
IMPLEMENTING C FUNCTION CALLS IN RULES FORAN EXPERT SYSTEM SHELL

B.I.B. MADHAV AND NARAYAN HEGDE
Department of Computer Science and Engg.,

Indian Institute of Teclmology,
Madras 600 036, INDIA

ABSTRACT

In this paper, we report on the implementation of C ~nction calls in rules for an
expert system shell. The rule language supports calls to C functions in both antecedents and
co nsequents, meta rules and queries to a relational database. The output of the compiler can
be directly loaded or stored as a file. A loader and an inference engine are also provided.

1. INTRODUCTION

Rule based systems constitute the most commonly used means for coding the problem
solving know-how of human experts. Rules are problem solving beurLsfiCS. Experts tend to
express most of their problem solving techniques m terms of a set of situation - action rules.

A rule based system consists of an irLference engine, a working memory and a rule
base. Each rule consists of a set of conditions called the antecedents oF the rule and a set of
actions called the consequents of the rules.

The rulelan~age for which the compiler is built supports calls to C functions, queries
tot°an databaserelati°nalisdatabase and meta rules. Imp.lementation of a meta rules and q u e ~ f a c ~

straight forward. For querying a database, a subset of SOL was
guery lan~age and an.SOL interface to AWK was written. Implementation of calLs to C
tunctions revolves tackling homogenous coupling between the user written C functions and
the Inference engine library.

2. HOW C FUNCTIONS ARE CALLED IN RUI.ES

The rule language supports calls to C functions in both antecedents and consequents.
The C functions can appear as shown

foo(y)

(x,y) > = rural

Herex andy will be working memory variables and their values will be passed as parameters
to the function 'foo'.
The code for all the user written C functions will be written in a single file, say use~c

A typical rule will appear as follows.

IF
resistance < 15

AND
Et~e > ffi foo(frequency)

temperature = 25
AUTHOR
MADHAV

REMARKS
RUI ~ FOR TEMPERATURE

64 ACM SIGPLAN Notices, Volume 26, No. 2, February 1991

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122179.122186&domain=pdf&date_stamp=1991-01-02

3. I M P ~ N ' r A T I O N

A lexical analyzer passes the tokens to a r e o ~ ' .e .d.~. n t . p ~ r which groups ~ e
tokens and forms the sentences of the rule language. An tmt/alizat/on pmgrnm opens a me
called temtxc. The following C statements are executed.

~printf(temp.pu; ~ ¢ ~ t ~ no;');
; 3 , , (; - , . .

, In lt. itch(cas no)f ;

temp.ptr is the pointer to the file being written into.

This is equivalent to the following being written in the file temp.c

rune handler(caseno)
int ¢~se no;
(-

switch(case_no){

The initial|-~,tion progrnm ini t ial ly g/ob..case, a global variable to zero.

In the rule base, there exists a declaration section, the name of the C function and the
data type it returns will be given in the declaration section. A typical declaration will be as
follows

function : eSo';
x : mt~er ;
y : oct ;

Herefoo is the function name, it is of type function and it returns an integer.
When a C function such as

foo x,y)
is encountered in the rule base, the following C statements are executed

fprintf(temp.pt~ "%d ~glob _case);
fptintf(temp~otr, "°/os~ " : 9;

The. follow/ng would have been written in the file temp.c
func handler(case_w)
tint c~se_no;
{

sw/tch(caseno){
cased:

glob..case is assumed to be zero. 0too is the first function encountered by the compiler)

The data type of the arguments x and y are now checked. A function exists for each of the
data types Viz./nteger, string and decimal They will return the value of the wanable from the
work/rig memory. Let's suppose that the type of the variables x and y are mteger and float
respectively. The following C statement is executed.

fprinff(temp..pt~ "%s~ "~n ~t~tfoo(ivalue(x),fvalue(y)) ;');

6S

fprlntf(temp.ptt; '~"os'~ "~n ~t~tbreak') ;

The following would _have been written in the file temlxc
rune tdmdler(case_no)
int c~Tse..no;
{

switch(case no){
¢ a s e u :

Nowg/ob case is incremented by one. This is done for all the functions. A typical temp.c file
will ~ as follows.

func handler(case_no)
int c~se no;

}

switch(case no){
case'0:
foo(ivalne(x),fvalue(y));
reak;

case 1:
fool(swalue(a));
break;

This file temp.c and the file in which the user has written his C .functio~ user.c are coml~iled
and linked with the inference engine library and when a function call. is encountereo me
inference engine calls the C function func handler with the appr0pnate case no as an
argumenL This case no is kept in the symbo-I table along with the function nar~e. Thus a.
hom.~nous coupliKg between user written C functions and inference engine library m
provided.

4. CONCLUSIONS

A method for homogenous interface between user written C functions and inference
~ngine library is proposed. This sort of interface provides a tight coupling between ..user
~vritten C functions and inference engine by eliminating i n t e ~ o n through intermediate
files. The compiler for the rule language, an inference engine and a loader have been
• lamented on the SUN 3 60 workstation. A few expert systems have been built using this

REFERENCES

1. Kernighan B.W. and Ritchie D.M., The C P ~ ~ , Prentice Hall,
1976.

2.Aho A.V. and Ullman J.W., Pr/nc(o/es of CompUer Design, Adrfmon Wesley, 1985.

3 ~ U'tditiesforthe SUNworkstat/on, SUN Microsystems Inc.

66

