
T w o W a y s to A c t
Scott D. Anderson, David M. Hart, Paul R. Cohen

Exper imenta l Knowledge Systems Labora tory
Computer and Informat ion Science Depar tmen t

University of Massachusetts at Amhers t
Amherst , MA 01003

anderson~cs.umass.edu dhart@cs.umass.edu cohen~cs.umass.edu

Abstract

We derive a simple mathematical model of the in-
teraction of two tasks running concurrently on a
uniprocessor. Specifically, we model the rate at
which two periodic tasks will interrupt each other.
The predictions of this model are supported by sim-
ulation experiments. From the model, we argue
that placing reflexive control and cognitive control
on different processors is not justified by the dif-
ferent time-scales over which they act, but is justi-
fied by the extent to which the higher priority task
dominates the uniprocessor.

Sensors I Effectors

Figure 1: An abstraction of the Phoenix Agent Architecture.
The CC is the "cognitive component" and the RC is the
"reactive component." Each programs the effectors based on
sensor data.

The Phoenix Agent architecture, shown in Figure 1, provides
two components that read data from the sensors and program
the effectors, thereby providing two sense-act loops for a sin-
gle agent. One is called the "reflexive component" (RC) and
the other is the "cognitive component" (CC). We argue that
having two components is justified because of differences be-
tween the kinds of tasks assigned to each component and the
resulting interruption of one task by another if they were to
be assigned to a single component. We then explain how the
two components differ and how they are integrated.

1 W h y Two C o m p o n e n t s ?

1.1 Interrupt ions

A Phoenix agent engages in activities that, intuitively speak-
ing, happen on disparate time scales. Examples of activities
on short time scales are digging fireline and driving down
the road, where the agent must react quickly to the unex-
pected. Our Phoenix buUdozers can see for 512 meters and
drive through softwood at 108 meters per minute. If fire
comes into view, they have less than five minutes to stop, or
they will be burned up. (In a more complex simulation, this
figure would probably be less, because the location of fire
would be obscured by smoke, trees, terrain, and so forth.)
An example of an activity on a larger time scale is creating
and executing a plan to encircle a fire with fireline. A typical
indirect attack on a fire can take from 800 to 1200 minutes.

Clearly, 5 minutes is much less than 800-1200 minutes, but
what do we precisely mean by "disparate time scales" and
why does this imply the need for separate components? Why
can't a Phoenix agent drive along the road while plannlng
an attack? As long as the planning activity is interrupted
whenever necessary to adjust the driving, why can't both be
done concurrently in a single component?

The central issue is the effect of interruptions. Consider an
agent that must do two periodic tasks concurrently. (Phoenix
tasks are typlcally environment-driven and therefore not pe-
riodic, but we consider periodic tasks as a slmplification for
the purpose of modelling interruption effects.) Task i takes ci
minutes 1 to compute on a particular processor and must be
done every di minutes. Assume for a moment that at time
zero both tasks are ready to run and are at the beginning
of their periods. Their periods will overlap in various ways
as time progresses, until they return to this initial configu-
ration and the cycle repeats. The length of this cycle is the
least common multiple of the task periods, and we will de-
note it diem. Therefore, it is sufficient to analyze the behavior
during the dicta cycle, since that determines the behavior at
all longer lengths of time. During dlcm minutes, task i will
be executed dlcrn/di times, and each execution will take cl
minutes. ~ Therefore, both tasks are schedulable on a single
processor of the specified type only if

~lm dlcrn cl + c 2 ~ _< dlc,~

cl c2 < 1 (I)
d-T + -

The first equation can be read simply as the time of each ex-
ecution multiplied by the number of executions of each type,
and the sum of these must be less than the time available.
The sum in the second equation is usually referred to in the
scheduling literature as the utilization of the processor. Liu
and Layland [6] is a standard reference in the scheduling liter-
ature: they prove the optimality of the rate-monotonic (RM)
algorithm for static scheduling and the earliest-deadline-first
(EDF) algorithm for dynamic scheduling of periodic, pre-
emptive tasks. However, Liu and Layland ignore the costs of
interruption, although they recognize that it is important in
practice; we will not ignore it.

To assess the cost of interruption, suppose that for a pair of
tasks, cz and dz are much larger than cl and dx. Under any
reasonable scheduling algorithm, task 1 will be scheduled in
preference to task 2, since otherwise it will miss its deadllne. 3

1We arbitrarily choose minutes as the time units for all
such variables.

2We take the ci to be fixed. Variance in the actual execu-
tion time will affect the interruption rate, but this analysis
will concentrate on the effects of static properties of the task
set.

3Under the RM algorithm, task 1 has a higher rate (the
inverse of the period, dl) and therefore will always preempt

S IGART Bul le t in , Vol. 2, No. 4 20

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122344.122346&domain=pdf&date_stamp=1991-07-01

d A

v. A

A1A1 B1 A2A2B1A~A3B~

diem

Figure 2: I l lustrat ion of how a long task, B, with cB = 3
and dB = 9 is interrupted by a short-period task, A, with
CA = 2 and dA = 3. Time moves to the right, with the
let ters designating which task is running during that t ime.
The subscripts indicate which instance of the periodic task is
running.

This means that out of each d l -minute period, task 1 gets cl
minutes and task 2 gets at most the remaining dl - Cl. If
dl - cl is shorter than c2, task 2 will be in terrupted. We
know that in dlc m minutes we have

interrupt ions of each execution of task two.

Figure 2 il lustrates this formula. We get [3 / (3 - 2)J = 3
in terrupt ions of task B. The alert reader will note tha t
some of these interruptions (at most half) can be el iminated
by re-ordering. For example, A1A1B1A2A2Bi can become
A1A1B1 B1 A1A2, thereby eliminating one in terrupt ion of B.
Simple RM or EDF scheduling algori thms won ' t do this, be-
cause task A has a higher rate and earlier deadline than B.
Also, reordering tends to force some instances of task A to-
gether while spreading others apart , which means that the
variance of the t ime between executions will be higher. In-
creasing the variance may have a deleterious effect on tasks
such as sensor sampling.

Again, there are diem~d1 executions of task one, so if we let
I N T be the cost in minutes of an interrupt ion, equations (1)
and (2) yield the following necessary condit ion for schedula-
bility. Equat ion (3) extends equat ion (1) to include the cost
of interrupt ions.

dlcm c2 ~ I N T _ dz~m

d X + ~ + ~ ~ < 1 (3)

Let us isolate one part of equation (3), the in ter rupt ion rate:

m = ~ ~ (4)

The interrupt ion rate is the measure of how scale dispari-
ties in the tasks affect performance and is the focus of the
following analysis.

To test whether formula (4) correctly calculates in terrupt ion
rates for part icular task sets, we implemented a simple sim-
ulator for sets of periodic tasks. To create input task sets,
we needed a source of "small" tasks and "large" tasks, cor-
responding to our intuit ion that scale difference would deter-
mine interrupt ion rate. Small tasks were created by choos-
ing cl and dl from a fixed normal dis t r ibut ion (g -- 10,

task 2. Under the EDF algori thm, task 1 will typically have
an earlier deadline, again because of the shorter period, and
p reempt task 2.

~7 = 3), and large tasks were created by choosing from a nor-
mal distr ibution X t imes larger than the small one (/t = 10X,
cr = 3X). We checked that c was always less than d and that
equation (1) held. (We didn ' t use equat ion (3), because the
simulator assessed no cost for interrupt ions .) The s imulator
used the E D F scheduling a lgor i thm and counted the actual
nmnber of interrupt ions. We found that formula (4) is very
accurate over a wide range of task sets.

Once we were sure that the formula was fairly accurate , we
analyzed it to find the factors that de termined the interrup-
tion rate. In part icular , we wanted to know the effect of the
"scale" difference in the task set. Given the way the task sets
are chosen, the expected value of both c2 and de is X ~ . Of
course, they are subject to the constraint from equat ion (1);
nevertheless, we will approximate formula (4) as follows:

Xt t 1

Observing that for any a , [otJ = a
and 1, we reasoned as follows:

X ~

X ~ 1
=

1 e
dl - cl X / t

- e, where e is be tween 0

(8)

Clearly, the quant i ty da - cx, often called lazity, is a second
impor tan t factor. Note that laxity is not the same as the
uti l ization of the higher-rate task, which is Cl/dl. We will
nota te the laxity as Y in our equations:

m (7)
Y Xt t

We now have an equat ion simple enough to unders tand and
make predictions from. We predict a s t rong effect of laxity
(increasing Y should sharply decrease IR) and a smaller effect
of scale (increasing X should increase IR until the e / X # t e rm
vanishes). We also predict no interact ion between these two
fac to r s - - the i r effects should be purely addit ive.

To test these predictions, we ran a number of s imulat ions
of randomly chosen task sets and performed an analysis of
variance (ANOVA). The results are shown in Table 1. Note
the strong effect of Y (p < .0001) and the complete lack
of an interact ion effect. The effect of X , however, was not
significant. Given our analysis, this suggests tha t X was
already too big to show an effect, so we ran another set of
tests, varying X over slightly smaller values. Table 2 shows
these results. Note that X is now highly significant (p <
.0042), even though its range has changed only slightly.

Unfortunately, Table 2 also shows a slight interact ion effect.
One explanat ion is that the linear regression model which
underlies the ANOVA test is not applicable to equat ion (7)
because of the hyperbolic effect of each factor. Therefore, we
ran another exper iment using factors which are the reciprocal
of the original factors. Tha t is, equat ion (7) was rewri t ten in
terms of factors X ' and Y' to get:

m = Y' - X ' ± (8)
tt

The ANOVA results for this exper iment are given in Table 3.
We see that X t and Y ' are higllly significant factors, and that

21 S I G A R T Bu l l e t i n , Vol. 2, No . 4

source of sum of mean
variation df squares square F P

X 3 .006 .002 1.558 .2012
Y 4 .062 .016 11.471 .0000
XY 12 .009 .001 .580 .8563
error 180 .243 .001

Table 1: ANOVA: X C {3, 4, 5, 6}, Y E {2,4,6,8,10}

source of sum of mean
variation df squares square F P

X 3 .015 .005 4.564 .0042
Y 4 .065 .016 14.521 .0000
XY 12 .025 .002 1.869 .0408
error 180 .201 .001

Table 2: ANOVA: X E {2, 3, 4, 5}, Y E {2, 4, 6, 8, 10}

source of sum of mean
variation df squares square F P

X ~ 3 .033 .011 5.127 .0021
y t 3 .076 .025 11.649 .0000
X~Y r 9 .025 .003 1.261 .2632
error 144 .313 .002

Table 3: ANOVA:
X ' C {1.0, .71, .42, .125}, Y' e {.5, .37, .23, .10}

there is no interaction effect. The predictions of our analysis
have largely been confirmed by these experiments.

Our intuitive justification for having two sense-act loops was
that scale differences caused high interruption rates, and that
was costly enough to warrant two components. We were sur-
prised to find that scale is only a small factor, and that laxity
is more important. While intuition might have told us that
low laxity is bad, we now know that changing the task set
to one with different laxities produces a highly nonlinear ef-
fect on the interrupt rate. We also know that a small X can
reduce the interrupt rate and that changes in X when X is
small produce noticeable changes in the interrupt rate. On
the other hand, large values of X will cause the second term
to go to zero, so the interrupt rate will be maximized for that
value of Y. Furthermore, changes in X when X is large will
produce no noticeable change in the interrupt rate. With
respect to the design of Phoenix, this means that the scale
difference we pointed to before (5 minutes versus 800-1200)
maximizes the interrupt rate and that a small change to this
scale difference will be ineffective in reducing the interrupt
rate.

1.2 C o m p u t e r a n d H u m a n P r e c e d e n t s

So far, we have analyzed only periodic tasks, even though
Phoenix tasks are usually not periodic. We believe, though,
that the force of the argument holds more generally. Aperi-
odic tasks can be characterized by their relative magnitude,
perhaps by their expected arrival rates and expected compu-
tation time. We can also assess the extent to which smaller,
higher priority tasks will saturate a processor, even though
it may not be a simple ratio of computation time to period.

We certainly see the need for parallel components in other do-
mains. In computer systems architecture, we see autonomous
I /O units with their own processors, largely because of speed
disparities between the I /O device and the CPU. In such at-

chitectures, there can be many concurrent components. Con-
sider also the architecture of the human central nervous sys-
tem (CNS). There is ample evidence of autonomous compo-
nents and concurrent processing ability. Indeed, it was by
analogy with the human CNS that the Phoenix architecture
was designed. We do not claim that the Phoenix agent ar-
chitecture is a model of the human CNS, but we believe that
the factors of scale and saturation may explain and justify hu-
man and computer architecture as well as the Phoenix agent
architecture.

2 H o w t h e C o m p o n e n t s W o r k 4

The RC contains a collection of reflexes, which are associa-
tions between sensors and effectors mediated by two simple
functions, one for triggering reflex execution based on sensor
readings (the trigger function) and one for changing effector
settings based on those sensor readings (the response func-
tion). Trigger functions are simple functions of the sensor
readings, such as whether the value exceeds a threshold or
equals some value. Response functions make simple changes
to effectors, turning them on or off or making minor pa-
rameter adjustments. These functions rely only on currently
available sensor readings; reflexes retain no persistent state
information other than the values of their control parameters.
These parameters define reflex sensitivity and are set by the
CC.

After a sensor executes, trigger functions, which link the sen-
sor to particular reflexes, are executed to determine whether
the associated reflexes should be activated. A trigger func-
tion may rely on values from more than one sensor, in which
case it simply checks the most recent readings for the criti-
cal sensors. When activated, the reflex executes the response
function to change effector settings. For example, when the
sense-road-heading sensor has a value different from that of
the sense-agent-headingsensor, the follow-road reflex changes
the heading parameter of the movement effector to maintain
the road heading.

While the RC has a simple internal structure, the CC is more
complex, with numerous subcomponents and control mecha-
nisms. It plans by a method we call lazy skeletal expansion.
By "lazy," we mean that commitment to a precise course of
action is delayed as much as possible, thereby maximizing
the opportunity for environmental change to be taken into
account. Deferred commitment is accomplished by interleav-
ing three basic activities: find, expand, and execute. Find-
plan actions are placed on the timeline (the agent's agenda
of pending tasks) as part of plans (to defer commitment to a
particular plan or action) or in response to exceptional condi-
tions (as noted by messages from the reflexive component or
from other agents). These actions use their context with the
timeline to search the plan library for skeletal plans appropri-
ate for the context and the current state of the world. For ex-
ample, if the find-plan action is to get an agent to the fire, the
context includes information about the type of fire-fighting
plan it is part of, the techniques being used to fight the fire,
and the coordination needed with other agents, in addition to
the location of the fire. Expand-plan actions instantiate the
plan's network of actions on the timeline. Execute actions
calculate variable values, manage resources and control the
agent's interactions with the world. As the timeline actions
are executed, plans and actions are incrementally added, sen-
sors and effectors are activated~ and the agent pursues the
plan. Actions become eligible for execution only when the

4This section is gratefully drawn from Howe and Co-
hen [5].

S I G A R T Bul le t in , Vol. 2, No. 4 22

siblings that precede them have already executed; even then,
execution may be deferred until information about the state
of the world is available. Because plans are combinations
of primitive actions and plan expansion actions, action and
planning are interleaved.

3 W h a t T h e y K n o w

The RC is quite limited in its knowledge, mostly because
that knowledge is either useless or dangerous. Because the
RC is only looking for simple conditions, such as some sen-
sor reaching a critical level, it has no need of the contents
of the plan library, since the plan library comprises mostly
fire-fighting plans and plans that are irrelevant to the RC.
Some plans are indeed relevant, such as planning a path to a
safe location; in fact, that is the very plan that the CC uses
when the RC has alerted the CC that fire is encroaching.
However, that plan can take many minutes to run, thereby
preventing the RC from doing high-rate tasks that keep the
agent alive. Another example is that the RC has no access to
the agent's map of Yellowstone. This information is certainly
relevant, as it might help the RC notice and avoid obstacles
that are marked on the map, long before they are visible.
However, availability of the map might tempt the RC to do
long-running searches, which would affect its ability to keep
up with its other tasks.

The CC has access to all the agent's knowledge, which encom-
passes the plan library, the timeline, the map, envelopes, and
communications from other agents (for more on envelopes,
see Hart et al. [4]). In principle at least, the CC can compute
anything. Since the RC takes care of keeping the agent alive,
even in the face of environmental change, the CC is free to
pursue other goals, in particular, fighting fires. Firefighting
typically involves setting deadlines for tasks to be done, so
the CC is, in fact, under time pressure, somewhat as the RC
is. The difference, though, is that the CC's deadlines are
largely self-imposed, since the fire-fighting environment, in
the large, tends to have soft deadlines. Letting the fire burn
for another five minutes or even another hour will typically
make little difference in its final size or effects, because most
fires move slowly. ° However, many plans of attack commit
the firefighters to digging particular firelines by a particular
deadline, and this gives the agent a constraint on how long
it can take to do something. On the other hand, if the con-
straint proves to be a problem (perhaps because the fire has
increased its speed), the plan can be aborted and re-planned
with new commitments.

4 H o w T h e y I n t e r a c t

The authority relationship of the RC and the CC is asym-
metrical, mostly stemming from the difference in their knowl-
edge. Essentially, the RC is fast but somewhat stupid, while
the CC is smart but somewhat slow. Therefore, the CC "pro-
grams" the RC to execute and monitor actions that the CC
cannot do itself. Programming the RC consists of turning
reflexes on and off and adjusting other parameters, such as
its sensitivity to change.

When the RC notices a problem, it usually communicates it
to the CC by placing an action on the CC's timeline indi-
cating the nature of the problem. Occasionally, however, the
RC can deal with the problem by itself. For example, if there
is an obstruction in the path to be driven, the RC can drive

5For example, under reasonable environmental conditions,
fire spreads at less than 300 meters per hour.

around it without having to notify the CC. But for the most
part, the RC does as the CC has "programmed" it.

5 C o n c l u s i o n

We have attempted to justify a particular design decision of
the Phoenix agent architecture. We began with an intuitive
argument about the effects of scale differences between tasks
on interruptions. Our formal analysis, however, led to a dif-
ferent assessment of the impact of scale differences and the
discovery of another, more significant factor--saturation of
the processor by smaller tasks. We tested and confirmed the
predictions of this model using a simple simulator.

Two directions can be pursued with this work. The first is
to generalize the argument to other kinds of architectures,
and possibly to other architectural decisions. The second
is to analyze the disadvantages of splitting tasks between
multiple components. For instance, what is the cost of the
extra communication and "programming" between the CC
and the RC? By this kind of modeling, analysis and testing,
we hope to put agent design on firmer ground than intuition,
which has sometimes proven treacherous.

6 S y s t e m S t a t u s

The Phoenix system is a complete and well-tested simulation
of Yellowstone National Park and the firefighting agents, such
as bulldozers, watchtowers, helicopters and firebosses, that
act in that world. For a system architecture overview, see
Cohen et al. [1]. There is always room for improvement, but
at this point we consider it primarily as a testbed for our
ideas; enhancing the complexity of the world and the capa-
bilities of the agents is secondary. The Phoenix system has
run thousands of scenarios, where a scenario consists of set-
ting fires, either at random locations or under user control,
and allowing the agents to try to put them out. A scenario
usually lasts for between forty and a hundred hours of sim-
ulation time. As of this writing, the system can simulate
around twenty scenarios before the machine fails due to ex-
hausted swap space, for reasons we have not yet been able to
discover.

We have a technical report [3] available that documents the
testbed, and we would be interested in having other research
groups test their agents in the Phoenix world.

Acknowledgements
This research was supported by AFOSR under the Intelligent
Real-Time Problem Solving initiative, contract #AF©SR-
91-0067, by DARPA-AFOSR contract #F49620-89-C-00113,
and by the Office of Naval Research under a University Re-
search Initiative grant, ONR #N00014-86-K-0764, and the
Texas Instruments Corporation.

We thank Adele Howe, Keith Decker, and Paul Silvey for
their help in developing this paper. We also thank John A.
Stankovic and Krithi Ramamritham for critically reading an
earlier version of this paper and contributing their knowledge
of real-time computing.

[1]
R e f e r e n c e s

Paul R. Cohen, Michael L. Greenberg, David M. Hart,
and Adele E. Howe. Trial by Fire: Understanding the De-
sign Requirements for Agents in Complex Environments.
A I Magazine, 10(3):34-48, Fall 1989.

23 S I G A R T Bullet in , Vol. 2, No. 4

[2] Thomas Dean. Planning, Execution, and Control. In
Proceedings of the DARPA Knowledge-Based Planning
Workshop, Austin, Texas, December 1987.

[3] Michael Greenberg and David L. Westbrook. The
Phoenix Testbed. Technical Report 90-19, Department
of Computer and Information Science, University of Mas-
sachusetts, Amherst MA 01003, 1990.

[4] David M. Hart, Scott D. Anderson, and Paul R. Cohen.
Envelopes as a Vehicle for Improving the Efficiency of
Plan Execution. In Proceedings of the Workshop on Inno-
vative Approaches to Planning, Scheduling and Control,
pages 71-76, 1990.

[5] Adele E. Howe and Paul R. Cohen. Responding to En-
vironmental Change. In Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling and Con-
trol, pages 85-92, 1990.

[6] C. L. Liu and James W. Layland. Scheduling Algo-
ri thms for Multiprogramming in a Hard-Real-Time Envi-
ronment. Journal of the Association for Computing Ma-
chinery, 20(1):46-61, 1973.

S I G A R T Bul le t in , Vol. 2, No. 4 24

