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ABSTRACT 

In this paper, we report on the implementation of C ~nction calls in rules for an 
expert system shell. The rule language supports calls to C functions in both antecedents and 
co nsequents, meta rules and queries to a relational database. The output of the compiler can 
be directly loaded or stored as a file. A loader and an inference engine are also provided. 

1. INTRODUCTION 

Rule based systems constitute the most commonly used means for coding the problem 
solving know-how of human experts. Rules are problem solving beurLsfiCS. Experts tend to 
express most of their problem solving techniques m terms of a set of situation - action rules. 

A rule based system consists of an irLference engine, a working memory and a rule 
base. Each rule consists of a set of conditions called the antecedents oF the rule and a set of 
actions called the consequents of the rules. 

The rulelan~age for which the compiler is built supports calls to C functions, queries 
tot°an databaserelati°nalisdatabase and meta rules. Imp.lementation of a meta rules and q u e ~ f a c  ~ 

straight forward. For querying a database, a subset of SOL was 
guery lan~age and an.SOL interface to AWK was written. Implementation of calLs to C 
tunctions revolves tackling homogenous coupling between the user written C functions and 
the Inference engine library. 

2. HOW C FUNCTIONS ARE CALLED IN RUI.ES 

The rule language supports calls to C functions in both antecedents and consequents. 
The C functions can appear as shown 

foo( y) 

(x,y) > = rural 

Herex andy will be working memory variables and their values will be passed as parameters 
to the function 'foo'. 
The code for all the user written C functions will be written in a single file, say use~c 

A typical rule will appear as follows. 

IF 
resistance < 15 

AND 
Et~e > ffi foo(frequency) 

temperature = 25 
AUTHOR 
MADHAV 

REMARKS 
RUI ~ FOR TEMPERATURE 
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3. I M P ~ N ' r A T I O N  

A lexical analyzer passes the tokens to a r e o ~ '  .e .d.~. n t . p ~ r  which groups ~ e  
tokens and forms the sentences of the rule language. An tmt/alizat/on pmgrnm opens a me 
called temtxc. The following C statements are executed. 

~printf(temp.pu; ~ ¢ ~ t  ~ no;'); 
; 3 , , (  ; - , . .  

, In lt. itch(cas no)f ; 

temp.ptr is the pointer to the file being written into. 

This is equivalent to the following being written in the file temp.c 

rune handler(caseno) 
int ¢~se no; 
( - 

switch(case_no){ 

The initial|-~,tion progrnm ini t ial ly g/ob..case, a global variable to zero. 

In the rule base, there exists a declaration section, the name of the C function and the 
data type it returns will be given in the declaration section. A typical declaration will be as 
follows 

function :  eSo'; 
x : mt~er ; 
y :  oct ; 

Herefoo is the function name, it is of type function and it returns an integer. 
When a C function such as 

foo x,y) 
is encountered in the rule base, the following C statements are executed 

fprintf(temp.pt~ "%d ~glob _case); 
fptintf(temp~otr, "°/os~ " : 9;  

The. follow/ng would have been written in the file temp.c 
func handler(case_w) 
tint c~se_no; 
{ 

sw/tch(caseno){ 
cased: 

glob..case is assumed to be zero. 0too is the first function encountered by the compiler) 

The data type of the arguments x and y are now checked. A function exists for each of the 
data types Viz./nteger, string and decimal They will return the value of the wanable from the 
work/rig memory. Let's suppose that the type of the variables x and y are mteger and float 
respectively. The following C statement is executed. 

fprinff(temp..pt~ "%s~ "~n ~t~tfoo(ivalue(x),fvalue(y)) ;'); 

6S 



fprlntf(temp.ptt; '~"os'~ "~n ~t~tbreak') ; 

The following would _have been written in the file temlxc 
rune tdmdler(case_no) 
int c~Tse..no; 
{ 

switch(case no){ 
¢ a s e u :  

Nowg/ob case is incremented by one. This is done for all the functions. A typical temp.c file 
will ~ as follows. 

func handler(case_no) 
int c~se no; 

} 

switch(case no){ 
case'0: 
foo(ivalne(x),fvalue(y)); 
reak; 

case 1: 
fool(swalue(a)); 
break; 

This file temp.c and the file in which the user has written his C .functio~ user.c are coml~iled 
and linked with the inference engine library and when a function call. is encountereo me 
inference engine calls the C function func handler with the appr0pnate case no as an 
argumenL This case no is kept in the symbo-I table along with the function nar~e. Thus a. 
hom.~nous coupliKg between user written C functions and inference engine library m 
provided. 

4. CONCLUSIONS 

A method for homogenous interface between user written C functions and inference 
~ngine library is proposed. This sort of interface provides a tight coupling between ..user 
~vritten C functions and inference engine by eliminating i n t e ~ o n  through intermediate 
files. The compiler for the rule language, an inference engine and a loader have been 
• lamented on the SUN 3 60 workstation. A few expert systems have been built using this 
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