languages (Section 2), programming envi-
ronment and interface (Section 3) and system aspects
(Section 4).

References

[BDKgl] F. Bancilhon, C. Delobel and P. Kanellakis
Eds. Building an object-oriented database sys-
tem: the 02 story. To be published by Morgan
Kanfmann in 1991.

2 D a t a m o d e l s a n d L a n g u a g e s

Participants: G. Barbedette, C. Bauzer-Medeiros,
S. Cluet, C. Delobel, C. L~cluse, E. Penny and
P. Richard.

2.1 D a t a Models and D B P L
Existing database programming languages provide the
application programmer with a rich type system which
includes bulk types and record types and a computing
power greater than relational systems. However, they
do not provide any equivalent of a database schema. In-
deed, type systems characterize values domain and are
used for the purpose of security and efficiency. Unlike
integrity constraints, they do not capture the seman-
tics of extensions, nor of their dynamic properties. In
most database programming languages, the constraints
relevant to an application are scattered into the applica-
tion code. This has several disadvantages: the user has
no global view of the constraints and they are defined
in a procedural way. Moreover, relational schemata are
inadequate because they are built on top of a limited
type system, using only one constructor, the relation.
The problem of defining a schema in the context of a
DBPL has been studied in [LR90, LR90a]. The last re-
port proposes a general schema definition for a DBPL,
which allows declarative integrity constraints, view defi-
nitions, structured schemata and contains a proposal for
DBMS interoperability. Moreover, this schema defini-
tion is general enough to be used with languages having
different type systems or programming paradigms. We
are now investigating the problem of managing integrity
constraints in this framework. More precisely, we are
trying to develop static (compilation) and dynamic (ex-
ecution) techniques for efficient constraint enforcement
inside general transactions.

An integration of the 02 data model into the Lisp
language [Barb90] is currently being done. The lan-
guage, called LispO2, has been specified and its inter-
preter is operational. A complete programming envi-
ronment is under implementation. A set of schema ma-
nipulation primitives has already been implemented and

is described in [Barbg0a]. A compiler for Lisp02 has
also been specified and is under implementation. This
compiler will generate C code and will provide numerous
optimizations. An object manager is also specified and
is under implementation. Its architecture has been de-
signed in order to experiment with various storage tech-
niques for complex objects.

2.2 Q u e r y Languages for
Ob jec t -Or i en t ed Da tabase s

A query language [CDLR89, BCD89] has been designed
and implemented for the 02 system. This language is
functional in nature with an SQL-like syntax. It al-
lows the end user to query complex objects according
to their interface (methods) and their implementation
(structure). An optimizer for this language has been de-
signed and is being implemented. Concurrently, a cost
model has been defined to study the performance of the
02 query optimizer. Several optimization techniques,
applicable in an object-oriented environment, are cur-
rently under study.

2.3 Active Da t abase s and Views
We have developed a production rule management sys-
tem which has been integrated into the V1 version of the
O2 system IMP90]. Rules are implemented as objects
which are considered to be part of a database schema
definition, and can be manipulated at will, either inside
a program or interactively, using the graphic user inter-
face of 02. The events that trigger rules can be either
related to time or to message sending. Unlike previous
proposals for rules for object-oriented databases, the sys-
tem takes into account the characteristics of the object-
oriented paradigm, allowing inheritance, encapsulation
and composition of rules. Finally, previous research on
active databases concentrates on support for end users
and applications, but ignores development activities; the
02 system allows the use of rules both for production ap-
plications and for debugging.

Views are discussed from a novel perspective
[Med89], which combines results from research on
database design and user interfaces. The proposed mech-
anism [MMg0] considers that a view is defined as a (vir-
tual) database on top of an existing database, by means
of view schema specification; the view is then created
by querying the underlying database. The difference be-
tween this approach and the traditional relational ap-
proach is that the result of a query corresponds to a set of
objects which can be browsed and updated; furthermore,
updates through views are handled by translating update
requests into view schema operations, similar to the ap-
proach of views as abstract data types. Present efforts

54 SIGMOD RECORD, Vol. 20, No. 1, March 1991

include employing the rule mechanism for implementing
view operations, and improving the performance of the
rule system.

2 .4 O b j e c t - O r i e n t e d D e s i g n

The goal of this activity is to define an iterative de-
sign method driven by the formal characterization of the
database schema to be modeled. Our major concern is
the integrated formalization of the notion tiff reusability
and of the design process. We are currently working on
the comparison of several design methodologies for in-
formation systems (IS) based on case studies together
with the Universities of Paris I and Grenoble. A state of
the art [Pen90] on design methods for information sys-
tems which defines an IS comparison pattern has been
written.

R e f e r e n c e s

[BCD89] F. Bancilhon, S. Cluet, and C. Delobel.
Query languages for object-oriented database
systems: the 02 proposal. In Proc. DBPL,
Salishan Lodge, Oregon, June 1989.

[Barb90] G. Barbedette. LISPO2: A Persis tent
Object-Oriented Lisp. In Proc. 2nd EDBT
Conf., Venice, February 1990.

[Barb90a] G. Barbedette. Schema Manipulation in
the LISPO2 Persistent Object-Oriented Lan-
guage. Research Report 56-90, Altair, August
1990.

[CDLR89] S. Cluet, C. Delobel, C. L~cluse, and P.
Richard. Reloop, an algebra based query
language for an object-oriented database sys-
tem. In Proc. DOOD, Kyoto, Japan, Decem-
ber 1989.

[LR89a] C. L~cluse and P. Richard. A Uniform Way of
Manipulating Objects and Structured Values
in Object-Oriented Databases. In Interna-
lional Workshop on Database Programming
Languages, Oregon Coast, USA, June 1989.

[LR89b] C. L6cluse and P. Richard. Model-
ing Complex Structures in Object-Oriented
Databases. In ACM Int. Syrup. on PODS,
Philadelphia, USA, March 1989.

[LR89c] C. L6cluse and P. Richard. The 192 Database
Programming Language. In proc. 15th
VLDB Conference, Amsterdam, The Neder-
lands, August 1989.

[LR90] C. L~cluse and P. Richard. Data Abstrac-
tion, Bulk Data and Relations in Database
Programming Languages. Research Report
44-90, Altair, June 1990.

[LR90a]

[MMg0]

[Med89]

IMP901

[MM9Oa]

[Pen90]

C. L6cluse and P. Richard. Data Base
Schemas and Types Systems for DBPLs, A
Definition and Its Applications. Research
Report 55-90, Altair, June 1990.
J.-C. Mamou and C. B. Medeiros. Interac-
tive Manipulation of Object-oriented Views.
Research Report to appear, Altair, 1990.
C. Medeiros. Views as a mechanism for
adding types to a database. In Proc. X V
Latin American Conference on Informatics,
pages 21-28, July 1989.
C. B. Medeiros and Patrick Pfeffer. A Mech-
anism for Managing Rules in an Object-
oriented Data base. Research Report to ap-
pear, Altair, 1990.
C. B. Medeiros and J.-C. Mamou. Visoes em
sistemas orientados a objetos: problemas e
implementa~go. In Proceedings, XV1 Con-
ferencia Latinoamericana de lnforrnatica, 92-
103, September 1990.
E. Penny. New Insights on Information Sys-
tem Design Methods. Research Report to ap-
pear, Altair, 1990.

3 P r o g r a m m i n g E n v i r o n m e n t a n d I n t e r -
f a c e

Participants: A. Doucet, J. M. Larchev6que,
J. C. Mamou and P. Pfeffer.

3 .1 P r o g r a m m i n g E n v i r o n m e n t

In most database application development environments,
the definition of the schema and the development of the
application programs are two separate activities, each of
them having their own environment. This presents some
drawbacks, namely, the lack of homogeneity, the need
to learn two different environments and the difficulty to
switch from one to the other.

We have designed and implemented a programming
environment [BDPT90, BDP90] for 02, named OOPE,
which integrates both the definition of the schema and
the programming activities in the same environment. It
contains graphical schema editors as well as classical pro-
gramming tools such as a browser, workspaces, a journal,
a debugger.

OOPE is implemented on top of the 02 system, us-
ing all the functionalities provided by O2. In particular,
it makes intensive use of the underlying database to store
and manage the information it handles.

We aim to extend the programming environment
with more general tools intended to assist the program-
mer during the development of applications. The whole

S I G M O D R E C O R D , Vol. 20, No. 1, March 1991 55

process of an application development involves the re-
quirements, functional and detailed specifications, the
programs, the tests and their reports, and various manu-
als. All these elements are related by relationships, such
as "generates, derives, implements, tests, ...". These re-
lationships may be used to check consistency and com-
pleteness of the elements, and to help the programmer
during the maintenance phase. They can also provide
the programmer with a development framework. A spec-
ification of such a system and its use for assisting the
programmer during the application development is un-
der way.

3 . 2 D i a g n o s t i c t o o l s

A debugger is an important part of a programming en-
vironment. As traditional debugging techniques do not
match the requirements of 02, we defined an entirely new
paradigm for debugging support [DP89, DPg0, Pfeg0].
The program under the control of the debugger builds
a database which reflects its internal state. Static infor-
mation (symbol tables) and dynamic information (exe-
cution stack) is managed by 02. The 02 debugger is
fully integrated into the programming environment, and
is designed and implemented in 02 and in C. The 02 de-
bugger also provides an event/trigger mechanism, which
automatically informs the programmer about possible
mistakes.

The event/trigger mechanism is implemented using
a CO2 interpreter coupled with the debugger. Other uses
of this interpreter, such as conditional breakpoints and
interactive modification of the compiled code, are under
study.

3 . 3 I n c r e m e n t a l D e v e l o p m e n t in a C o m -
p i l e d E n v i r o n m e n t

To reconcile the imperatives of generating optimized
code, detecting errors before program execution, and
providing a degree of flexibility and interactivity com-
parable to that found in interpretive environments, a
reflection is conducted on (i) very high-level features of
DBPLs contributing to source code reusability and mal-
leability, (ii) compile-time optimization of these features,
and (iii) incremental compilation and lazy optimization.
Results to date include an optimal incremental parser
[Lar90a] and the global design of a Language-Based Ed-
itor with the capacity of generating and incrementally
updating optimized code [Lar90b]. Current research fo-
cuses on incremental data-flow analysis methods applica-
ble to static resolution of method calls, early detection of
integrity constraint violations, and static optimizations
of storage management.

3 . 4 U s e r I n t e r f a c e

Today, many object-oriented or complex object database
systems provide data models that allow programmers
to model the application concepts in terms of complex
objects. A complete management by the programmer
of the display of the information presentation is tedious,
complex, and very time-consuming.

The LOOKS system [PBL*90] provides the 02 pro-
grammer with high level primitives to get object or value
presentations. These primitives generate generic presen-
tations, i.e. presentations built from generic display al-
gorithms.

However, the information encapsulated in an ob-
ject is not always fit for display. Usually, the program-
mer wants to show only a restricted view of the object
and hide the superfluous or private information. Ob-
jects or values model real world concepts but the user
interface designer wants to show a view of these con-
cepts and not a representation of the modeling he used.
This led us to propose an alternative to generic presen-
tations: the ToonMaker system [Mam90]. By enhancing
the generic presentations approach based on structured
editors through the introduction of a customization ca-
pability, this system offers a framework to automatically
present any database object while giving programmers
the means to change drastically these presentations. A
prototype of this system is now achieved which allows the
designer of the user interface to build a new presentation,
starting from the generic one, by means of graphical con-
structors, used as building blocks. The construction is
performed inside an interface editor that shows dynami-
cally the changes on the presentation. The originality of
this work is the embedding of object-oriented database
management system concepts inside usual user interface
concepts.

R e f e r e n c e s

[BDPT90]

[BDP90]

[DP89]

P. Borras, A. Doucet, P. Pfeffer, and D. Tal-
lot. OOPE : The 02 Programming Environ-
ment. In Proceedings of the 6th PRC BD3,
France, September 1990.

P. Borras, A. Doucet, and P. Pfeffer. Using
an OODBMS to Implement a Programming
Environment, Experience and Lessons. In
Object-Oriented Program Development Envi-
ronments Workshop, ECOOP/OOPSLA '90,
Ottawa, Canada, October 1990.

A. Doucet and P. Pfeffer. A Debugger
for 02, an Object-Oriented Database Lan-
guage. In Proceedings of the First Interna-
tional Conference on Technology of Object-

56 S I G M O D R E C O R D , Vol. 20, No. 1, March 1991

[DP90]

[Lar90a]

[Lar90b]

[Mam90]

[PBL*90]

[Pfe90]

Oriented Languages and Systems, pages 559
- 571, CNIT Paris - La Ddfense, France,
November 1989.

A. Doueet and P. Pfeffer. Using a Database
to Implement a Debugger. In IFIP : Confer-
ence on Database Semantics, North-Holland
Elsevier, July 1990.

J. M. Larchev~que. Using an LALR compiler
compiler to generate incremental parsers. In
Proceedings of ~he Third International Con-
ference on Compiler Compilers, Schwerin
(GDR), Lecture Notes in Computer Science,
Springer-Verlag, October 1990.

J. M. Larchev~que. Incremental compilation
in the O~ object-oriented database system.
In P. Kannelakis F. Bancilhon, C. Delobel,
editors, Building an object-oriented database
system, the Story of 02, to appear, Morgan
Kaufmann, 1991.

J.-C. Mamou. ToonMaker: An Approach
to Create Presentations For An Object-
Oriented Database System. Research Report
to appear, Altffir, 1990.

D. Plateau, P. Borras, D. Leveque, J.C.
Mamou, and D. Tallot. Building user inter-
faces with the LOOKS hyper-object system.
In Proc. Eurographics workshop on object-
oriented graphics, 1990.

P. Pfeffer. Dgbogage en enviroanement ori-
entg objet persistant. PhD thesis, Universitd
de Paris-sud, July 1990.

4 S y s t e m A s p e c t s

Participants: V. Benzaken, G. Bernard, C. Delobel,
G. Jomier and D. Steve.

4 .1 R e m o t e M e t h o d E x e c u t i o n

The V1 version of the 02 system is multi-machine. This
means that a particular machine (the "server") acts as
a data repository, while the other machines (the "work-
stations") have no part of the database on their local
disk, if any. The server and the workstations exchange
messages via a local area network (an Ethernet in V1)
[VBD89]. The architecture chosen for V1 is that of an
object server, where the unit of transfer between the
server and the workstation is an object. In this architec-
ture, the server understands the concept of an object and
is capable of applying methods to objects. Whereas the
server is mainly concerned with data access and manage-
ment, and workstations with data processing, the ability
of executing methods on the server may lead to response

time improvements. For instance, suppose that the pro-
grammer is writing a selection on a large set with a low
selectivity and a simple selection criterion, and that the
objects of the set have not already been referenced by the
application. The objects of the set are thus not loaded
in object memory on the workstation. Executing the se-
lection on the workstation would imply downloading all
the objects of the set on the workstation before apply-
ing the selection on them. It may be more efficient to
transfer execution on the server machine, because only
the selected objects will have to be moved.

In the V1 prototype, the distributed architecture is
visible to the application programmer (but not to the
end user). The programmer is aware of the existence
of two machines (the server and the workstation) and
may explicitly specify on which of the machines a mes-
sage passing expression is to be executed. We are now
investigating an automated process where the system it-
self dynamically chooses the site of application of the
method. Criteria could be the current workload of the
server and/or the workstation, the number of objects to
transfer from a site to another to preserve the execution
context, and the size of the receiver object.

4 .2 U s i n g I d l e W o r k s t a t i o n s

In the V1 prototype, 02 runs as two processes, one on
the server and one on the user workstation. If the user
starts several 02 applications simultaneously, or if an O2
application is to be executed simultaneously with one or
more cpu-intensive application (large compilations, for
instance), it may be worthwhile to take advantage of
the inactivity of other workstations in the network by
submitting some processing to them. We are now in-
vestigating this possibility. A number of load sharing
policies have been proposed in the literature. However,
the 02 context is particular, because an O2 application
is both interactive and cpu-intensive, and workstations
are owned by users who should have absolute priority on
the use of their machine [BSS90]. Of course, the user
should not be aware of the underlying migration mecha-
nism. Thesystem will decide to run some process on the
appropriate workstation, and interactivity will be pre-
served in a transparent way. The mechanism that starts
a process on a remote machine and handles interactivity
has been designed and implemented. We are currently
designing the transfer policy (should this new process
be executed remotely?), the location policy (is there any
available workstation now?), and the information policy
(how do we get the information that such workstation is
available, and what does that mean?).

S I G M O D RECO RD, Vol. 20, No. 1, March 1991 57

4 .3 V e r s i o n s

People using databases allowing versions of objects
rapidly get lost among versions because DBMSs do not
have tools to present to users the versions of different ob-
jects that go together. Thus, consistency is an important
problem of version management.

To solve this problem which makes the classical im-
plementation of versions inapplicable to databases con-
taining a large number of objects with various schemata
of versioning, we propose a completely new approach to
versions, the database version approach [C J90].

In this approach, a multiversion database, i.e., a
database where objects may appear in several versions,
is modeled as a set of logically independent database
versions. Each database version contains one version of
each object present in the database (its value may be
"does not exist"). Thus the definition of consistency of
a database version is the same as consistency in database
without versions, i.e., monoversion database.

Multiversion database users work in a database ver-
sion exactly in the same way as in a classical monoversion
database, thus each version of an object is seen in a con-
text of versions consistent with it. Moreover, users may
perform transactions deriving new database versions
from existing ones. To take into account database ver-
sions, the classical definition of transaction for monover-
sion database is extended and a transaction is defined as
a process that takes a set of database versions each one
from a consistent state to another consistent state.

Logically, database versions are independent, but
physically they may share versions of objects. The main
advantages of the database version approach are:

The concepts of consistency and transaction in
multiversion databases are defined consistently
and as an extension of their definition in monover-
sion databases.

Using the database version approach, versioning is
orthogonal to data modeling, concurrency control
and access authorization.

The versioning of complex objects does not lead to
any particular problem compared to the versioning
of simple objects.

A prototype [CKWg0] implements a version man-
ager and validates the database version approach. Work
is in progress on numerous interesting consequences of
this new concept on different aspects of a DBMS and on
applications using it.

4 .4 C l u s t e r i n g

The issue of performance of objects stores is critical
for object-oriented database systems. Our research in

this direction is based on clustering aspects. The term
clustering refers to how objects are grouped into larger
units of storage. We have developed clustering strategies
which are implemented in the V1 version of 02 [Beng0a,
BDg0]. Clustering strategies rely on composition hier-
archy of classes as well as on inheritance and are de-
scribed by the database administrator by means of place-
ment trees. A opposed to other clustering proposals,
ours provide data independence. In order to provide the
database administrator with a means to select the best
strategy, we also designed an evaluation model [Beng0b].
This model takes into account access patterns of classes
and allows to derive an optimal strategy in linear time.
Early measurements have been performed in the system
which validate in part the cost model. We are currently
performing more thorough measurements based on the
Tektronics Hypermodel Benchmark. Last, a clustering
benchmark is currently being defined [BDHg0].

R e f e r e n c e s

[BDg0] V. Benzaken and C. Delobel. Enhancing Per-
formance in a Persistent Object Store: Clus-
tering Strategies in 02. In Proc. ~th Int. Work-
shop on Persistent Object Systems Design,
lmplernentation and Use, Martha-Vineyard,
Mass., September 1990.

[BDH90] V. Benzaken, C. Delobel and G. Harrus. Mea-
suring Performance of Clustering Strategies:
the CluB-0 Benchmark. Research Report to
appear, Altffir, 1990.

[Ben90a] V. Benzaken. Regroupement d'Objets sur
Disque dans un Syst~me de Bases de Donn~es
Orient&Objet. PhD thesis, Universit~ de
Paris-sud, 1990.

[Beng0b] V. Benzaken. An Evaluation Model of Clus-
tering Strategies in the O~ Object-Oriented
Database System. In Proc. 3rd ICDT Confer-
ence, Paris, December 1990.

[BSS90] G. Bernard, D. St~ve and M. Simatic. Place-
ment et Migration de Processus dans les
Syst~mes Rkpartis Faiblement Couple. Re-
search Report to appear, Altffir, 1990.

[CJ90] W. Cellary and G. Jomier. Consistency of Ver-
sions in Object-Oriented Databases. In Proc.
16th VLDB Conference, Brisbane, Australia,
August 1990.

[CKW90] W. Cellary, T. Koszlajda and W. Wiecz-
erzycki. Database Version Manager Prototype.
Rapport Contrat Gip Altffir, July 1990.

[VBD89] F. Velez, G. Bernard, and V. Darnis. The O2
Object Manager: an Overview. In Proc. 15th

58 S IGMOD RECORD, Vol. 20, No. 1, March 1991

VLDB Conference, Amsterdam, The Nether-
lands, August 1989.

5 Esprit participation

Altgir is involved as a participant in the Esprit Basic
Research Action FIDE 2. This action groups European
teams which are pioneers in the area of database pro-
gramrning languages and persistent languages.

In this project, the group works on type systems for
database programming languages. The overall problem
is to integrate the notions of a type system as defined
in programming languages and as in database schemata.
An essential requirement for the type system is to sup-
port generic application software without losing the se-
curity provided by a typing scheme. Among the ques-
tions addressed by this action are: What are the nee-
essary base types? What type constructors should be
provided? Is data type completeness feasible? What are
the notations for type definitions? What is the seman-
tics of the type system? The type system will need to
be sufficiently rich to naturally accommodate the infor-
mation system data, e.g. directly or indirectly providing
matrices and procedures, abstract data types, polymor-
phic types, bulk data types, set types, etc. It also needs
to allow definition of application-level types.

Our contribution to the programming environment
topic considers the step-wise refinement ~tom a specifi-
cation language to a very high-level implementation lan-
guage, namely Quest [Car89]. It consists in defining effi-
cient and incremental code generation strategies for very
high-level features of Quest, notably subtype polymor-
phism and recursive types

Altair is also involved in the Esprit II project
ITHACA 3 [ANM* 90] started in 1989. The objective is
to create a platform for the development of information
and production control systems, using an object-oriented
approach to develop applications.

Altgir is involved in the Kernel Group of this project
in charge of developing a persistent programming and
storage environment. We are working on the following
topics: data model, kernel architecture, trigger mecha-
nisms, multilevel transactions.

References

[ANM* 90] M. Ader, O. Nierstrasz, S. McMahon, G.
Miiller, A-K. Pr5frock. The ITHACA
Technology: A Landscape for Object-
Oriented Application Development. In

2Project 3070, Formally Integrated Dnta Environment.

3Project no 2121, Integrated Toolkit for Highly Advanced Com-
puter Applications.

Proceedings of the ESPRIT Conference,
October 1990.

[Car89] L. Cardelli. Typeful Programming. Digital
Research Report, No 45, May 1989.

6 Altair Organization

Altgir is managed by F. Bancilhon. The research ac-
tivities are under the responsibility of C. Delobel and
are organized into three groups. The data models and
languages group is led by P. Richard, the programming
environment group by A. Doueet, and the system group
by G. Bernard. The research group consists of 15 people
and the development group consists of 25 people.

S I G M O D RECORD, Vol. 20, No. 1, March 1991 59

