
Finding Circular Relationships
in Networks

D r . K e n n e t h Fordyce
Quantitative Methods and Decision Support

Department 33VA, Mail Station 284
Engineer ing/Scient i f ic Computing Center

International Business Machines Corporation
Kingston, New York 12401 USA

914-385-5944

Dr.. Jan J a n t z e n
Technical University of Denmar]z

Electric Power Engineering Department
DK-2800 Lyngby, Denmark

Gerald Su l l i van
Senior Engineer

Manager, Advanced Industrial Engineering
and LMS Development

Department 746, Building 965-3
International Business Machines Corporation

Burlington Semiconductor Manufacturing
Essex Junction, Vermont 05452 USA

Abstract
A critical computational requirement for many

of the decision technologies in the fields of MS/OR,
AI/KBS, and DSS is the development and manipu-
lation of a network describing the relationship
between "actors" involved in the application of the
decision-technology to a specific problem. The
manipulation of such networks using Boolean
arrays and functions is well known in the APL
community (see bibliogqraphy). ORen in such net-
works it is important to identify circular conditions
as a preprocessing step, but the techniques to
accomplish oRen yield incomplete information.
This paper describes a simple and efficient method
to find all circular conditions as a preprocessing
step.

This paper is a subset of a longer paper (For-
dyce, Jantzen, and Sullivan, 1990) which describes
how we can fully build and manipulate a function
network with Boolean arrays including focusing
networks, finding circular conditions, and grouping
functions based on relative independence to identify
parallel computational opportunities and substan-
tially reduces the non-procedural aspect of the prob-
lem.

Introduction
A critical computational requirement for many

of the decision technologies in the fields of MS/OR

(PERT/CPM, Markov chains, decision trees, Baysien
analysis, MRP, simulation, ...), AI/KBS (evidential
reasoning, truth maintenance systems, propositional
logic, rule based inference, frames and semantic
nets, _..),-and DSS (worksheet or financial planning
models, data / entity models, ...) is the development
and manipulation of a function network describing
the relationship between "variables," "objects," or
"actors" involved in the application of the decision
technology to a specific problem.

A critical problem in many network problems is
identifying groups of variables or functions that
have a circular relationship. That is: A depends
on B, 8 depends on C, C depends on A, therefore A
depends on A, etc. An example using function nota-
tion would be:

V1 = f (V2, V3)

V2 = g(V1, V3)

v3 = h (v l , v2)

An example of such a condition in manufactur-
ing would be: The machine a lot is assigned to
depends on the estimate of how far ahead or behind
(delta) of schedule the lot is. The delta schedule
estimate depends on the machine the lot is assigned
to.

In systems of algebraic equations circular condi-
tions are a simultaneous set of equations. An
example of one that oRen occurs in financial plan-
ning models is:

PROFIT = REVENUE - (EXPENSE + BONUS)
BONUS = . 9 5 x PROFIT

In this case REVENUE and EXPENSE are input vari-
ab]es, and PROFIT and BONUS are ca]cu]ated and cir-
cular.

This paper describes a simple method to find
such relationships. All code is in APL2.

Example Problem
Throughout the rest of the paper we will use

the following example to demonstrate how to find
circular relationships. This example has nine
relationships and three circular relationships:

i . AA = FNI (AA,A)
Read the variable AA is a function of the
variables AA and A through the function FNi.
Therefore AA depends on AA and A.

2. BB = FN2 (AA)
3. C = FN3 (BB,AA)
4. D = FN4 (E,AA)
5. E = FN5 (D,BB)
6 . F = FN6 (E ,D)
7. G = FN/ (H,F,AA)
8. H = FN8 (I)
g. I = FN8 (G,BB)

APL Quote Quad 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122382.122383&domain=pdf&date_stamp=1990-12-01

Generating The Base Boolean Matrices
The first items we need to generate are two

Boolean matrices called INMATIP (IP is for
INPUT) and INMATOP (OP is for output).

INMATIP records which variables are input
variables for which functions. INMATIP has one
row for each variable, and one column for each
function. A cell gets a I if the column variable is
in the "input portion" of a function, else a O. For
our example INMATIP is:

INMATI P MATRIX
FN1 FR2 FN3 FNq FN5 FN6 FN7 FN8 F~/9

AA
A

BB
E
D
H

F
I
G
C

1 1 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

INblATOP records which variables are output
variables for which functions. INMATOP has one
row for each variable, and one column for each
function. A cell gets a I if the variable is in the
"output portion" of a function, else a O. For our
example IINblATOP would be:

I NMATOP MATRIX
FN1 FN2 FN3 FN4 FN5 F#6 FN7 FN8 FN9

AA
A

BB
g

D
H
F
I
G
C

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0

Building such matrices by parsing the notation
like "AA = FNI (AA,A)" is a well-known process in
APL.

Generating All Variable Links
The function FAR_ALLLINK (shown on page

4) will find all dependencies between variables by
manipulating INMATIP and INMATOP. A cell
gets a i if the variable associated with the column
is directly or indirectly an input to the variable
associated with the row. For example C has indi-
rect dependency on the variable A (C depends on
AA, AA d e p e n d s on A). T h e r e f o r e t h e cell (C,A)
h a s a v a I u e 3.. A g a i n th i s is a w e l l - k n o w n p roce -
d u r e in A P L . T h e s y n t a x is:

LEVKL_ALL_VAR_LINKS÷INMATIP VAR_ALL_LINK INMATOP

F o r o u r e x a m p l e t h i s m a t r i x is:

LEVEL_ALL_VAN_LINKS MA TRIX

0 AA
U A

T BB
P E
U D

T H
F

V I
A G
R C

INPUT VARIABLES
AA A BB E D H F I G C

1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 0

Finding Circular Relationships
Step 1, If a variable is a circular variable (CV)

then it has a dependency on itself. If this depend-
ency situation exists, the upper Iei% to lower right
diagonal element of LEVEL_ALL_VAN_LINKS
corresponding to that variable has a I; else a O.
In our example this diagonal is

LEVEL_ALL_VAR_LINKS DIAGONAL

INPUT VARIABLES
AA A BB E D H F I G C

0 AA 1
U A 0
T BB 0
P E 1
U D 1
T H 1

F
V I
A G
R C

Therefore the circular variables are:

0
1

1
0

AAEDH
I G. The following APL2 expression will get this
for you:

VARLIST÷'AA" 'A ' "BB' 'E ' 'D ' 'H ' "F" ' I ' 'G' 'C"

CV ~ ((1 1) ~ LEVEL_ALL_VAB_LIRKS) / VABLISZ

Step 2, n o w we need a method to organize
these circular variables into the groups based on
the variables that "circulate" together.

W e generated a reduced version of
LEVEL_ALL_VAN_LINKS t h a t h a s o n l y t h e r o w s
and columns of the circular variables. For Example
2 we get:

0 AA
U E
T D
P H
U I
T G

INPUT VARIABLES
AA E D H I G

1 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

2 December 1990 - Volume 21, N u m b e r 2

Variables with the same row pa t t e rn o f one 's
and zero's "c i rcula te" on each other . There fore AA
is a group by itself, E and D form a second group,
and H, 1", and G form the third group.

The APL2 funct ion C I R C U L A R (listed on page
4) finds all c i rcular groups. The syntax is:

CIRCUL_LIST_VAR÷VARLIST CIRCULAR LEVKL_ALL VAR_LI#KS

Conclusion
In this paper we have presented a clean and

fast method for finding c i rcular re la t ions in ' net-
works. The algori thms presented here are a d i rect
resu l t of APL's a r ray data s t ruc tu res and Boolean
functions. APL has a long his tory of using Boolean
a r rays to make difficult problems easy.

Bibliography
[1] Alfonseca, M. and Brown, J. 1987, "Parallel Sol-

utions to Logic Problems" SEAS Spring Meeting
1987, S E A S Proceedings, Vol_ I, p. 27-46; and
reprinted in APL-CAM Journal, Vol. 9:4, p. 764-
778, Oct. 1987.

[2] Brown, J., Pakin, S., and Polivka, R. 1988, APL2
at a Glance, Prentice Hall, Englewood New
Jersey.

[3] Eusebi, E. 1987, "Inductive Reasoning from
Relations," APL87 Conference Proceedings, APL
Quote Quad, Vol. 17, No. 4, pp. 386-390.

[4] Fordyce, K. Morreale, M., McGrew, J. and Sulli-
van, G. (1991), "APL Techniques in Knowledge
Based Systems," IBM, 33VA/284, Kingston, NY
12401 forthcoming in Encyclopedia of Computer
Science and Technology, edited by Allen Kent and
James William from the University of Pittsburgh.

[5] Fordyce, K. Morreale, M., and McGrew, J. (1990),
"An Overview of APL2 for Knowledge Based Sys-
tems," IBM Technical Report: 21-1383, IBM,
33VA/284, Kingston, NY 12401

[6] Fordyce, K., Jantzen, J., and Sullivan, G. Sr.,and
Sullivan, G. Jr. 1990, "Using Boolean Arrays to
Build and Analyze Function Networks" IBM,
33VA/284, Kingston, NY 12401

[7] Fordyce, K., Jantzen, J., and Sullivan, G. Sr.,and
Sullivan, G. Jr. 1989, "Representing Knowledge
with Functions and Boolean Arrays " IBM Jour-
nal of Research and Development Vol. 33, No. 6,
pp. 627-646.

[8] Fordyce, K., and Sullivan, G. 1988A, "Boolean
Array Based Inference Engines," IBM, 34EA/284,
Kingston, NY 12401. Proceedings of the APL and
Expert Systems Conference, forthcoming in ACM
publication.

[9] Fordyce, K. and Sullivan, G. 1987, "Boolean Array
Structures for a Rule Based Forward Chaining
Infcrence Engine," APL Quote Quad, APL87 Con-
ference Proceedings, Vol. 17, No. 4, pp. 185-195

[10] Franksen, O., Falster, P., and Evans, F. 1979,
"Qualitative Aspects of Large Scale Systems -
Developing Design Rules Using APL," Lecture
Notes in Control and Information Sciences (VoL
17), Monograph, Springer-Verlag.

[11] Franksen, O. 1979, "Group Representation of
Finite Polyvalent Logic- A case Study Using APL
Notation," in A Link Between Science and Applica-
tion of Automatic Control, Proceedings IFAC
World Congress 1978, edited by A. Niemi, Perga-
mon Press, New York, Vol 2, pp. 875-887. Mono-
graph, Springer-Verlag.

[12] Franksen, O. 1984A, "Are Data Structures
Geometrical Objects? Part 1: Invoking the Erlan-
ger Program," Syst. Anal. Model. SimuL, Col. 1,
No. 2, pp. 113-130.

[13] Franksen, O. 1984B, "Are Data Structures
Geometrical Objects? Part 2: Invariant Forms in
APL and Beyond," Syst. AnaL Model SimuL, Vol_
1, No. 2, pp. 131-150.

[14] Franksen, O. 1984C, "Are Data Structures
Geometrical Objects? Part 3: Appendix A: Linear
Differential Operators," Syst. Anal. Model SimuL,
Col. 1, No. 3, pp. 249-258.

[15] Franksen, O. 1984D, "Are Data Structures
Geometrical Objects? Part 4: Appendix B: Logic
Invariants by Finite Truthtables," Syst. Ana l
Model. Simul., Vol. 1, No. 4, pp. 339-350.

[16] Franksen, O. 1985, Mr. Babbage's Secret: The
Tale of a Cypher-and APL, Prentice Hall, New
Jersey.

[17] Iverson, K. 1980, "1979 ACM Turing Award Lec-
ture: Notation as a Tool for Thought," Communi-
cations of the ACM, Vol. 23, No. 8, pp. 444-465.

[18] Jantzen, J. 1989, "Inference Planning Using
Digraphs and Boolean Arrays," Technical Univer-
sity of Denmark, Electric Poer Engineering
Department, DK-2800, Lyngby, DENMARK APL
Quote Quad, APL89 Conference Proceedings, Vol.
19, No. 4. pp. 200-204.

[19] Moiler, G. 1986, "A Logic Programming Tool for
Qualitative System Design," APL Quote Quad,
APL86 Conference Proceedings, Col. 16, No. 4, pp.
266-71.

[20] Tarjan, R. 1974, "Testing Flow Graph
Reducibility," Journal of Computer and Systems
Sciences, Vol. 9, No. 3, December 1974.

[21] Thomson, N. 1989A, APL Programs for the Math-
ematical Classroom Springer Verlag, New York,
ISBN 0-387-97002-9.

[22] Thomson, N. 1989B, "APL2 and Basic Operation
Research Algorithms," Proceedings of Share Euro-
pean Association (SEAS) Fall 1989 Meeting, Vol. 2,
pp. 1689-1703 IBM UK Labs, UK Development and
Manufacturing Process Centre, Mail Point 188,
Hursley House, Hursley Park, Winchester, Hamp-
shire S021 21N, England •

APL Quote Quad 3

Functions Ior Finding Circular Relationships in Networks
V

[03 VARLINKS÷INMATIP VAR_ALL_LINKS INMATOP;JK
[13 A This finds all linkages between variables
[23 ~ Rows are output variables
[3] A Columns are input variables
[43 VARLINKS÷INMATOPv.^~INMATIP

[53 LIO:
[5] JX÷VARLINKS
[7] VARLINKS÷VARLINKSv(VARLINXSv.^VARLINKS)
IS3 ÷(-JK~VARLINKS)/LiO

V

V
[03 CIR_GROUP÷LIST CIRCULAR ALL_LINK;CIR_ID;CIR_LIST;ORDER

[13 n
[2] A Finding the circular or SIMO variables or functions

[3] .
[4] R LIST is fnlist or varlist
[5] n
[63 hALL LINK is LEVEL_ALL_VAR_LINK or LEVEL_FN_VAR_LINK

[7] n
[8] CIR_ID÷(I I~ALL_LINK)/tI÷pALL_LINK
[9] CIR_LIST÷LIST[CIR_ID]
[I0] n
[II] n Grouping the circular or SIMO variables
[12] ALL_LINK÷ALL_LINK[CIR_ID;CIR_ID]
[13] ALL_LINK÷21~ALL_LINK
[14] ORDER÷~ALL_LINK
[15] ALL_LINK÷ALL_LINK[ORDER]

CIR_LIST÷CIR_LIST[ORDER] [15]
[17] n
[183

V

V

[o]
[I]
[2]
[3]
[~]

[6]
[7]
[8]
[9]

CIR_GROUP÷ALL_LINKcCIR_LIST

Z÷X ODA Y;JK;JKI;N;I
R This function is an alternative to X v.^ y
Z÷((l+pX),(-l+pY))pO

R Initialize the outcome matrix
R This is initialized to all zeroes (0).
s It has the same number of rows as X,
, and the same number of columns as
JK÷t-I÷pX

m This is a list of the columns in X
[I0] s If X has six columns then this JK is I 2 3 4 5 6

[113 N÷I+pZ
[12] s Number of rows in Z
[13] I÷l
[143 R I is the cycle counter
[15] LlO:
[15] ~ Start of loop which produces Z

[17] JKI÷X[I;]/JK
[183 ÷(O=I÷pJKI)/L20
[19] JKI÷Y[,JKI;]
[20] JKI÷v/[I]JKI
[21] Z[I;]÷JKI
[223 L20:
[23] +(NaI÷I+I)ILIO
[243 ~ Check if completed each row of X, if not branch to LIO
[2 5] ÷ 0

V

4 December 1990 - Volume 21, Number 2

