
Product Review News

Dich B o w m a n
2 Dean Gardens
London E17 3QP

England
01-634-7639

Review Policy
The review policy of APL Quote Quad is an

inclusive po l icy- -we wan t to review as many A P t
and A P t - r e l e v a n t products as we possibly can. The
invi ta t ion is a pe rmanen t one: i f you are a vendor
want ing your product reviewed then please contac t
me. I f you are not a vendor but use a product
which you feel is in teres t ing and valuable for
SIGAPL members, then we ' re just as pleased to
hear f rom you.

An in teres t ing dilemma presents i tself as par t of
this policy: wha t are we going to do about flawed
products? At one ext reme we could just tough it
out; i f a review shows a product in a bad light
then, having checked tha t the reviewer ' s findings
are accura te , we publish as is. The vendor is
unhappy at best, and out of business at worst .
Tak ing the o ther extreme, we could decide to pub-
lish only favourable reviews. Then the members
get mad because they pay good money for products
t ha t don ' t work.

So, this is wha t we ' re going to do:
We review the product , and i f we find flaws we

work with the vendor to determine whe the r they ' r e
flaws or features. In the published review we tell
you tha t this has happened. I f we don' t get any
improvement as a resu l t of this process then we'll
tell you tha t as well. The reason for this policy is
t ha t SIGAPL's primar-y purpose is "promoting the
development and applicat ion of [...] APL"; a purpose
which will not be achieved by unjustif ied deni-
gra t ion of sound products_ But we will not be
un t ru th fu l e i t h e r - - i f our review experience makes
us feel tha t a product will impede the promot ion of
APL, you' l l know tha t too, and in no unce r t a in
terms.

.._Any react ions?

Review Plans
Response to my call for products for review has

s ta r ted well; we have many in teres t ing i tems
coming up in fu ture issues of APL Quote Quad_
Some of these, to be fair, predate me but I will be
progress ing them th rough to publication. Reviews
being prepared include:

• N e w F a s e a n d W o r d P e r f e c t : a way of includ-
ing A P t code seamlessly into your conference
papers and Quote Quad articles.

• A P L ~ P L U S / P C V e r s i o n 10: updates on an old
favouri te .

• Too l of Thought VII: the la tes t o f
NY/SIGAPL's annual seminars.

• D y a l o g A P L / X : A P t on the X Window
System.

• D y a l o g A P L fo r DOS/386 V e r s i o n 6.1:
updates on a new favouri te .

• IAPL/MAC: an inexpensive first genera t ion
APL for the MAC.

Vendors , -ge t your products onto this list; wr i te
or call and we will organise a review. I f you ' re not
a vendor but th ink there ' s a product which APL
Quote Quad ought to review, then let 's hear from
you as well. And if you fancy t ry ing your hand at
being a reviewer , r emember we ' re always pleased to
hear from volunteers . •

APL.68000 Level II for the Amiga

Harry C. Ber tuccel l i
The Aerospace Corporat ion
Computer Systems Division

P.O. Box 92957
Los Angeles, CA 90000-2957 USA

213-336-6319

In the early 80's when personal desktop comput-
ers began to leave the private preserves of com-
pu te r hobbyists I knew tha t I too had more than a
mild in te res t in acquir ing one. I had had the good
for tune in the 70's to use the IBM 5100 in my office
at work. As most of you undoubtedly know, one
vers ion of this desktop machine (the one I had) had
a built-in APL in terpre ter . The company I was
working for paid $12,000 for t ha t computer . It was
slow (by today's standards) and I was res t r i c t ed to
a 32K workspace size and a tape car t r idge s torage
and re t r ieval system. Yet despite these l imitat ions,
my product iv i ty as an engineer ing analyst grew sub-
s tant ia l ly th rough the use of t ha t 5100. And when
I had to leave it (moving on to g reener pastures) , it
was wi th a s t rong promise to mysel f t ha t someday I
would acquire such a machine in my home office.

Li t t le did] realize at the t ime just how rapidly
the technology would burgeon. When IBM intro-
duced what became known as the PC (as though
a l te rna t ives were not personal computers) I was not
quick to jump, having already developed a prefer-
ence for e i ther Motorola or Nat ional SemiConduc-

A P t Quote Quad 23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122442.122449&domain=pdf&date_stamp=1991-03-01

tor technology. The commercial success of NSC's
chips was in doubt, but Motorola's 68000 chip
appeared to be on its way, even though it was
being used at that time only in very expensive desk-
tops, more workstations than personal computers.

As I looked for alternatives to the PC, I was
accepting the likelihood of spending a substantial
amount of money, as well as the apparent need to
become familiar with Unix. Many times during this
searching period I was tempted to forsake my
dream system and go with the crowd. I was also
tempted by Apple's offerings, especially the Macin-
tosh. Towards the end of 1985 I encountered the
Amiga 1000. For me it was a stunning discovery.
Almost everything I had been seeking was
there--Motorola technology, multitasking, fantastic
graphics, WIMP interface-- and at a price I
wouldn't have expected in my wildest moments.

The one fly in the ointment was that at that
time an APL interpreter for the Amiga was not
available. And APL at my fingertips was central to
my needs. So for a time I closely tracked the trials
and tribulations of early offerings to supply Amiga
users with a means to run IBM PC programs, my
interest being a way to use STSC's APL~PLLIS.
My concern happily proved to be short-lived; within
a year, MicroAPL had come to the rescue, releasing
versions of APL.68000 for the Mac, the Amiga, and
the Atari. And what a rescue that was: the Amiga
version allowed substantial control of Amiga's spe-
cial features from APL!

However--time marches on. Even at the time
of this initial version of APL for the Amiga, I had
been using APL2 on a mainframe at work, becom-
ing increasingly entranced by its advantages over
"classical" APL. Still, users of Intel-based PC's
were in the same boat, so I had no reason to feel
slighted. Certainly the APL I was using on the
Amiga was in my eyes superior to the APL being
used on PC's. The feeling of deprivation returned,
however, with the release of APL2/PC by IBM. At
first the concern was minor, since Richard Nabavi
of MicroAPL had assured APL.68000 users at
APL87 of his commitment to implement a full nest-
ed-array interpreter which would include the fea-
tures of APL2. At that time he spoke of a
three-year time frame, indicating also that the first
such implementation would probably be for the Mac
because he saw Amiga systems as typically using
too little memory.

When I inquired at APL89 regarding the status
of that effort, Richard's response led me to believe
that an enhanced interpreter was still at least three
years away, since MicroAPL's major thrust had
been to improve the Mac version of APL.68000,
effectively bringing it up to the level of the Amiga
version which had been the best of the three (Mac,
Amiga, Atari) at the time of the original release. I
certainly could understand the greater emphasis on
the Mac, which had (and still does) a larger share

of the market than does the Amiga. Nevertheless,
from a purely personal point of view, I was very
disappointed. I began again to think about a way
to use PC sol, ware, perhaps via the mode currently
available: the so-called BridgeBoard, for which a
386 version is expected "momentarily."

So I was jolted by the news of MicroAPL's
release of Level If, and for all three of the Motoro-
la-based desktop computers at that. That surprise
was augmented by joy when I discovered how far
MicroAPL had gone in matching the APL2 system
I've been using on the mainframe. Once again I
had been rescued from any dependence on the
pedestrian technology of the PC-world (or should I
say the PS-world, where PS signifies "personal
system," another presumption----this time, that
IBM's offering constitutes the only system so des-
cribable).

Any one who feels that the last slur regarding
PS-technology is simply the ravings of an Amiga
bigot should spend a little time contemplating the
import of an article appearing in the January 1991
issue of Byte Magazine (pp329-334) entitled "The
Object-Oriented Amiga Exec." The author , T im Hol-
loway, is president of MTS Associates , a sys tem
soRware development firm in Jackonsonvi l le , Flo-
rida. He does not explicit ly summar ize his
descript ion this way, but I believe the fol lowing
sentence is a fair rephras ing of his remarks_ The
Amiga operat ing sys tem is elegant , largely t ranspar-
ent, and sparing in its memory requi rements ; in
contras t , the recen t opera t ing sys tems of both the
IBM and the Mac in tosh personal cotnputers (which
claim comparable capabilities) are ponderous,
largely opaque, and memory guzzlers.

Overv iew
Str ic t ly speaking, of course, APL2 is simply one

var ie ty of enhanced APL. Prac t ica l ly speaking,
however, only two versions have been ser ious con-
tenders for widespread use: tha t offered by IBM (to
which STSC's version has conceded dominance,
promising to modify their initial version to conform
with IBM's), and that offered by Sharp (which no
longer exists as a distinct entity, having been
absorbed by a company whose primary business
interests lie elsewhere).

It is interesting to note that Level II is pre-
pared to keep up with the evolution of APL by
incorporating into its APL character-set not only
all of the characters of IBM's APL2, but also all of
the characters employed by Sharp's enhanced APL
as well. In particular,]ei~ and right tack, the dier-
esis-jot and dieresis-circle combinations, and bar-
comma (for leading-axis catenate) are included.
Furthermore, Level II retains the diamond (state-
ment separator) and the four quad-enclosed symbols
for its APL-oriented filing system.

24 March 1991 - Volume 21. Number 3

MicroAPL has most agreeably chosen not to
make separate products, one requiring, the other
not requ i r ing a floating-point coprocessor. Both
versions, APL2FPU and APL2, are found on the disk-
e t te provided.

A very welcome feature of APL.68000 Level II
is the ease provided in moving workspaces between
it, mainframe APL2, and APL2/PC: the) I N and
)OUT system commands are so implemented as to
obviate any character translation requirements. I
did test one facet of this generality: I used the
)_/'N command on several transfer files created by
APL2 on the IBM mainframe at work. The only
hitch encountered was my initial failure to remove
the carriage-return/line-feed pairs that had been
tacked onto the end of each 80-character line
during the transfer from the IBM mainframe to a
VAX, a transfer enabling me to use the KERMIT
protocol to move the file to my Amiga (since we
didn't have a working KERMIT on the IBM
system).

Specifics
My place of work was selected as a testing site

for APL2/370 before the initial release. Conse-
quently, I've had extensive experience with this
marvelous tool. I've also faced the problem of
teaching APL2 to technical coworkers (engineers,
physicists, and mathematicians). This experience
has led me to value certain features of the lan-
guage as essential to its utility for technical appli-
cations. I would be unfavorably disposed towards
any enhanced APL for a personal computer that did
not have at least the following features:

• nested and/or mixed arrays plus a modicum of
supporting primitives to construct, rearrange,
and exploit the nesting--the all-important
"each" operator, and the functions "enclose,"
"partition," "disclose," "pick," "depth," and
"match";

• en la rgement of the class of acceptable funct ion
operands beyond primitive scalar functions to
include not only user-wri t ten and/or non-scalar
functions, but also operator-derived functions;

• en la rgement of the class of operators to allow
the user to design his own operators , which are
as unres t r i c ted with regard to operands as are
pr imit ive operators;

• s t r ic t adherence to the binding h ie rarchy of
APL2 syntax, a clean scheme for rat ional izing
symbol grouping in APL expressions.

I 'm happy to repor t tha t (since release 1.16)
APL.68000 Level II has met these pr imary require-
ments with flying colors. In par t icular , let me note
tha t I exercised many of the APL2 tools I had
developed on the mainframe, as a way of tes t ing

Level II's fidelity to the binding h i e ra rchy rules. I
am now confident tha t using my APL2 coding
habits with Level II will not br ing me to gr ief as a
consequence of some essential syntac t ica l discrep-
ancy.

But MicroAPL has gone well beyond this mini-
real set of features, incorpora t ing in Level II a lmost
all of the primitives which distinguish APL2 from
VS APL:

• multiple (vector) specification

• without (dyadic ~), enlist (monadic e), find
(dyadic _~), first (monadic ÷), grade with collat-
ing sequence (dyadic $ and ~)

• axis qualification with take (dyadic ÷), drop
(dyadic +), and ravel (monadic ,)

• almost all of the system variables and functions
that are as appropriate to a desktop as to a
mainframe, including (in particular) the impor-
tant error control functions OEA, OEC, and
0ES

The initial version of Level II provides a
number of features which were not provided by
Version 1 of APL2/PC. I assign high importance
especially to:

• selective specification, although what is accepta-
ble in the specification (leR-hand) portion of
such a s t a tement is na r rower than in APL2/370;

• index funct ion (B, including the option of axis
qualification), w h i c h merges be t t e r than b racke t
indexing with the nes ted-array o r ien ta t ion of
APL2 (allowing, e.g., indexing to be an operand
of the each operator);

• par t i t ion funct ion (dyadic c), a l though cur ren t ly
lacking an axis qualif ication option.

To be sure, there are some discrepancies
be tween Level II and APL2/370, but for a f irst ver-
sion I find it surpr is ing tha t the differences are as
small as they are. Fur the rmore , for some of the
differences I find tha t I favor the Level II vers ion
over tha t of APL2/370.

Some of the discrepancies have a l ready been
no ted - - such as no axis qual if icat ion for par t i t ion,
and grea ter res t r ic t ions on select ive specification.
One of the more in teres t ing differences is the use
of negative integers in an operand for repl icat ion.
With APL2/370 such negative in tegers are "extra,"
in the sense t ha t they play no role in conforming
the operand with the argument , and serve simply to
place fillers into the result . Thus,

2 - 1 3 / ' A B ' ~ wAA B B B '

In Level If, such an expression would lead to a
LENGTH ERROR, since negative integers do play a
role in the conformance requirement--i.e., the argu-

APL Quote Q~ad 2 5

ment 'AB ' calls for a two-element operand: a neg-
ative integer signals a count of fillers in place of
the corresponding item. Thus,

2 - 4 / ' A B ' ~=~ 'AA
2 4/'AB' ~ ' BBBB'

On the other hand, to get '/IA BBB ' from
'AB' with Level If, use expand:

2 -1 3\'AB'

an illegal expression in APL2/370, which accepts
only a Boolean operand for expand. Frankly I
prefer the Level II scheme: it better retains the
intuitive distinction of compression (I) versus
expansion (\). In the APL2/370 scheme that dis-
tinction has become muddled.

Some features of APL2/370 are incompletely
implemented in Level If:

• Fillers (as in overtake, for example) are prop-
erly handled only for the last axis. Where fil-
lers are required for a different axis, the
prototype for the entire array is used.

• Display wrapping is by line rather than by
plane.

• Numeric grade up or down accepts arguments
only of rank < 2.

• Character grade up or down accepts collating
ari~ays (left argument) only of rank < 2.

• Format does not include the "by-example"
option.

• Although OFX is ambi-valent, the sole control
possible with the optional left argument is
whether or not the resulting function is locked.

• As w i t h L e v e l I, n a m e s o r t i n g for ONL,)FNS,
etc_ is on the first letter only.

There are other "shortages," some of which
have already been noted. As for the rest, I regard
them as too trivial to explicitly list. Some of them,
in fact, are irrelevant in a non-mainframe environ-
ment. On the other hand, Level II has retained all
Level I features that do not conflict with eventual
acceptance of all APL2/370 code which is not main-
frame specific.

• The diamond separator is still legal.

• Groups have been retained_ (This may prove
temporary, until indirect naming is imple-
mented.)

• The very useful APL-oriented overlay and file
systems have not only been retained, but
e n h a n c e d to h a n d l e n e s t e d a r r a y s .

M o r e o v e r , L e v e l I I h a s s o m e u s e fu l s y s t e m com-
m a n d s n o t in APL2/370:

•)XLOAD to ignore OLX when loading;

• silent versions of commands which suppress the
usual displayed messages --viz.,)SCOPY,
)SDROP,)SLOAD,)SPCOPY,)SSAVE, and
)SWSID.

Looking Ahead
MicroAPL has announced their intention to

eventually close the gap, but in the meantime there
are a number of features of APL2/370 currently
missing from Level II. I will not mention them all;
they've been listed elsewhere (see, e.g., Issue 13,
A u g u s t 1990 o f M i c r o A P L N e w s) . I n s t e a d I wi l l
focus on a" f ew I r e g a r d as e s p e c i a l l y i m p o r t a n t ;
hope fu l l y , t h e s e a r e a l so h i g h p r i o r i t y i t e m s to
M i c r o A P L in t h e i r s c h e d u l e o f f u t u r e u p g r a d e s .

• Ax i s q u a l i f i c a t i o n for s c a] a r f u n c t i o n s p r o v i d e s
a v e r y c o n v e n i e n t w a y to spec i fy w h a t o t h e r -
w i s e r e q u i r e s a f a i r l y c l u m s y e x p r e s s i o n .

• D y a d i c (n-wise) r e d u c t i o n a l so is e x t r e m e l y
use fu l , p a r t i c u l a r l y the case w h e r e t h e l e f t a r g u -
m e n t is 2.

• Inclusion of complex numbers as a primitive
number type is very important to me. I have a
large collection of APL2 tools designed on the
mainframe that depend on this data type; all of
these would have to be recast if used with
Level II before complex numbers are made
available.

• It is difficult to exaggerate the power given to
an APL2/370 user via the Name Association
(ONA) system function. Not only does it then
become easy to take advantage of other lan-
guages for those computing subtasks where they
are more efficient than APL, but it also pro-
vides a mechanism for reducing name clutter in
a workspace: multiple namescopes (also known
as "packaged" workspaces). Implementation of
all aspects of 0NA in Level II will probably
take some time, since it requires ties to linkage
conventions appropriate to the variety of plat-
forms to which Level II is ported.

• Level II is currently without a cluster of fea-
tures which I have found very helpful in debug-
ging. The most useful of these is the ability to
resume execution at the point of suspension
(which might have been in the midst of a line)
using "+ l 0". Associated with this facility are
the system variables 0L and OR holding the
values of current left and right arguments,
respectively. APL.68000 has the minor problem
of name conflict, since it uses the names 0]3
and 0R for the linefeed and carriage return
characters, respectively--but I personally would
have little trouble accepting new names either

26 March 1991 - Volume 21. Number 3

for the special charac ters or for the cur ren t left
and r ight arguments . Clearly MicroAPL didn't
cross this bridge ye t since they didn't incorpo-
ra te immediate-calculat ion errors into the state
indicator s tack as has IBM with APL2/370,
ano ther feature I find useful. The final i tem of
this cluster I miss is the)SIS command,
which displays all suspended statements.

I find the indirect)COPY and)ERASE fea-
tures of APL2/370 preferable to groups, prima-
rily because the names being grouped for
indirect reference are more accessible (more
directly controlled, and easily formatted in doc-
umentation utilities).

Level II continues to rely on)SYHBOLS to
control the size of the symbol table; the auto.
matic expansion of this table, whenever neces-
sary, is a very welcome feature of APL2/370.

Extra Features in Amiga Version of Level II

None of these are specific to Level II; they had
already been provided in Level I for the Amiga_ To
begin with, there are a host of tools included which
permit APL use of AmigaDOS environmental facili-
ties:

• set up menus;

• use full-screen dialog, including design and con-
trol of windows and requestors;

• create sounds: noise, music, and speech;

• enl iven user interface via low-level graphics:
palet te control, s t ra ight line drawing, polygons,
arcs, rectangles , ovals, round-cornered rectan-
gles; shapes in outl ine or filled; text-support
(incl multiple text styles and fonts).

• assign functions keys;

• under program control you can reconfigure the
keyboard, specify keyboard buffering, and use
clipboard transfers;

Besides the typical complement for APL.68000 of

• an excel lent APL-oriented file system which
inc ludes "overlays" (grouping any collection of
APL objects into a single file item),

• multiple editing-windows with clipboard support
to exchange text between these windows,

• terminal emulat ion (VTIO0),

there are tools to exploit the mult i tasking capabili-
t ies of the Amiga: in APL programs you can

• detect and respond to keyboard, mouse, disk
drive, menu, and window events;

• ini t iate new APL sessions with specifiable work-
space size, and with an optional initial charac-
te r s t r ing (up to 40 characters) to specify a
s tar tup process;

• share data between separate APL sessions,
where in each APL task can temporar i ly r e s t r i c t
access to mainta in the in tegr i ty of an update.

I applaud all of these extras. However, there are a
few character is t ics of APL.68000 for the Amiga (as
t rue of Level I as of Level II) about which I will
regis ter some small protests . There are two major
areas where I hope tha t MicroAPL will revamp the
cur rent modus operandi.

Current ly Workbench act ivat ion of APL.68000
(regardless of level) leads to a workspace size which
grabs almost all available memory. This is a defen-
sible design decision for systems with only a small
amount of available memory. But for Amiga sys-
tems with substant ial RAM (mine has 18 Megs: 2M
chip, 16M fast), this default size is total ly unaccept-
able, "discourteous" to the next program which
might be act ivated (as is l ikely when mul t i tasking
is an option). It is possible to counter this "greed"
by invoking APL via the CLI (Command Line Inter-
preter) wherein you can specify an initial work-
space size (but not, unfor tunate ly , a cha rac te r
string to specify a startup process--as you can with
a second APL session once an initial session has
been started). Since I can't accept the "greedy"
default, I always use the CLI. It ought to be possi-
ble, however, for the user to establish his own
default for workspace size in the absence of direct
specification via the CLI, or when activation of the
initial session is via double-clicking the icon. And
that brings up a related defect.

The Amiga-specific APL.68000 manual indicates
that you can start an APL session by double-click-
ing a workspace icon. Certainly the Amiga operat-
ing system facilitates that option, and many other
Amiga programs allow activation by double-clicking
a project icon. However, APL.68000 has not prop-
erly coupled to this feature. Icons on the Amiga
are associated with so-called INFO files, and the
INFO item of the Workbench menu allows a user
to edit certain fields of an INFO file. Such editing
is a necessity to exploit this feature of activating a
program by double-clicking on a project icon. Thus,
it is easy to accommodate a file organization wher-
ein the "projects" are found in a different directory
than the "tool" (the program which constructs and
uses the projects). It is only necessary to place in
the Default Tool field of the INFO file for the pro-
ject a character string which tells the operating
system where to find the appropriate tool. In the
case of APL.68000, the "projects" are saved work-
spaces and the "tool" is the in te rp re te r (APL.68000).
Unfor tunate ly , this simple mechanism doesn' t work
with APL.68000 except when the workspace is in

APL Quote Quad 27

the same d i rec tory . I f you place the co r r ec t infor-
ma t ion into the Defau l t Tool field of the INFO file
for a workspace p laced in a d i f ferent d i r ec to ry
(quite l ikely in a hard-disk sys tem where in , e.g.,
c e r t a i n l ibrar ies might be kep t on diskettes) , and
you double-cl ick on the workspace icon, you cer-
t a in ly succeed in ac t i va t i ng the in t e rp re t e r , but the
i n t e r p r e t e r r epo r t s it is unab le to find the work-
space. O the r p rog rams don ' t suffer this befuddle-
ment . M i c r o A P L has a co r r ec t ab le problem here .

For me these are nu i sance problems. My very
f i rs t ac t iv i ty upon invok ing APL is to load a work-
space cal led SETUP which es tabl ishes my func t ion
key ass ignments and def ines my l ibrar ies . To estab-
lish a sensible w o r k s p a c e size I use a CLI command
(a small nuisance) ; I t h e n load ,SETUP using the
m e n u)LOAD opt ion (a second small nuisance) .
W h a t I 'd p re fe r is s imply to double-cl ick on the
icon for SETUP, and t h e r e b y get both a workspace
size I favor and the se tup I 've chosen.

A second a rea o f d i s con ten t for me is the lim-
i ted size (about two screens) o f wha t I ' ll call the
"log," a l though t h a t t e r m is not r ea l ly appropr ia te
for the c u r r e n t imp lemen ta t i on . A log, however , is
wha t I wan t - - i . e . , an a c c u r a t e r eco rd o f act ivi ty:
inputs and s y s t e m responses . Accu r a t e it is not, as
o f now, s ince i f you modify an ea r l i e r l ine as a way
o f speeding up input , i t is no t r e f re shed when you
offer it to the i n t e r p r e t e r . Ins t ead the modified l ine
appears in two places: whe r e the or iginal l ine was,
and at the b o t t o m o f the "log." I'd like the or iginal
l ine r e ins t a t ed , the modif ied l ine appear ing only at
t he bot tom. F u r t h e r m o r e , I would urge addi t ional
f ea tu res found in the Sess ion M anage r assoc ia ted
wi th APL2/370: an ad jus tab le buffer size (determin-
ing how soon l ines get lost a t t he top), au toma t i c
sav ing of the log at t he end o f a session, and auto-
mat ic r e i n s t a t e m e n t a t the beg inn ing of the nex t
sess ion (to fac i l i t a te con t i nu i t y o f deve lopment
w o r k across sessions).

Performance
Persona l ly , p e r f o r m a n c e (efficiency) is an aspec t

o f APL- implemen ted appl ica t ions tha t does no t con-
ce rn me to the degree t ha t it does many users , pro-
vided the i n t e r p r e t e r is " r ea sonab ly" fast. In t ha t
r e spec t I find APL.68000 Level II m o r t t h a n satis-
fac to ry . In choos ing to use APL for many of my
comput ing tasks , I do no t do so under any i l lusions
as to its e f f ic iency r e l a t i ve to o t he r languages . The
conven i enc e and speed afforded by APL to move
f rom concep t to w o r k i n g p r o g r a m more t h a n com-
pensa t e for any loss in execu t i on eff iciency. How-
ever , I would be remiss i f I failed to provide some
s u m m a r y o f the p e r f o r m a n c e o f Level II r e la t ive to
comparab le i n t e r p r e t e r s on o t h e r systems.

Obviously p e r f o r m a n c e depends upon the plat-
form- T h e r e were two d i s t inc t Amiga sys tems used

to tes t pe r fo rmance . The w e a k e r sys tem was an
Amiga 1000 (the or iginal model) which uses a 68000
CPU opera t ing at 7.14 Mhz and no f loat ing-point
coprocessor . This was my only sys t em unt i l las t
July, and was equipped wi th 2.5 Megs of fas t RAM,
the usual 0.5 Meg of chip RAM, no hard disk, and
2 d iske t te drives. On this sys tem (let me r e fe r to i t
s imply as A1000) ve r s ion APL2 was the exe rc i sed
ve rs ion of Level II.

The s t ronge r sys tem was a fully loaded (16
Megs fast RAM, 2 Megs chip RAM) Amiga 3000
us ing a 25 Mhz 68030 as CPU and a 25 Mhz 68882
as f loat ing-point coprocessor , and equipped wi th a
170 Mbyte hard disk and two d iske t te drives.
APL2fPtl was the ve r s ion o f Level II exerc i sed on
the A3000 (the abbrev ia ted des igna t ion I'll use for
this system).

The Sep tember 1990 issue o f A P L Quote Quad
(Vol. 21, No. 1) con ta ined a r ev iew of Dyalog APL's
po r t to PS/2. T h a t r ev i ew used some b e n c h m a r k s
to compare the pe r fo rmance o f th is por t wi th the
pe r fo rmances o f A P L * P L U S II and APL2/PC.
Al though I would p re fe r to use d i f fe ren t bench-
marks , I 've decided to go along wi th those used in
the a fo re -ment ioned rev iew as a s imple way of com-
par ing Level II pe r fo rmance on A1000 and A3000
with t h a t of Dyalog APL, A P L * P L U S II, and
APL2/PC on a 25 Mhz PS/2 Mod 70. T h a t compar-
ison will require, of course, joint perusal of both
this and the earlier review.

The table below is puzzling at first glance,
because some items have two execution times (in
milliseconds). These are tests which make use of
either BY" or BM (Boolean vector and matrix,
respectively). The Dyalog APL review contained
the listing of a test program TESTO. Line 5 reads:

BM÷50 lOOpBV÷?lOOOp2

Since OIO has been set to zero, both BY and
BM consist only of ones and zeros. But with Level
II (or with APL2/370, or quite possibly with some of
the interpreters noted in that other review), this
manner of construction leads to integer arrays--i.e.,
the zeros and ones are two-byte integers (or two-
byte integers on'APL2/370). APL.68000, however,
does have a Boolean type wherein but one bit is
allocated per item; and that type for BM and BV
can be constructed using

BM÷50 lOOpBV÷l=?lOOOp2
Doing so has a substantial impact on the exe-

cution time of most (though not all) of the items
making use of BM or BV. In the tabulation below,
wherever there are two numbers side by side, the
first refers to the integer arrays and the second to
Boolean arrays. Although the Boolean scan and
Boolean compare tes ts get mass ive speed gains via
Boolean ar rays , the compress ion tes t s favor the
i n t ege r a r r ays a bit (dropping execu t ion t ime by

2 8 March 1991 - Volume 21, Number 3

about 30%). Presumably, the la t ter t i l t towards
integer operands for " / " is the natural consequence
of generalizing compression to repl icat ion in APL2,
a general izat ion which allows an integer operand
having no Boolean counterpar t .

AIO00 A3000
.

I N T ADD 3 8 1 . 0 6 7 . 5
FP ADD 8 7 1 7 . 0 1 8 7 . 3
I H T MULT 7 1 3 ~ . 3 2 3 8 . 0
FP MULT 13829.1 19g.4
I N D E X 1 2 6 . ~ , 1 8 0 . 8 2 B . ~ , ~ 2 . ~
CHAR COMPR 125.1, 178.0 29.5, ~3.3
INT COMPR 119.0, 173.2 ~2.0, 27.9
INT +RED 25.0 ~.0
INT [RED 2~.1 ~.0
BOOL SCAN 6 7 7 9 ~ . 3 , 1 0 0 . 0 1 7 3 5 8 . ~ , 1 8 . 0
MAT ROTAT 5 7 6 . 2 1 4 4 . 1
CHAR T R A f S 7 5 3 . B 1 7 1 . 5
INT T R A N S B 0 ~ . l 1 7 8 . 0
VEC OF VECS 1019.3 2 2 ~ . 2
PABTITION ~56.9 105.6
RHO EACH 530.1 157.8
VEC COMPAR 2 1 . 1 3 . 0
INT SRT 710.2 151.~
BOOL COMPAR ~ 3 7 . 0 , 1 B 5 . 1 1 0 8 . 6 , 3 8 . 0
IOTA 1552.3 76.2

Although the numbers for A3000 are generally
in the same ball park as those in the tabulation
found in the Dyalog APL review, substantially
better than the PS/2 Mod 70 in a few instances (the
BOOL SCAA z test with Boolean BM, and the dyadic
IOTA test), but substantially poorer in many
instances. (e.g., MAT ROTAT, CHAR and
INT TRANS, INT SRT, and BOOL COMPAR), its
re la t ive performance seems a bit weak to me, con-
sidering the potent ial s t rength of a 25 Mhz
68030/68882 combination. I can only speculate
about the reasons ---one contr ibut ing source possi-
bly being the mult i tasking operat ing system of the
Amiga, which makes it impossible for the system to
devote its exclusive a t tent ion to an APL computing
task.

Overall, I 'm not real ly unhappy with these num-
bers. In a pract ical sense more power would simply
be a luxury. I did find some evidence tha t the algo-
r i thm employed by APL.68000 for the in te rpre ta t ion
of B may need some ~ne-tuning. The following
comparison between A3000 with APL.68000 Level II
and a PS/2 (20 Mhz 80386/80387) with APL2/PC
uses two test expressions:

Q * 0 . 5 (where Q - , - ? q 0 0 0 0 p 9 9 9 9 9 9
BA < where A ~ (- 5 0 0 0 0 ÷ ? q O 4 0 p 9 9 9 9 9) : - 2 5 0 0 0

the first to test the performance of the 25 Mhz
68882 relative to the 20 MHz 80387 (since both have
a single instruction for square root), the second to
compare execution times in inverting a large
matrix. In all cases, in order to remove any
dependence upon data, ORL is initialized to 3. 6 8 0 7
before the use of "?".

ID TEST X;C;Z
[I] C÷c(Z÷'TEST',TID),';~T;~S'
[2] C÷C,'~T+OAI[2]' ('~S+',X)
[3] O ~ C O F X c),,- ,
[43 ~Z
[5] C~OEX Z

V

'OAI[2]-~T'

25 Mhz A300D 20 Mhz P S I 2

TEST 'Q*0.5' 6BO 4510
2 TEST 'BA' 13720 5220

Conclusions

Notwithstanding the few complaints(?) I've made
in this review, APL.68000 Level II for the Amiga is
an excellent product worth every penny of its very
reasonable price. It provides a surprisingly large
portion of APL2/370 features for an initial release.
MicroAPL's proven track record lends credence to
my belief that it won't be long before as much of
APL2/370 as is appropriate to a personal desktop
computing system will be fully incorporated into
Level If. •

CPCUG APL Lessons
Now Available for Several Interpreters

D i c k H o l t
HRH Systems

Box 4496
Silver Spring, MD 20914

2O2-5864449

A series of twenty-six interactive self-teaching
on-disk lessons are now available for TryAPL2, IBM
APL2, STSC APL*PLUS and Pocket APL, Sharp,
and I-APL. Based on the work of Z. V. Jizba, these
lessons were transferred to multiple APL formats
by the APLSIG of the Capital PC User Group
(CPCUG) for use in their 1991 APL classes_ Les-
sons were edited to make them more generic, and
to incorporate classroom experience.

CPCUG lessons are downloadable free from the
BBS\APL: 301-384-3672, 300/1200/2400 baud, N-8-1,
24 hours a day. See File menu Y.

Lessons may be ordered by mail from HRH Sys-
tems at the above address, for US$19, postage-paid
worldwide. Mail orders should specify disk size and

APL version (.TRY, .ATF, .AWS, .SAN, or .INS).
Checks accepted in any national currency.

Lessons will be sent free upon request to East-
ern Europe and the Soviet Union. CPCUG lessons
were also a part of the APL91 Software Exchange.e

A~L Q~,, Qu=d 2 9

