IMPLEMENTING C FUNCTION CALLS IN RULES FOR AN EXPERT SYSTEM SHELL

B.L.LB. MADHAV AND NARAYAN HEGDE
Department of Computer Science and Engg.,
Indian Institute of Technology,
Madras 600 036, INDIA

ABSTRACT

In this paper, we report on the implementation of C function calls in rules for an
expert system shell. The rule language supports calls to C functions in both antecedents and
consequents, meta rules and queries to a relational database. The output of the compiler can
be directly loaded or stored as a file. A loader and an inference engine are also provided.

1. INTRODUCTION

Rule based systems constitute the most commonly used means for coding the problem
solving know-how of human ex{)erts. Rules are problem solving heuristics. Experts tend to
express most of their problem solving techniques in terms of a set of situation - action rules.

A rule based system consists of an inference engine , a working memory and a rule
base. Bach rule consists of a set of conditions called the antecedents of the rule and a set of
actions called the consequents of the rules.

The rule lang:saege for which the compiler is built supports calls to C functions, queries
to a relational datal and meta rules. Implementation of a meta rules and querying facility
to a database is straight forward. For querying a database, a subset of SQL was used as the

uery language and an SQL interface to AWK was written. Implementation of calls to C
nctions involves tackling homogenous coupling between the user written C functions and
the inference engine library.

2, HOW CFUNCTIONS ARE CALLED IN RULES

The rule language supports calls to C functions in both antecedents and consequents.
The C functions can appear as shown

Joo(xy)
temp < foo(xy)
foo(xy) > = myval

Here x andy will be working memory variables and their values will be passed as parameters

to the function ’foo’.
The code for all the user written C functions will be written in a single file, say user.c

A typical rule will appear as follows.

IF
resistance < 15

1 foo(fre)
voltage > = quency
THER

temperature = 25

A OR

MADHAV

REMARKS

RULE FOR TEMPERATURE

64 ACM SIGPLAN Notices, Volume 26, No. 2, February 1991

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122179.122186&domain=pdf&date_stamp=1991-01-02

3. IMPLEMENTATION

A lexical analyzer passes the tokens to a recursive descent parser which groups the
tokens and forms the sentences of the rule language. An initialization pfogram opens a file
called temp.c. The following C statements are executed.

intf(temp_ptr, “%os', _handler(case_no)") ;
intf(temp_pir, “Jos', ‘int case_no ;") ;
(temp_pir, "%S':"{n(), .
n\tswitch(case_no){") ;

intf(temp_ptr,"%s’,"
temp_ptr is the pointer to the file being written into.
This is equivalent to the following being written in the file temp.c

func_handler(case_no)
int case_no;

switch(case_no){
The initialization program initializes glob_case, a global variable to zero.

In the rule base, there exists a declaration section, the name of the C ﬁxqction and the
cfialtla type it returns will be given in the declaration section. A typical declaration will be as
ollows

io'o w ﬁ;:aon s integer;
y:float;
Here foo is the function name, it is of type function and it returns an integer.
When a C function such as
. , foo(xy)
is encountered in the rule base, the following C statements are executed

intf(temp ptr,"%s","\n\t\tcase ") ;
%{tmpﬁ "%ed’, u_\case);
(temp_ptr,"%os",": °) ;
The following would have been written in the file temp.c
func_handler(case_no)
int case_no;

switch(case no){
caseD:
glob_case is assumed to be zero. (foo is the first function encountered by the compiler)
The data type of the arguments x and y are now checked. A function exists for each of the
data types viz. integer, string and decimal. They will return the value of the variable from the

working memory. Let’s sup that the type of the variables x and y are integer and float
respectively. The following C statement is executed.

forintf(temp_pir,“%s’, "\n\t\tfoo(ivalue(x) fvalue(y)) ;) ;

65

forintf(temp_ptr, "%s", "\n\t\tbreak®) ;
The following would have been written in the file temp.c
func_hidndler(case_no)
int case_no;
switch(case no){
caseD:
{,oo ivalue(x),fvalue(y)) ;

Nowglob_case is incremented by one. This is done for all the functions. A typical temp.c file
will appear as follows.

func_bandler(case_no)
intcase_ no;

switch(case no){
FooGivalue (o) alue(s)
break; ’

fooi(rluc(e);

}
}

This file temp.c and the file in which the user has written his C functions user.c are compiled
and linked with the inference engine library and when a function call is encountered the
inference engine calls the C function func_handler with the appropriate case_no as an
argument. This case_no is kept in the symbol table along with the function name. Thus a
hommmns coupling between user written C functions and inference engine library is
provided.

4. CONCLUSIONS

A method for homogenous interface between user written C functions and inference
2ngine library is proposed. This sort of interface provides a tight coupling between user
written C functions and inference engine by eliminating interaction through intermediate
files. The compiler for the rule language, an inference engine and a loader have been
u[_xllpllfmented on the SUN 3/60 workstation. A few expert systems have been built using this
she

REFERENCES

1.119(7e;nighan B.W. and Ritchie D.M., The C Programming Language, Prentice Hall,

2. Aho A.V. and Ullman J.W., Principles of Compiler Design, Addison Wesley, 1985.

3. W Utilities for the SUN workstation, SUN Microsystems Inc.
ifornia. f

66

