
The Rewards of Generating True 32-bit Code
Trading Additional Compiler Complexi~for Better Performance

Michael Franz
Institut for Computersysteme

ETH Z6rich, Switzerland
franz@inf.ethz.ch

Many of today's system architectures are actually extensions of older ones. One such growth path within
processor families applies to the width of the data bus. While earlier processors often already
incorporated relatively broad internal registers, these registers had to be read and written in multiple
cycles over a narrow bus. The modern successors of these processors offer upwardly compatible
instruction sets and greater bus widths, reflecting the widths of the internal registers.

Utilizing a wide bus and a memory port of corresponding width, a new factor suddenly influences
performance, data alignment, which was irrelevant while there was only a narrow bus. Data that is lined
up with the memory port can be read in a single bus cycle; extra bus cycles are required for misaligned
data accesses. Taking the Apple Macintosh 11 and the programming language Oberon as an example, we
show that there is a remarkable payoff for generating code that avoids misaligned data accesses, and
how to achieve this under constraints to be backward-compatible with existing software. It should be
noted that backward compatibility with older processors is not an issue here: all programs optimized for
wide-bus processors in respect to data alignment will run just as well on narrow-bus processors of the
same family; they will simply run faster on the former than on the latter.

The original Macintosh employed a Motorola 68000 microprocessor, which has a 16-bit data bus. The
interface to its operating system specifies word alignment of data structures and parameters. As a result,
on average one half of all Iongword accesses are misaligned on Macintosh computers that have 32-bit
data busses, slowing down computation. An on-chip data cache can somewhat alleviate this effect, but
cannot completely compensate for it.

While this state of affairs cannot be mended in respect to the operating system inte~ce without
invalidating all existing software, one can in fact, at some additional expense in compiler complexity,
improve the quality of application code generated for a 32-bit-data-bus machine. We have created a
compiler that differentiates between code that must be backward-compatible with the existing 16-bit
interface, and more efficient "genuine32-bi~' code, which is generated for new routines. This applies to
the layout of data structures and to the procedure calling mechanism.

Macintosh operating system procedures are activated by executing characteristic unimplemented
processor instructions, which trigger a processor exception and are then emulated in software. Since calls
to the operating system are represented by single processor instructions, some construct at the language
level is required for declaring the processor instruction that is associated with a particular procedure.
The compiler thus necessarily has to distinguish between user-defined procedures and operating system
interface procedures; instead of offering only a special means of procedure activation for interface
procedures, it might just as well support a complete alternate set of conventions for the internal
structuring of their parameter types and for the calling mechanism, liberating us to choose a more
suitable protocol elsewhere.

Using a modular programming language such as Oberon, the distinction between the two varieties of
data types and procedures may be concealed completely from application programmers, by
encapsulating all interface procedures and the data structures they operate on in so-called interfi~ce
modules. Even type extension of data types exported by interface modules is legitimate, in which case the
additional fields of the extension are 32-bit aligned for optimal access speed, while the common fields
have a backward-compatible 16-bit internal structure; projections of such hybrid types onto their
respective (16-bit) base types may therefore be passed to interface procedures.

As long as we support the operating system's calling conventions for calling interface procedures, we are
free to define arbitrary protocols for application procedures calling each other. Since function
procedures in Oberon may only return basic types or pointers (just as in Pascal), we have opted to return

121 ACM SIGPLAN Notices, Vol. 26, No. 1, January 1991

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122203.122212&domain=pdf&date_stamp=1991-01-01

function results in dedicated registers rather than on the stack. Our calling protocol further differs from
the traditional Macintosh conventions, in that we enforce longword-alignment of the stack pointer,
except for short intervals when operating system routines are called.

Longword-alignment of the stack pointer is achieved by pushing word and byte-size parameters as
longwords and by padding stack frames to longword boundaries. Parameters are thus always
longword-aligned, whereas local and global variables need only be aligned by their size. Longword
alignment of parameters is necessary, because the actual parameters might be calculated by calling
function procedures; the stack must thus reside on a longword boundary at the end of each individual
parameter assignment.

As an example, consider the following declarations:

VAR n: INTEGER;
PROCEDURE P(i, j: INTEGER): INTEGER;

Now study the expression on the next line, which contains a call to function procedure P:
n := P(1234H, n)

If P is an interface procedure, then our compiler will output the following instruction sequence:

SUBQ.L #2, SP ; reserve space fo r result
MOVE.W #$1234-,-(SP) ; f i rst parameter
MOVE.W n, -(SP) ; second parameter
JSR P
MOVE.W (SP)+, n ; pop result

Otherwise, if P is an ordinary procedure, the compiler will generate the object code listed below:

MOVE.L #$12340000, -(S P) ; f i rst parameter is constant shifted to correct alignment
SUBQ.L #4, SP ; keep stack Iongword aligned
MOVE.W n, (SP) ; second parameter
JSR P
MOVE.W DO, n ; always return results in registers

In spite of the fact that the processor has to execute more instructions (explicit decrementation of the
stack pointer is generally necessary) and move greater amounts of data (constants are always pushed as
Iongwords), procedure calls that follow the second protocol actually executej~ster than those that
employ the traditional Macintosh calling conventions. In order to measure the extent of this
performance improvement, we ran a classic suite of benchmarks (originally collected by John Hennessy)
for each of the calling and data alignment schemes. Except for the instructions for parameter and result
passing, all other operations in the programs compared below were identical.

Three different benchmarks were run. First of all (Situation A), we timed the programs utilizing the
customary (operating system) calling conventions (word alignment of data, parameters pushed by size).
We then incremented the stack pointer by two and ran the same series of benchmarks again (Situation
B). Very different timings resulted, some better and some worse, because all Iongword accesses now
had different alignments than before. We then related the average of these two timings to the values
obtained using "genuine 32-bit" compilation (data aligned by size, Iongword alignment of parameters).
The following table lists the time in milliseconds for each ofthese benchmarks, on an Apple Macintosh II
computer (MC68020/1 6MHz), as well as the performance of the "32-bit" code relative to the average
performance of "word-oriented" code under two different stack alignments.

Operating System Conventions Genuine 32-bit Relative
Situation A Situation B Conventions Performance

Permutation 800 1150 800 122%
Towers of Hanoi 1283 1 SO0 1200 116%
Eight Queens 850 633 633 117%
Integer MatMult 1166 1416 1166 111%
Real MatMu It 2000 2233 1967 108%
Puzzle 6784 6800 6033 113%
Quicksort 717 950 700 119%
Bubblesort 1284 1583 1283 112%
Treesort 733 983 750 114%
Fast Fourier Transform 3216 3700 3200 108%

122

While object files that support "genuine 32-bit" conventions are longer by up to 5% (due to the
expansion of word-sized literals to longword and the need to decrement the stack pointer explicitly
when passing byte or word-sized parameters), the code thus generated out.pe~orms consistently the
word-oriented equivalent that is so commonly produced by other compilers. This improvement
becomes less pronounced on machines including a processor data cache; on a Macintosh llci
(MC68030125MHz) the average relative performance drops to 110% and on a Macintosh llfx
(MC68030140MHz164kByte cache) it plunges to 105%. However, we feel that the overall performance
gain is sufficiently large to justify the increase in code size and additional compiler complexity.

References

[1] Apple Computer, Inc.: Inside Macintosh (Volumes I - V).
Addison-Wesley, Reading, Massachusetts, 1985-88.

[2] Motorola, Inc.: MC68030 Enhanced 32-Bit Microprocessor User's Manual.
Prentice Hall, Englewood Cliffs, New Jersey, 1987.

[3] N. Wirth: Type Extensions.
ACM Transactions on Programming Languages and Systems, 10, 2 (April 1988), 204-214.

[4] N. Wirth: The Programming Language Oberon.
Software - Practice and Experience, 18, 7 (July 1988), 671 - 690.

123

