
An Effective Lisp Project for a
Programming Languages Cours e

Marsha Meredit h
Department of Mathematics/Computer Scienc e

Blackburn Colleg e
Carlinville IL

	

62626

4 5

Introduction

One focus of many undergraduat e
courses in Programming Languages is t o
give students a sense of the characte r
and structure of a variety of languages .
To achieve this goal, instructors need
programming projects that are small bu t
the solution of which compels students
to explore a given language -- t o
program in it rather than with it . A
good project has the following features :

1)

	

It is easily	 stated . Students
should be able to understand the goal
of the project without much difficulty ;
they will face enough confusion wit h
language issues .

2)

	

It is suited to the_ language .
Completion of the project cause s
students to engage in programming i n
the style of a particular language ,

3) The resulting program i s
compact . That is, it should be relativel y
short yet encompass the major element s
of the target language. This is not ,
after all, a software engineering cours e
or an endurance test . Success i s
important .

4) It should be interesting_ . Thi s
may encourage good students to explor e
the language further .

5) It should be extensible . Th e
interested student can then use th e
project as a vehicle for exploring bot h
the language and the application area .

A project with which we have ha d
some success in the last two year s
derives from ongoing departmental
research in knot theory and serves a s
a vehicle for the exploration of Lisp .

SIGCSE

	

vol . 22 No . 1 Dec . 199 0BULLETIN

Students who have had introductor y
laboratory work in Lisp can generall y
complete the project within a week o r
two .

Knot Foundation s

If we take a length of string ,
twist it around itself in space, and joi n
the two ends, we have formed a tangle .
The question is, can that tangle b e
converted into a simple loop withou t
cutting the string?

	

If it can, we sa y
the tangle is an unknot ;

	

otherwise i t
is a knot . Mathematicians who stud y
knots often work with two-dimensiona l
projections, called knot diagrams . Suc h
a projection is shown below .

Figure 1 -- A knot diagram .

The letters label crossings, th e
places where one portion of the strin g
passes over or under another . Th e
" under " string is indicated by a broke n
line in the diagram. We will use th e
term arc to denote the piece of strin g
between two crossings .

Karl Reidemeister (1948) showe d
that any unknot can be untangled b y
performing an appropriate series of onl y
three

	

types

	

of

	

moves,

	

called

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122153.122162&domain=pdf&date_stamp=1990-11-01

4 6

Reidemeister moves. Type-I involve s
removing a twist from an arc . Type-I I
involves passing two arcs, one of whic h
lies above the other, across each other .
Type-III involves passing an arc tha t
lies above or below the crossing forme d
by two others past that crossing .
Diagrams illustrating the three mov e
types follow .

Figure 2 -- Reidemeister moves .

We can show that the tangle o f
Figure 1 is an unknot by following th e
series of Reidemeister moves given i n
Figure 3 . Here, only Type-I and Type -
II moves are required .

Bringing Knots to Lis p

Randall Weiss (1987) has develope d
a representation for knot diagram s
which he calls a tripcode, an ordere d
list of pairs <crossing-name, crossing -
type> which indicates the order i n
which crossings are visited during a
continuous circuit of the diagram . Th e

crossing-name is a simple identifier suc h

as " a " in the knot diagram in Figure 1 ;

the crossing-type is either "o" (fo r
"over") or "u" (for "under ") . Thus, a
tripcode for the knot diagram in Figur e
1 is :

	

((a o)(b u)(c u)(d o)(d u)(a u)
(b o)(e u)(f o)(g o)(h u)(f u)(g u)(h o)

(e o)(c o)) .

The presence of a Reiderneiste r
Type-I move in a knot diagram i s
indicated

	

by the presence in th e

SIGCSE IN
vol . 22 No . 4 Dec . 199 0

BULLET

S(e

c-~
Figure 3 -- Unknotting a tangle .

tripcode of adjacent pairs with identica l
crossing-names . Removal of the twist i n
the diagram amounts to removal of thos e
pairs from the tripcode . For example ,
the first twist removed in Figure 3 wa s

at crossing d . In the tripcode we fin d
the adjacent pairs (d o) (d u) t o

)(-

Type- I

Type-I I

Type-III

4 7

indicate the same move . We perform th e
move by deleting these pairs from th e

tripcode .

Similarly, a Reidemeister Type-I I
move corresponds to finding tw o
crossing-names with like crossing-type s
in adjacent pairs twice in the tripcode .
For example, in our sample tripcode w e
find the pairs
(. . .(f o) (9 0) . . .(f u)(g u) . . .)
(note that the order of the pairs i s
immaterial -- had we seen (g u)(f u) ,
there would still be a Type-II move) .
We perform the Type-II move b y
removing all four entries from th e
tripcode .

Project Description

The project we assign ou r
students requires them to represent a
knot diagram and perform any availabl e
Type-I and Type-II moves . Som e
extensions of varying difficulty are

suggested . The text follows ,

Write a Lisp program that accept s
a tripcode as input and does th e
following :

(1) It determines whether or not
the tripcode is "syntactically correct " .
Each crossing-name should occur exactl y
twice in the tripcode, with opposit e
crossing-types in the two occurrences .

(2) It finds and performs al l
Reidemeister Type-I and Type-II moves ,
and displays the type of move and th e
crossing(s) involved as the moves ar e
performed .

(3) If the tripcode becomes
empty, there are no crossings left . Thi s
means your program has found a n
unknot .

	

It should tell you so .
(4) If the tripcode is non-empt y

but no further moves are available, th e
program should print out the remainin g
tripcode .
Notes: Performance of one move ma y

create another .
The first-listed and last-liste d

crossings in a tripcode ar e
adjacent .

Extensions : (1) A non-empty tripcod e
with no Type-I or Type-II moves is a

SIGCSE

	

vol . 22 No .

	

Dec . 199 0BULLETIN

knot if its crossing-types alternat e
between "o" and "u" . Have you r
program check for this condition an d
report on the result .

(2) Type-III moves are als o
detectable from the tripcode . Have th e
program find and perform Type--II I
moves under your control . Be awar e
that Type-III moves (i) do not shorte n
the tripcode, (ii) lead to their ow n
inverse, and (iii) involve changing th e
order of tripcode entries .

Conclusion s

The project described in thi s
paper meets our requirements for a
good Programming Languages project .
It would certainly be easier to assign a
Towers-of-Hanoi-in-Lisp project becaus e
students are already familiar with th e
problem (and in fact this is a goo d
" Rosetta-stone " project) . However, i t
takes only half an hour to introduce th e
background necessary to understan d
the knot project presented here -- tim e
well spent when we consider the criteri a
of interest and extensibility . Once
students have this background th e
project is, as we have shown, briefl y
stated .

Certainly, the tripcode structur e
cries out to be a Lisp list . The
operations required to perform th e
various comparisons, checks, an d
deletions are vintage Lisp, and includ e
selector and help functions, recursion ,
search, deletion, and (for Type-III)
insertion functions . Moreover, th e
novelty of the application discourages
any tendency to develop the program i n
Pascal (or some other first language)
and translate . Students will use Lisp .

Our students have found th e
project interesting and not so long an d
complicated as to be intimidating . Once
they have mastered the syntax an d
functional programming style of Lis p
they progress rapidly . The resultin g
code is only about three pages long .
One student became interested an d
proficient enough to do summer researc h
in knot theory with members of th e
faculty .

It should be noted that, whil e
Weiss (1990) has recently proposed a n
unknot detection algorithm based on a
generalization of the Reidemeister moves ,
it is as yet an unsolved problem to
determine, in general, when two knot s
are equivalent . The interested student
has open research ground ahead .

References

Peterson, I . (1988) . The Mathematica l
Tourist, (New York : W .H . Freeman) .

Reidemeister, K, (1948) . Knotentheorie .
(New York : Chelsea Publishing Co.) .

Weiss, R. (1987) .

	

Detecting ribbon
knots . unpublished dissertation ,
University of Illinois at Chicago .

Weiss, R . (1990) . A combinatorial unkno t
detector. Blackburn College researc h
report .

Appendix -- Sample Knot Diagrams

*** *
STACK ASSEMBLY-- continued from page 4 4

d. Subscripts .

e. If, else .

f. While loops .

g . User written subroutine and function calls with
parameter passing.

Some readers will undoubtedly be asking : "Single o r
multiple subscripts? Can parameter lists contain an y
expression or only simple variables?" and oche similar
questions . I encourage the students to do as much as each i s
capable of . Like any good MAJOR project, and thi s
compiler is a major project for these students, m y
assignment has an open-ended quality about it.

The students are graded on how much they complete .
Roughly speaking, completing arithmetic replacemen t
statements yields a C, completing subscripts, ifs and while -
loops is a B, and completing subroutine and function call s
constitutes an A .

A few words should be added about the description of th e
target language . My practice is to give them a context-fre e
grammar which describes the language but which is no t
suitable without alteration for writing a recursive descen t
compiler . My experiences with this have indicated to me tha t
this is exactly right for my students . By giving them a
correct description of the target language which however
must be left factored and which requires elimination of lef t
recursion they are introduced both to the power of contex t
free grammars and to the fact that they are not a magi c
solution to all compiling problems . (Of course discussion o f
context sensitive issues such as variable declaration bring s
this idea home too .) The students are thus forced to work
with context free grammars and to do some of the work o f
producing a grammar for use in a recursive descen t
compiler.

CSC '9 1
Exhibits and Job Fair Informatio n

The ACM Computer Science Conference, which will be held in Sa n
Antonio, Texas from March 5-7, 1991 (with the SIGCSE Technica l
Symposium on March 7-8), is offering a special Academic Rate for col-
lege and university exhibitors . A booth in the Exhibits Area provide s
a university with an excellent means to contact potential graduate stu-
dents, faculty, and industrial partners . For further information, pleas e
contact :

Barbara Corbet t
Assistant to the Presiden t
Robert T . Kenworthy, Inc .
866 United Nations Plaz a
New York NY 1001 7
(212) 752-091 1

Donald J . liagert, Jr .
Local Exhibits Chairman, CSC '9 1
Department of Computer Science, Mail Stop 310- 1
Texas Tech University
Lubbock TX 79409-310 4
(806) 742-118 9
bedjb`@'ttacsl .ttu .ed u

CSC '91 is a MD-approved conference .

SIGCSE
vol . 22 No . 4 Dec, 199 0BULLETIN 48

