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Abstract  

We derive a simple mathematical model of the in- 
teraction of two tasks running concurrently on a 
uniprocessor. Specifically, we model the rate at 
which two periodic tasks will interrupt each other. 
The predictions of this model are supported by sim- 
ulation experiments. From the model, we argue 
that placing reflexive control and cognitive control 
on different processors is not justified by the dif- 
ferent time-scales over which they act, but is justi- 
fied by the extent to which the higher priority task 
dominates the uniprocessor. 

Sensors I Effectors 

Figure 1: An abstraction of the Phoenix Agent Architecture. 
The CC is the "cognitive component" and the RC is the 
"reactive component." Each programs the effectors based on 
sensor data. 

The Phoenix Agent architecture, shown in Figure 1, provides 
two components that read data from the sensors and program 
the effectors, thereby providing two sense-act loops for a sin- 
gle agent. One is called the "reflexive component" (RC) and 
the other is the "cognitive component" (CC). We argue that 
having two components is justified because of differences be- 
tween the kinds of tasks assigned to each component and the 
resulting interruption of one task by another if they were to 
be assigned to a single component. We then explain how the 
two components differ and how they are integrated. 

1 W h y  Two C o m p o n e n t s ?  

1.1 Interrupt ions 

A Phoenix agent engages in activities that, intuitively speak- 
ing, happen on disparate time scales. Examples of activities 
on short time scales are digging fireline and driving down 
the road, where the agent must react quickly to the unex- 
pected. Our Phoenix buUdozers can see for 512 meters and 
drive through softwood at 108 meters per minute. If fire 
comes into view, they have less than five minutes to stop, or 
they will be burned up. (In a more complex simulation, this 
figure would probably be less, because the location of fire 
would be obscured by smoke, trees, terrain, and so forth.) 
An example of an activity on a larger time scale is creating 
and executing a plan to encircle a fire with fireline. A typical 
indirect attack on a fire can take from 800 to 1200 minutes. 

Clearly, 5 minutes is much less than 800-1200 minutes, but 
what do we precisely mean by "disparate time scales" and 
why does this imply the need for separate components? Why 
can't  a Phoenix agent drive along the road while plannlng 
an attack? As long as the planning activity is interrupted 
whenever necessary to adjust the driving, why can't  both be 
done concurrently in a single component? 

The central issue is the effect of interruptions. Consider an 
agent that must do two periodic tasks concurrently. (Phoenix 
tasks are typlcally environment-driven and therefore not pe- 
riodic, but we consider periodic tasks as a slmplification for 
the purpose of modelling interruption effects.) Task i takes ci 
minutes 1 to compute on a particular processor and must be 
done every di minutes. Assume for a moment that at time 
zero both tasks are ready to run and are at the beginning 
of their periods. Their periods will overlap in various ways 
as time progresses, until they return to this initial configu- 
ration and the cycle repeats. The length of this cycle is the 
least common multiple of the task periods, and we will de- 
note it diem. Therefore, it is sufficient to analyze the behavior 
during the dicta cycle, since that determines the behavior at 
all longer lengths of time. During dlcm minutes, task i will 
be executed dlcrn/di times, and each execution will take cl 
minutes. ~ Therefore, both tasks are schedulable on a single 
processor of the specified type only if 

~lm dlcrn cl + c 2 ~  _< dlc,~ 

cl c2 < 1 (I) 
d-T + - 

The first equation can be read simply as the time of each ex- 
ecution multiplied by the number of executions of each type, 
and the sum of these must be less than the time available. 
The sum in the second equation is usually referred to in the 
scheduling literature as the utilization of the processor. Liu 
and Layland [6] is a standard reference in the scheduling liter- 
ature: they prove the optimality of the rate-monotonic (RM) 
algorithm for static scheduling and the earliest-deadline-first 
(EDF) algorithm for dynamic scheduling of periodic, pre- 
emptive tasks. However, Liu and Layland ignore the costs of 
interruption, although they recognize that it is important in 
practice; we will not ignore it. 

To assess the cost of interruption, suppose that for a pair of 
tasks, cz and dz are much larger than cl and dx. Under any 
reasonable scheduling algorithm, task 1 will be scheduled in 
preference to task 2, since otherwise it will miss its deadllne. 3 

1We arbitrarily choose minutes as the time units for all 
such variables. 

2We take the ci to be fixed. Variance in the actual execu- 
tion time will affect the interruption rate, but this analysis 
will concentrate on the effects of static properties of the task 
set. 

3Under the RM algorithm, task 1 has a higher rate (the 
inverse of the period, dl) and therefore will always preempt 
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Figure  2: I l lustrat ion of how a long task, B, with cB = 3 
and dB = 9 is interrupted by a short-period task, A, with 
CA = 2 and dA = 3. Time moves to the right, with the 
let ters designating which task is running during that  t ime. 
The  subscripts indicate which instance of the periodic task is 
running.  

This  means that  out  of each d l -minute  period, task 1 gets cl 
minutes and task 2 gets at most the remaining dl - Cl. If  
dl - cl is shorter than c2, task 2 will be in terrupted.  We 
know that  in dlc m minutes we have 

interrupt ions  of each execution of task two. 

Figure  2 il lustrates this formula. We get [ 3 / ( 3 -  2)J = 3 
in terrupt ions  of task B. The alert  reader will note tha t  
some of these interruptions (at most half) can be el iminated 
by re-ordering. For example, A1A1B1A2A2Bi can become 
A1A1B1 B1 A1A2, thereby eliminating one in terrupt ion of B. 
Simple RM or EDF scheduling algori thms won ' t  do this, be- 
cause task A has a higher rate and earlier deadline than B. 
Also, reordering tends to force some instances of task A to- 
gether  while spreading others apart ,  which means that  the 
variance of the t ime between executions will be higher. In- 
creasing the variance may have a deleterious effect on tasks 
such as sensor sampling. 

Again,  there are diem~d1 executions of task one, so if  we let 
I N T  be the cost in minutes of an interrupt ion,  equations (1) 
and (2) yield the following necessary condit ion for schedula- 
bility. Equat ion  (3) extends equat ion (1) to include the cost 
of interrupt ions.  

dlcm c2 ~ I N T  _ dz~m 

d X + ~ +  ~ ~ < 1 (3) 

Let us isolate one part  of equation (3), the in ter rupt ion  rate: 

m =  ~ ~ (4) 

The  interrupt ion rate is the measure of how scale dispari- 
ties in the tasks affect performance and is the focus of the 
following analysis. 

To test  whether  formula (4) correctly calculates in terrupt ion 
rates for part icular  task sets, we implemented  a simple sim- 
ulator  for sets of periodic tasks. To create input  task sets, 
we needed a source of "small" tasks and "large" tasks, cor- 
responding to our intuit ion that  scale difference would deter- 
mine interrupt ion rate. Small tasks were created by choos- 
ing cl and dl from a fixed normal dis t r ibut ion (g -- 10, 

task 2. Under  the EDF algori thm, task 1 will typically have 
an earlier deadline, again because of the shorter  period, and 
p reempt  task 2. 

~7 = 3), and large tasks were created by choosing from a nor- 
mal distr ibution X t imes larger than the small one (/t = 10X, 
cr = 3X).  We checked that  c was always less than d and that  
equation (1) held. (We didn ' t  use equat ion (3), because the 
simulator assessed no cost for interrupt ions . )  The  s imulator  
used the E D F  scheduling a lgor i thm and counted the actual  
nmnber  of interrupt ions.  We found that  formula (4) is very 
accurate  over a wide range of task sets. 

Once we were sure that  the formula was fairly accurate ,  we 
analyzed it to find the factors that  de termined the interrup-  
tion rate. In part icular ,  we wanted to know the effect of the 
"scale" difference in the task set. Given the way the task sets 
are chosen, the expected value of both c2 and de is X ~ .  Of  
course, they are subject  to the constraint  from equat ion (1); 
nevertheless,  we will approximate  formula  (4) as follows: 

Xt t  1 

Observing that  for any a ,  [otJ = a 
and 1, we reasoned as follows: 

X ~  

X ~  1 
= 

1 e 
dl - cl X / t  

- e, where e is be tween 0 

(8) 

Clearly, the quant i ty  da - cx, often called lazity, is a second 
impor tan t  factor.  Note that  laxity is not the same as the 
uti l ization of the higher-rate task, which is Cl/dl. We will 
nota te  the laxity as Y in our equations:  

m . . . .  (7) 
Y Xt t  

We now have an equat ion simple enough to unders tand and 
make predictions from. We predict  a s t rong effect of laxity 
(increasing Y should sharply decrease IR) and a smaller effect 
of scale (increasing X should increase IR until  the e / X #  t e rm 
vanishes). We also predict no interact ion between these two 
fac to r s - - the i r  effects should be purely addit ive.  

To test these predictions,  we ran a number  of s imulat ions 
of randomly chosen task sets and performed an analysis of 
variance (ANOVA).  The  results are shown in Table 1. Note  
the strong effect of Y (p < .0001) and the complete  lack 
of an interact ion effect. The effect of X ,  however,  was not 
significant. Given our analysis, this suggests tha t  X was 
already too big to show an effect, so we ran another  set of 
tests, varying X over slightly smaller values. Table  2 shows 
these results. Note that  X is now highly significant (p < 
.0042), even though its range has changed only slightly. 

Unfortunately,  Table 2 also shows a slight interact ion effect. 
One explanat ion is that  the linear regression model  which 
underlies the ANOVA test is not  applicable to equat ion (7) 
because of the hyperbolic effect of each factor.  Therefore,  we 
ran another  exper iment  using factors which are the reciprocal 
of the original factors. Tha t  is, equat ion (7) was rewri t ten in 
terms of factors X '  and Y'  to get: 

m = Y'  - X ' ±  (8) 
tt 

The  ANOVA results for this exper iment  are given in Table 3. 
We see that  X t and Y '  are higllly significant factors, and that  
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source of sum of mean 
variation df squares square F P 

X 3 .006 .002 1.558 .2012 
Y 4 .062 .016 11.471 .0000 
XY 12 .009 .001 .580 .8563 
error 180 .243 .001 

Table 1: ANOVA: X C {3, 4, 5, 6}, Y E {2,4,6,8,10} 

source of sum of mean 
variation df squares square F P 

X 3 .015 .005 4.564 .0042 
Y 4 .065 .016 14.521 .0000 
XY 12 .025 .002 1.869 .0408 
error 180 .201 .001 

Table 2: ANOVA: X E {2, 3, 4, 5}, Y E {2, 4, 6, 8, 10} 

source of sum of mean 
variation df squares square F P 

X ~ 3 .033 .011 5.127 .0021 
y t  3 .076 .025 11.649 .0000 
X~Y r 9 .025 .003 1.261 .2632 
error 144 .313 .002 

Table 3: ANOVA: 
X '  C {1.0, .71, .42, .125}, Y' e {.5, .37, .23, .10} 

there is no interaction effect. The predictions of our analysis 
have largely been confirmed by these experiments. 

Our intuitive justification for having two sense-act loops was 
that scale differences caused high interruption rates, and that 
was costly enough to warrant two components. We were sur- 
prised to find that scale is only a small factor, and that laxity 
is more important. While intuition might have told us that 
low laxity is bad, we now know that changing the task set 
to one with different laxities produces a highly nonlinear ef- 
fect on the interrupt rate. We also know that a small X can 
reduce the interrupt rate and that changes in X when X is 
small produce noticeable changes in the interrupt rate. On 
the other hand, large values of X will cause the second term 
to go to zero, so the interrupt rate will be maximized for that 
value of Y. Furthermore, changes in X when X is large will 
produce no noticeable change in the interrupt rate. With 
respect to the design of Phoenix, this means that the scale 
difference we pointed to before (5 minutes versus 800-1200) 
maximizes the interrupt rate and that a small change to this 
scale difference will be ineffective in reducing the interrupt 
rate. 

1.2 C o m p u t e r  a n d  H u m a n  P r e c e d e n t s  

So far, we have analyzed only periodic tasks, even though 
Phoenix tasks are usually not periodic. We believe, though, 
that the force of the argument holds more generally. Aperi- 
odic tasks can be characterized by their relative magnitude, 
perhaps by their expected arrival rates and expected compu- 
tation time. We can also assess the extent to which smaller, 
higher priority tasks will saturate a processor, even though 
it may not be a simple ratio of computation time to period. 

We certainly see the need for parallel components in other do- 
mains. In computer systems architecture, we see autonomous 
I /O  units with their own processors, largely because of speed 
disparities between the I /O device and the CPU. In such at- 

chitectures, there can be many concurrent components. Con- 
sider also the architecture of the human central nervous sys- 
tem (CNS). There is ample evidence of autonomous compo- 
nents and concurrent processing ability. Indeed, it was by 
analogy with the human CNS that the Phoenix architecture 
was designed. We do not claim that the Phoenix agent ar- 
chitecture is a model of the human CNS, but we believe that 
the factors of scale and saturation may explain and justify hu- 
man and computer architecture as well as the Phoenix agent 
architecture. 

2 H o w  t h e  C o m p o n e n t s  W o r k  4 

The RC contains a collection of reflexes, which are associa- 
tions between sensors and effectors mediated by two simple 
functions, one for triggering reflex execution based on sensor 
readings (the trigger function) and one for changing effector 
settings based on those sensor readings (the response func- 
tion). Trigger functions are simple functions of the sensor 
readings, such as whether the value exceeds a threshold or 
equals some value. Response functions make simple changes 
to effectors, turning them on or off or making minor pa- 
rameter adjustments. These functions rely only on currently 
available sensor readings; reflexes retain no persistent state 
information other than the values of their control parameters. 
These parameters define reflex sensitivity and are set by the 
CC. 

After a sensor executes, trigger functions, which link the sen- 
sor to particular reflexes, are executed to determine whether 
the associated reflexes should be activated. A trigger func- 
tion may rely on values from more than one sensor, in which 
case it simply checks the most recent readings for the criti- 
cal sensors. When activated, the reflex executes the response 
function to change effector settings. For example, when the 
sense-road-heading sensor has a value different from that of 
the sense-agent-headingsensor, the follow-road reflex changes 
the heading parameter of the movement effector to maintain 
the road heading. 

While the RC has a simple internal structure, the CC is more 
complex, with numerous subcomponents and control mecha- 
nisms. It plans by a method we call lazy skeletal expansion. 
By "lazy," we mean that commitment to a precise course of 
action is delayed as much as possible, thereby maximizing 
the opportunity for environmental change to be taken into 
account. Deferred commitment is accomplished by interleav- 
ing three basic activities: find, expand, and execute. Find- 
plan actions are placed on the timeline (the agent's agenda 
of pending tasks) as part of plans (to defer commitment to a 
particular plan or action) or in response to exceptional condi- 
tions (as noted by messages from the reflexive component or 
from other agents). These actions use their context with the 
timeline to search the plan library for skeletal plans appropri- 
ate for the context and the current state of the world. For ex- 
ample, if the find-plan action is to get an agent to the fire, the 
context includes information about the type of fire-fighting 
plan it is part of, the techniques being used to fight the fire, 
and the coordination needed with other agents, in addition to 
the location of the fire. Expand-plan actions instantiate the 
plan's network of actions on the timeline. Execute actions 
calculate variable values, manage resources and control the 
agent's interactions with the world. As the timeline actions 
are executed, plans and actions are incrementally added, sen- 
sors and effectors are activated~ and the agent pursues the 
plan. Actions become eligible for execution only when the 

4This section is gratefully drawn from Howe and Co- 
hen [5]. 
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siblings that precede them have already executed; even then, 
execution may be deferred until information about the state 
of the world is available. Because plans are combinations 
of primitive actions and plan expansion actions, action and 
planning are interleaved. 

3 W h a t  T h e y  K n o w  

The RC is quite limited in its knowledge, mostly because 
that knowledge is either useless or dangerous. Because the 
RC is only looking for simple conditions, such as some sen- 
sor reaching a critical level, it has no need of the contents 
of the plan library, since the plan library comprises mostly 
fire-fighting plans and plans that are irrelevant to the RC. 
Some plans are indeed relevant, such as planning a path to a 
safe location; in fact, that is the very plan that the CC uses 
when the RC has alerted the CC that fire is encroaching. 
However, that plan can take many minutes to run, thereby 
preventing the RC from doing high-rate tasks that keep the 
agent alive. Another example is that the RC has no access to 
the agent's map of Yellowstone. This information is certainly 
relevant, as it might help the RC notice and avoid obstacles 
that are marked on the map, long before they are visible. 
However, availability of the map might tempt the RC to do 
long-running searches, which would affect its ability to keep 
up with its other tasks. 

The CC has access to all the agent's knowledge, which encom- 
passes the plan library, the timeline, the map, envelopes, and 
communications from other agents (for more on envelopes, 
see Hart et al. [4]). In principle at least, the CC can compute 
anything. Since the RC takes care of keeping the agent alive, 
even in the face of environmental change, the CC is free to 
pursue other goals, in particular, fighting fires. Firefighting 
typically involves setting deadlines for tasks to be done, so 
the CC is, in fact, under time pressure, somewhat as the RC 
is. The difference, though, is that the CC's deadlines are 
largely self-imposed, since the fire-fighting environment, in 
the large, tends to have soft deadlines. Letting the fire burn 
for another five minutes or even another hour will typically 
make little difference in its final size or effects, because most 
fires move slowly. ° However, many plans of attack commit 
the firefighters to digging particular firelines by a particular 
deadline, and this gives the agent a constraint on how long 
it can take to do something. On the other hand, if the con- 
straint proves to be a problem (perhaps because the fire has 
increased its speed), the plan can be aborted and re-planned 
with new commitments. 

4 H o w  T h e y  I n t e r a c t  

The authority relationship of the RC and the CC is asym- 
metrical, mostly stemming from the difference in their knowl- 
edge. Essentially, the RC is fast but somewhat stupid, while 
the CC is smart but somewhat slow. Therefore, the CC "pro- 
grams" the RC to execute and monitor actions that the CC 
cannot do itself. Programming the RC consists of turning 
reflexes on and off and adjusting other parameters, such as 
its sensitivity to change. 

When the RC notices a problem, it usually communicates it 
to the CC by placing an action on the CC's timeline indi- 
cating the nature of the problem. Occasionally, however, the 
RC can deal with the problem by itself. For example, if there 
is an obstruction in the path to be driven, the RC can drive 

5For example, under reasonable environmental conditions, 
fire spreads at less than 300 meters per hour. 

around it without having to notify the CC. But for the most 
part, the RC does as the CC has "programmed" it. 

5 C o n c l u s i o n  

We have attempted to justify a particular design decision of 
the Phoenix agent architecture. We began with an intuitive 
argument about the effects of scale differences between tasks 
on interruptions. Our formal analysis, however, led to a dif- 
ferent assessment of the impact of scale differences and the 
discovery of another, more significant factor--saturation of 
the processor by smaller tasks. We tested and confirmed the 
predictions of this model using a simple simulator. 

Two directions can be pursued with this work. The first is 
to generalize the argument to other kinds of architectures, 
and possibly to other architectural decisions. The second 
is to analyze the disadvantages of splitting tasks between 
multiple components. For instance, what is the cost of the 
extra communication and "programming" between the CC 
and the RC? By this kind of modeling, analysis and testing, 
we hope to put agent design on firmer ground than intuition, 
which has sometimes proven treacherous. 

6 S y s t e m  S t a t u s  

The Phoenix system is a complete and well-tested simulation 
of Yellowstone National Park and the firefighting agents, such 
as bulldozers, watchtowers, helicopters and firebosses, that 
act in that world. For a system architecture overview, see 
Cohen et al. [1]. There is always room for improvement, but 
at this point we consider it primarily as a testbed for our 
ideas; enhancing the complexity of the world and the capa- 
bilities of the agents is secondary. The Phoenix system has 
run thousands of scenarios, where a scenario consists of set- 
ting fires, either at random locations or under user control, 
and allowing the agents to try to put them out. A scenario 
usually lasts for between forty and a hundred hours of sim- 
ulation time. As of this writing, the system can simulate 
around twenty scenarios before the machine fails due to ex- 
hausted swap space, for reasons we have not yet been able to 
discover. 

We have a technical report [3] available that documents the 
testbed, and we would be interested in having other research 
groups test their agents in the Phoenix world. 
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