An Effective Lisp Project for a
Programming lLanguages Course

Marsha Meredith .
Department of Mathematics/Computer Science

Blackburn Coliege
Carlinville IL 62626

Introduction

One focus of many undergraduate
courses in Programming LLanguages is 1o
give students a sense of the character
and structure of a variety of languages.
To achieve this goal, instructors need
programming projects that are small but
the solution of which compels students
to explore a given language -- to
program in it rather than with it. A
good project has the following features:

1) It is easily stated. Students
should be able to understand the goal
of the project without much difficulty:
they will face enough confusion with
language issues.

2y It is suited to the language.
Completion of the project causes
students to engage in programming in
the style of a particular language,

3) The resulting program is
compact. That is, it should be relatively
short yvet encompass the major elements
of the target language. This is not,
after all, a software engineering course
or an endurance test, Success is
important.

4) It should be [nteresting. This
may encourage good students to explere
the language further.

5) It should be extensible. The
interested student can then use the
project as a vehicle for exploring both
the language and the application area.

A project with which we have had
some success in the last two vyears
derives from ongoing departmental
research in knot theory and serves as
a vehicle for the exploration of Lisp.

SIGCSE

BULLETIN Vol. 22 HNe. 4 Dec. 189¢C

students who have had introductory
laboratory work in Lisp can generally
complete the project within a week or
two.

Knot fFoundations

If we take a length of string,
twist it around itself in space, and jcin
the two ends, we have formed a tanale.
The question is, can that tangle be
converted into a simple loop without
cutting the string? If it can, we say
the tangle is an unknot; otherwise it
is a Kknot. Mathematicians who study
knots often work with two-dimensional
projections, called knot diagrams. Such
a projection is shown below.

o

Figure 1 -- A knot diagram.

The letters label crossings, the
places where one portion of the string
passes over or under another, The
"under" string is indicated by a broken
line in the diagram. We will use the
term arc to denote the piece of string
between two crossings.

Karl Reidemeister (1948) showed
that any unknot can be untangled by
performing an appropriate serfes of only
three types of moves, called

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122153.122162&domain=pdf&date_stamp=1990-11-01

Reidemeister moves. Type-I involves
removing a twist from an arc. Type-II
involves passing two arcs, onhe of which
lies above the other, across each other.
Type-I11 involves passing an arc that
lies above or below the crossing formed
by 1two others past that c¢rossing,
Diagrams illustrating the three move

types follow.

Lo
9/ - X
Type-I11 /,,/\,.,_/m-) //\/\—

Figure 2 -- Reidemeister moves.

Type-I

We can show that the tangle of
Figure 1 is an unknot by following the
series of Reidemeister moves given in
Figure 3. Here, only Type-I and Type-
II moves are required.

Bringing Knots to Lisp

Randall Weiss (1987) has developed
a representation for knot diagrams
which he calls a tripcode, an ordered
list of pairs <crossing-name, crossing-
type> which indicates the order In
which crossings are visited during a
continuous circuit of the diagram. The
crossing-name is a simple identifier such

as "a" in the knot diagram in Figure 1;
the crossing-type is either "o" (for
“over”) or "u" (for "under”). Thus, a

tripcode for the knot diagram in Figuie
1 is: ((a o)b w)(c u)(d o)d u)a u)
(b o)(e u)(f 0)(g o)(h u)(f u)(g u)(h o)
(e o)c o))

The presence of a Reidemeister

Type-I move in a knot diagram is
indicated by the presence in the
SIGCSE

BULLETIN Vol. 22 Moo«

46

)

g . .
20
¢ ¢ \c‘\;)
3 l

h
4 b/ e

C

) T

g
h b
(5
Loz
3

(R

J/ Tiey

h
4

)i
l 1 (§.9)

S
[N

D

Figure 3 -- Unknotting a tanagle.

tripcode of adjacent pairs with identical
crossing-names. Removal of the twist in
the diagram amounts to removal of those
pairs from the tripcode. For example,
the first twist removed in Figure 3 was
at crossing d. In the tripcode we find
the adjacent pairs (d o) (d u) to

indicate the same move. We perform the
move by deleting these pairs from the
tripcode.

Similarly, a Reidemeister Type-II
move corresponds tc finding two
crossing-names with like crossing-types
in adjacent pairs twice in the tripcode.
For example, in our sample tripcode we
find the pairs
(...(f 0) (g o)...(f u)g ul.)

(note that the order of the pairs is
immaterial -- had we seen (g u)(f u),
there would still be a Type-II move).
We perform the Type~II move by
removing all four entries from the
tripcode.
Project Description

The project we assign our

students requires them o represent a
knot diagram and perform any available
Type-I and Type-II moves, Some
extensions of varying difficulty are
suggested, The text fcliows.

Write a Lisp program that accepts

a tripcode as input and does the
following:
(1) It determines whether or not

the tripcode is “syntactically correct”.
Each crossing-name should occur exactly
twice in the ftripcode, with opposite
crossing-types In the two occurrences.

(2) It finds and performs all
Reidemeister Type-1 and Type-II moves,
and displays the type of move and the
crossing(s) involved as the moves are
performed.

(3) If the tripcode
empty, there are no crossings left,
means your program has found
unknot. It should tell you so.

{(4) If the tripcode is non-empty
but no further moves are available, the
program should print out the remaining
tripcode.
Notes :

becomes
This
an

Performance of one move may
create another.

The first-listed and last-listed
crossings in a tripcode are
adjacent.

Extensions: (1) A non-empty tripcode

with no Type-I or Type-II moves |s a

SIGCSE
BULLETIN Vel. 22 No. 4

Dec. 1990

47

knot if its crossing-types alternate
between "0o" and "u", Have vyour
program check for this condition and
report on the result.

(2) Type-~Ill moves are also
detectable from the tripcode. Have the
program find and perform Type-III
moves under your controf. Be aware
that Type-IIl moves (i) do not shorten
the tripcode, (ii) lead to their own
inverse, and (ili) involve changing the
order of tripcode entries,

Conclusions

The project described in this
paper meets our requirements for a
good Programming Languages project,
It would certainly be easier to assign a
Towers-of-Hanoi-in-Lisp project herause
students are already familiar with the
problem (and in fact this is a good
"Rosetta-stone” project). However, it
takes only half an hour to introduce the
background necessary 1o understand
the knot project presented here -- time
well spent when we consider the criteria
of interest and extensibility. Once
students have this background the
project is, as we have shown, briefly
stated. ’

Certainly, the tripcode structure

cries out to be a Lisp list. The
operations required to perform the
various comparisons, checks, and

deletions are vintage Lisp, and include

selector and help Tunclions, recursion,
search, deletion, and (for Type-III)
insertion functions. Moreover, the

novelty of the application discourages
any tendency to develop the program in

Pascal (or some other first language)
and translate. Students will use Lisp,
Qur students have found the

project interesting and not so long and

complicated as to be intimidating., Once
they have mastered the syntax and
functional programming style of Lisp
they progress rapidly. The resulting
code is only about three pages long,
One student became interested and

proficient enough to do summer research
in knot theory with members of the
faculty.

It should be noted that, while
Weiss (1990) has recently proposed an
unknot detection algorithm based on a
generalization of the Reidemeister moves,
it is as yet an unsolved problem to
determine, in general, when two knots
are equivalent. The interested student
has open research ground ahead.

References

Peterson, 1. (1988). The Mathematical
Tourist. (New Yorlk: W.H. Freeman).

Reidemeister, K. (1948). Knotentheorie.
(New York: Chelsea Publishing Co.).

Weiss, R. (1987). Detecting ribbon
knots. unpublished dissertation,
University of Illinois at Chicago.

Weiss, R. (1990). A combinatorial unknot
detector. Blackburn College research
report.

Appendix -- Sample Knot Diagrams

D

00

o)

QDD
)
=l

SIGCSE Vol. 22 No. 4

BULLETIN Lec.

48

KKK AIARKRRKKAARRKRA AR A AR A RR AR AR h A A ARk kkk %
STACK ASSEMBLY-- continued from page 44

d. Subscripts.

e. If, else.

f. While loops.

g. User written subroutine and function calls with
parameter passing.

Some readers will undoubtedly be asking: "Single or

multiple subscripts? Can parameter lists contain any

expression or only simple variables?* and othe similar
questions. I encourage the students to do as much as each is
capable of. Like any good MAIJOR project, and this
compiler is a major project for these students, my
assignment has an open-ended quality about it.

The students are graded on how much they complete.
Roughly speaking, completing arithmetic replacement
statements yields a C, completing subscripts, ifs and while-
loops is a B, and completing subroutine and function calls
constitutes an A.

A few words should be added about the description of the
target language. My practice is to give them a context-free
grammar which describes the language but which is not
suitable withowr alteration for writing a recursive descent
compiler, My experiences with this have indicated to me that
this is exactly right for my students. By giving them a
correct description of the target language which however
must be left factored and which requires elimination of left
recursion they are introduced both to the power of context
free grammars and to the fact that they arec not a magic
solution to all compiling problems. (Of course discussion of
context sensitive issues such as variable declaration brings
this idea home too.) The students are thus forced to work
with context free grammars and to do some of the work of
producing a grammar for use in a recursive descent
compiler,

CSC 91
Exhibits and Job Fair Information

The ACM Computer Science Conference, which will be held in San
Antonio, Texas from Alarch 5-7, 1991 (with the SIGCSE Technical
Symposium on March 7-8), is offering a special Academic Rate for col-
lege and universily exhibitors. A booth in the Exhibits Area provides
a universily with an excellent means to contact potential graduate stu-
dents, faculty, and industrial partners. For further information, please

contact:

Barbara Corbett
Assistant to the President
Robert T. Kenworthy, Inc.
866 United Nations Plaza
New York NY 10017

(212) 752-0911

Donald J. Bagert, Jr.

Local Exhibits Chairman, CSC 91

Departiment of Computer Science, Mail Stop 3104
Texas Tech University

Lubbock 'I'X 79409-3104

(806) 742-1189

bedjb@ttacsl.ttu.edu

CSC °91 1s a DoD-approved confercnce.

