Check for
Updates

Product Review News

Dick Bowman
2 Dean Gardens
London E17 3QP

England
01-634-7639

Review Policy

The review policy of APL Quote Quad is an
inclusive policy—we want to review as many APL
and APL-relevant products as we possibly can. The
invitation is a permanent one: if you are a vendor
wanting your product reviewed then please contact
me. If you are not a vendor but use a product
which you feel is interesting and valuable for
SIGAPL members, then we’re just as pleased to
hear from you.

An interesting dilemma presents itself as part of
this policy: what are we going to do about flawed
products? At one extreme we could just tough it
out; if a review shows a product in a bad light
then, having checked that the reviewer’s findings
are accurate, we publish as is. The vendor is
unhappy at best, and out of business at worst.
Taking the other extreme, we could decide to pub-
lish only favourable reviews. Then the members
get mad because they pay good money for products
that don’t work.

So, this is what we’re going to do:

We review the product, and if we find flaws we
work with the vendor to determine whether they’re
flaws or features. In the published review we tell
you that this has happened. If we don’t get any
improvement as a result of this process then we’ll
tell you that as well. The reason for this policy is
that SIGAPL’s primary purpose is “promoting the
development and application of [...] APL”; a purpose
which will not be achieved by unjustified deni-
gration of sound products. But we will not be
untruthful either—if our review experience makes
us feel that a product will impede the promotion of
APL, you’ll know that too, and in no uncertain
terms.

---Any reactions?

Review Plans

Response to my call for products for review has
started well; we have many interesting items
coming up in future issues of APL Quote Quad.
Some of these, to be fair, predate me but I will be
progressing them through to publication. Reviews
being prepared include:

APL Quote Quad

23

* NewFase and WordPerfect: a way of includ-
ing APL code seamlessly into your conference
papers and Quote Quad articles.

« APLXPLUS/PC Version 10: updates on an old

favourite.

» Tool of Thought VII: the latest of
NY/SIGAPL’s annual seminars.

* Dyalog APL/X: APL on the X Window
System.

* Dyalog APL for DOS/386 Version 6.1:

updates on a new favourite.

= IAPL/MAC: an inexpensive first generation
APL for the MAC.

Vendors,-get your products onto this list; write
or call and we will organise a review. If you're not
a vendor but think there’s a product which APL
Quote Quad ought to review, then let’s hear from
you as well. And if you faney trying your hand at
being a reviewer, remember we’re always pleased to
hear from volunteers. =

APL.68000 Level Il for the Amiga

Harry C. Bertuccelli
The Aerospace Corporation
Computer Systems Division
P.O. Box 92957
Los Angeles, CA 90000-2957 USA
213-336-6319

In the early 80’s when personal desktop comput-
ers began to leave the private preserves of com-
puter hobbyists I knew that I too had more than a
mild interest in acquiring one. I had had the good
fortune in the 70’s to use the IBM 5100 in my office
at work. As most of you undoubtedly know, one
version of this deslttop machine (the one I had) had
a_ built-in APL interpreter. The company 1 was
working for paid $12,000 for that computer. It was
slow (by today’s standards) and I was restricted to
a 32K workspace size and a tape cartridge storage
and retrieval system. Yet despite these limitations,
my productivity as an engineering analyst grew sub-
stantially through the use of that 5100. And when
I had to leave it (moving on to greener pastures), it
was with a strong promise to myself that someday I
would acquire such a machine in my home office.

Little did I realize at the time just how rapidly
the technology would burgeon. When IBM intro-
duced what became known as the PC (as though
alternatives were not personal computers) I was not
quick to jump, having already developed a prefer-
ence for either Motorola or National SemiConduc-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122442.122449&domain=pdf&date_stamp=1991-03-01

tor technology. The commercial success of NSC's
chips was in doubt, but Motorola’s 68000 chip
appeared to be on its way, even though it was
being used at that time only in very expensive desk-
tops, more workstations than personal computers.

As I looked for alternatives to the PC, I was
accepting the likelihood of spending a substantial
amount of money, as well as the apparent need to
become familiar with Unix. Many times during this
searching period I was tempted to forsake my
dream system and go with the crowd. I was also
tempted by Apple’s offerings, especially the Macln-
tosh. Towards the end of 1985 I encountered the
Amiga 1000. For me it was a stunning discovery.
Almost everything I had been seeking was
there—Motorola technology, multitasking, fantastic
graphics, WIMP interface— and at a price I
wouldn’t have expected in my wildest moments.

The one fly in the ointment was that at that
time an APL interpreter for the Amiga was not
available. And APL at my fingertips was central to
my needs. So for a time I closely tracked the trials
and tribulations of early offerings to supply Amiga
users with a means to run IBM PC programs, my
interest being a way to use STSC’s APLXPLUS.
My concern happily proved to be short-lived; within
a year, MicroAPL had come to the rescue, releasing
versions of APL.68000 for the Mac, the Amiga, and
the Atari. And what a rescue that was: the Amiga
version allowed substantial control of Amiga’s spe-
cial features from APL!

However—time marches on. Even at the time
of this initial version of APL for the Amiga, I had
been using APL2 on a mainframe at work, becom-
ing increasingly entranced by its advantages over
“classical” APL. Still, users of Intel-based PC’s
were in the same boat, so I had no reason to feel
slighted. Certainly the APL I was using on the
Amiga was in my eyes superior to the APL being
used on PC’s. The feeling of deprivation returned,
however, with the release of APL2/PC by IBM. At
first the concern was minor, since Richard Nabavi
of MicroAPL had assured APL.68000 users at
APLS87 of his commitment to implement a full nest-
ed-array interpreter which would include the fea-
tures of APL2. At that time he spoke of a
three-year time frame, indicating also that the first
such implementation would probably be for the Mac
because he saw Amiga systems as typically using
too little memory.

When 1 inquired at APL89 regarding the status
of that effort, Richard’s response led me to believe
that an enhanced interpreter was still at least three
years away, since MicroAPL’s major thrust had
been to improve the Mac version of APL.68000,
effectively bringing it up to the level of the Amiga
version which had been the best of the three (Mac,
Amiga, Atari) at the time of the original release. I
certainly could understand the greater emphasis on
the Mac, which had (and still does) a larger share

24

of the market than does the Amiga. Nevertheless,
from a purely personal point of view, I was very
disappointed. I began again to think about a way
to use PC software, perhaps via the mode currently
available: the so-called BridgeBoard, for which a
386 version is expected “momentarily.”

So I was jolted by the news of MicroAPL's
release of Level II, and for all three of the Motoro-
la-based desktop computers at that. That surprise
was augmented by joy when I discovered how far
MicroAPL had gone in matching the APL2 system
I've been using on the mainframe. Once again I
had been rescued from any dependence on the
pedestrian technology of the PC-world (or should I
say the PS-world, where PS signifies “personal
system,” another presumption—this time, that
IBM’s offering constitutes the only system so des-
cribable).

Any one who feels that the last slur regarding
PS-technology is simply the ravings of an Amiga
bigot should spend a little time contemplating the
import of an article appearing in the January 1991
issue of Byte Magazine (pp329-334) entitled “The
Object-Oriented Amiga Exec.” The author, Tim Hol-
loway, is president of MTS Associates, a system
software development firm in Jackonsonville, Flo-
rida. He does not explicitly summarize his
description this way, but I believe the following
sentence is a fair rephrasing of his remarks. The
Amiga operating system is elegant, largely transpar-
ent, and sparing in its memory requirements; in
contrast, the recent operating systemns of both the
IBM and the MacIntosh personal computers (which
claim comparable capabilities) are ponderous,
largely opaque, and memory guzzlers.

Overview

Strictly speaking, of course, APL2 is simply one
variety of enhanced APL. Practically speaking,
however, only two versions have been serious con-
tenders for widespread use: that offered by IBM (to
which STSC’s version has conceded dominance,
promising to modify their initial version to conform
with IBM’s), and that offered by Sharp (which no
longer exists as a distinct entity, having been
absorbed by a company whose primary business
interests lie elsewhere).

It is interesting to note that Level II is pre-
pared to keep up with the evolution of APL by
incorporating into its APL character-set not only
all of the characters of IBM’s APL2, but also all of
the characters employed by Sharp’s enhanced APL
as well. In particular, left and right tack, the dier-
esis-jot and dieresis-circle combinations, and bar-
comma (for leading-axis catenate) are included.
Furthermore, Level II retains the diamond (state-
ment separator) and the four quad-enclosed symbols
for its APL-oriented filing system.

March 1991 — Volume 21, Number 3

MicroAPL has most agrecably chosen not to
make scparate products, one requiring, the other
not requiring a floating-point coprocessor. Both
versions, APL2FPU and APL2, are found on the disk-
ette provided.

A very welcome feature of APL.68000 Level II
is the ease provided in moving workspaces between
it, mainframe APL2, and APL2/PC: the)IN and
JOUT system commands are so implemented as to
obviate any character translation requirements. I
did test one facet of this generality: I used the
JIN command on several transfer files created by
APL2 on the IBM mainframe at work. The only
hitch encountered was my initial failure to remove
the carriagereturn/line-feed pairs that had been
tacked onto the end of each 80-character line
during the transfer from the IBM mainframe to a
VAX, a transfer enabling me to use the KERMIT
protocol to move the file to my Amiga (since we
didn’t have a working KERMIT on the IBM

system).

Specifics

My place of work was selected as a testing site
for APL2/370 before the initial release. Conse-
quently, I've had extensive experience with this
marvelous tool. I've also faced the problem of
teaching APL2 to technical coworkers (engineers,
physicists, and mathematicians). This experience
has led me to value certain features of the lan-
guage as essential to its utility for technical appli-
cations. I would be unfavorably disposed towards
any enhanced APL for a personal computer that did
not have at least the following features:

* nested and/or mixed arrays plus a modicum of
supporting primitives to construct, rearrange,
and exploit the nesting—the all-important
“each” operator, and the functions “enclose,”
“partition,” “disclose,” “pick,” “depth,” and
“match”;

= enlargement of the class of acceptable function
operands beyond primitive scalar functions to
include not only user-written and/or non-scalar
functions, but also operator-derived functions;

* enlargement of the class of operators to allow
the user to design his own operators, which are
as umnrestricted with regard to operands as are
pPrimitive operators;

* strict adherence to the binding hierarchy of
APL2 syntax, a clean scheme for rationalizing
symbol grouping in APL expressions.

I'm happy to report that (since release 1.16)
APL.68000 Level II has met these primary require-
ments with flying colors. In particular, let me note
that I exercised many of the APL2 tools I had
developed on the mainframe, as a way of testing

APL Quote Quad

25

Level II's fidelity to the binding hierarchy rules. I
am now confident that using my APL2 coding
habits with Level II will not bring me to grief as a
consequence of some essential syntactical discrep-
ancy.

But MicroAPL has gone well beyond this mini-
mal set of features, incorporating in Level II almost
all of the primitives which distinguish APL2 from
VS APL:

e multiple (vector) specification

« without (dyadic ~), enlist (monadic ¢), find
(dyadic g), first (monadic +), grade with collat-
ing sequence (dyadic 4 and ¥)

* axis qualification with take (dyadic 4), drop
(dyadic +), and ravel (monadic ,)

* almost all of the system variables and functions
that are as appropriate to a desktop as to a
mainframe, including (in particular) the impor-
tant error control functions OFA, OEC, and
Qes

The initial version of Level II provides a
number of features which were not provided by
Version 1 of APL2/PC. 1 assign high importance
especially to:

* selective specification, although what is accepta-
ble in the specification (left-hand) portion of
such a statement is narrower than in APL2/370;

* index function (0, including the option of axis
qualification), which merges better than bracket
indexing with the nested-array orientation of
APL2 (allowing, e.g., indexing to be an operand
of the each operator);

» partition function (dyadic <), although currently
lacking an axis qualification option.

To be sure, there are some discrepancies
between Level II and APL2/370, but for a first ver-
sion I find it surprising that the differences are as
small as they are. Furthermore, for some of the
differences I find that I favor the Level II version
over that of APL2/370.

Some of the discrepancies have already been
noted—such as no axis qualification for partition,
and greater restrictions on selective specification.
One of the more interesting differences is the use
of negative integers in an operand for replication.
With APL2/370 such negative integers are “extra,”
in the sense that they play no role in conforming
the operand with the argument, and serve simply to
place fillers into the result. Thus,

2 "1 3/'AB! 'AA BBB'

In Level II, such an expression would lead to a
LENGTH ERROR, since negative integers do play a
role in the conformance requirement—i.e., the argu-

<

ment "AB' calls for a two-element operand: a neg-
ative integer signals a count of fillers in place of
the corresponding item. Thus,

2 "4/'AB! <> "AA !
T2 4/VAB' < ' BBBB'!

On the other hand, to get '4A BBB' from

"AB' with Level II, use expand:

2 "1 3\'AB'

an illegal expression in APL2/370, which accepts

only a Boolean operand for expand.
prefer the Level II scheme:
intuitive
expansion (\).

Frankly 1
it better retains the
distinction of compression (/) versus
In the APL2/370 scheme that dis-

tinction has become muddled.

Some features of APL2/370 are incompletely

implemented in Level II:

Fillers (as in overtake, for example) are prop-
erly handled only for the last axis. Where fil-
lers are required for a different axis, the
prototype for the entire array is used.

Display wrapping is by line rather than by
plane.

Numeric grade up or down accepts arguments
only of rank <2.

Character grade up or down accepts collating
arrays (left argument) only of rank <2.

Format does not include the “by-example”
option.

Although OFX is ambi-valent, the sole control
possible with the optional left argument is
whether or not the resulting function is locked.

As with Level I, name sorting for ONL,)FNS,
etc. is on the first letter only.

There are other “shortages,” some of which

have already been noted. As for the rest, I regard
them as too trivial to explicitly list. Some of them,
in fact, are irrelevant in a non-mainframe environ-

ment.

On the other hand, Level II has retained all

Level I features that do not conflict with eventual
acceptance of all APL2/370 code which is not main-
frame specific.)

The diamond separator is still legal.

Groups have been retained. (This may prove
temporary, until indirect naming is imple-
mented.)

The very useful APL-oriented overlay and file

systemns have not only been retained, but
enhanced to handle nested arrays.

Moreover, Level II has some useful system com-
mands not in APL2/370:

26

*)XLOAD to ignore OLX when loading;

» silent versions of commands which suppress the
usual displayed messages — viz.,,)SCOPY,
)SDROP,)SLOAD,)SPCOPY,)SSAVE, and
)SWSID.

Looking Ahead

MicroAPL has announced their intention to
eventually close the gap, but in the meantime there
are a number of features of APL2/370 currently
missing from Level II. I will not mention them all;
they’'ve been listed elsewhere (see, e.g, Issue 13,
August 1990 of MicroAPL News). Instead I will
focus on a' few I regard as especially important;
hopefully, these are also high priority items to
MicroAPL in their schedule of future upgrades.

» Axis qualification for scalar functions provides
a very convenient way to specify what other-
wise requires a fairly clumsy expression.

e Dyadic (n-wise) reduction also is extremely
useful, particularly the case where the left argu-
ment is 2.

¢ Inclusion of complex numbers as a primitive
number type is very important to me. I have a
large collection of APL2 tools designed on the
mainframe that depend on this data type; all of
these would have to be recast if used with
Level II before complex numbers are made
available.

« It is difficult to exaggerate the power given to
an APL2/370 user via the Name Association
(ONA) system function. Not only does it then
become easy to take advantage of other lan-
guages for those computing subtasks where they
are more efficient than APL, but it also pro-
vides a mechanism for reducing name clutter in
a workspace: multiple namescopes (also known
as “packaged” workspaces). Implementation of
all aspects of ON4 in Level II will probably
take some time, since it requires ties to linkage
conventions appropriate to the variety of plat-
forms to which Level II is ported.

« Level Il is currently without a cluster of fea-
tures which I have found very helpful in debug-
ging. The most useful of these is the ability to
resume execution at the point of suspension
(which might have been in the midst of a line)
using “+10”. Associated with this facility are
the system variables 0L and OR holding the
values of current left and right arguments,
respectively. APL.68000 has the minor problem
of name conflict, since it uses the names 0L
and OR for the linefeed and carriage return
characters, respectively—but I personally would
have little trouble accepting new names either

March 1991 — Volume 21, Number 3

for the special characters or for the current left
and right arguments. Clearly MicroAPL didn’t
cross this bridge yet since they didn’t incorpo-
rate immediate-calculation errors into the state
indicator stack as has IBM with APL2/370,
another feature I find useful. The final item of
this cluster I miss is the)S5I.5 command,
which displays all suspended statements.

*» I find the indirect)COPY and)ERASE fea-
tures of APL2/370 preferable to groups, prima-
rily because the names being grouped for
indirect reference are more accessible (more
directly controlled, and easily formatted in doc-
umentation utilities).

* Level II continues to rely on)SYMBOLS to
control the size of the symbol table; the auto-
matic expansion of this table, whenever neces-
sary, is a very welcome feature of APL2/370.

Extra Features in Amiga Version of Level Il

None of these are specific to Level II; they had
already been provided in Level I for the Amiga. To
begin with, there are a host of tools included which
permit APL use of AmigaDOS environmental facili-
ties:

* set up menus;

* use full-screen dialog, including design and con-
trol of windows and requestors;

* create sounds: noise, music, and speech;

* enliven user interface via low-level graphics:
palette control, straight line drawing, polygons,
arcs, rectangles, ovals, round-cornered rectan-
gles; shapes in outline or filled; text-support
(incl multiple text styles and fonts).

* assign functions keys;

* under program control you can reconfigure the
keyboard, specify keyboard buffering, and use
clipboard transfers;

Besides the typical complement for APL.68000 of

* an excellent APL-oriented file system which
‘includes “overlays” (grouping any collection of
APL objects into a single file item),

* multiple editing-windows with clipboard support
to exchange text between these windows,

* terminal emulation (VT100),

there are tools to exploit the multitasking capabili-
ties of the Amiga: in APL programs you can

* detect and respond to keyboard, mouse, disk
drive, menu, and window events;

APL Quote Quad

* initiate new APL sessions with specifiable work-
space size, and with an optional initial charac-
ter string (up to 40 characters) to specify a
startup process;

* share data between separate APL sessions,
wherein each APL task can temporarily restrict
access to maintain the integrity of an update.

I applaud all of these extras. However, there are a
few characteristics of APL.68000 for the Amiga (as
true of Level I as of Level II) about which I will
register some small protests. There are two major
areas where I hope that MicroAPL will revamp the
current modus operandi.

Currently Workbench activation of APL.68000
(regardless of level) leads to a workspace size which
grabs almost all available memory. This is a defen-
sible design decision for systems with only a small
amount of available memory. But for Amiga sys-
tems with substantial RAM (mine has 18 Megs: 2M
chip, 16M fast), this default size is totally unaccept-
able, “discourteous” to the next program which
might be activated (as is likely when multitasking
is an option). It is possible to counter this “greed”
by invoking APL via the CLI (Command Line Inter-
preter) wherein you can specify an initial work-
space size (but not, unfortunately, a character
string to specify a startup process—as you can with
a second APL session once an initial session has
been started). Since I can’t accept the “greedy”
default, I always use the CLI. It ought to be possi-
ble, however, for the user to establish his own
default for workspace size in the absence of direct
specification via the CLI, or when activation of the
initial session is via double-clicking the icon. And
that brings up a related defect.

The Amiga-specific APL.68000 manual indicates
that you can start an APL session by double-click-
ing a workspace icon. Certainly the Amiga operat-
ing system facilitates that option, and many other
Amiga programs allow activation by double-clicking
a project icon. However, APL.68000 has not prop-
erly coupled to this feature. Icons on the Amiga
are associated with so-called INFO files, and the
INFO item of the Workbench menu allows a user
to edit certain fields of an INFO file. Such editing
is a necessity to exploit this feature of activating a
program by double-clicking on a project icon. Thus,
it is easy to accommodate a file organization wher-
ein the “projects” are found in a different directory
than the “tool” (the program which constructs and
uses the projects). It is only necessary to place in
the Default Tool field of the INFO file for the pro-
Ject a character string which tells the operating
system where to find the appropriate tool. In the
case of APL.68000, the “projects” are saved work-
spaces and the “tool” is the interpreter (APL.68000).
Unfortunately, this simple mechanism doesn’t work
with APL.68000 except when the workspace is in

the same directory. If you place the correct infor-
mation into the Default Tool field of the INFO file
for a workspace placed in a different directory
(quite likely in a hard-disk system wherein, e.g.,
certain libraries might be kept on diskettes), and
you double-click on the workspace icon, you cer-
tainly succeed in activating the interpreter, but the
interpreter reports it is unable to find the work-
space. Other programs don’t suffer this befuddle-
ment. MicroAPL has a correctable problem here.

For me these are nuisance problems. My very
first activity upon invoking APL is to load a work-
space called SETUP which establishes my function
key assignments and defines my libraries. To estab-
lish a sensible workspace size I use a CLI command
(a small nuisance); I then load SETUP using the
menu)LOAD option (a second small nuisance).
What I'd prefer is simply to double-click on the
icon for SETUP, and thereby get both a workspace
size I favor and the setup I’ve chosen.

A second area of discontent for me is the lim-
ited size (about two screens) of what I’ll call the
“log,” although that term is not really appropriate
for the current implementation. A log, however, is
what I want—i.e., an accurate record of activity:
inputs and system responses. Accurate it is not, as
of now, since if you modify an earlier line as a way
of speeding up input, it is not refreshed when you
offer it to the interpreter. Instead the modified line
appears in two places: where the original line was,
and at the bottomn of the “log.” I'd like the original
line reinstated, the modified line appearing only at
the bottom. Furthermore, 1 would urge additional
features found in the Session Manager associated
with APL2/370: an adjustable buffer size (determin-
ing how soon lines get lost at the top), automatic
saving of the log at the end of a session, and auto-
matic reinstatement at the beginning of the next
session (to facilitate continuity of development
work across sessions).

Performance

Personally, performance (efficiency) is an aspect
of APL-implemented applications that does not con-
cern me to the degree that it does many users, pro-
vided the interpreter is “reasonably” fast. In that
respect I find APL.68000 Level II more than satis-
factory. In choosing to use APL for many of my
computing tasks, I do not do so under any illusions
as to its efficiency relative to other languages. The
convenience and speed afforded by APL to move
from concept to working program more than com-
pensate for any loss in exccution efficiency. How-
ever, I would be remiss if I failed to provide some
summary of the performance of Level II relative to
comparable interpreters on other systemns.

Obviously performance depends upon the plat-
form. There were two distinct Amiga systems used

28

to test performance. The weaker system was an
Amiga 1000 (the original model) which uses a 68000
CPU operating at 7.14 Mhz and no floating-point
coprocessor. This was my only system until last
July, and was equipped with 2.5 Megs of fast RAM,
the usual 0.5 Meg of chip RAM, no hard disk, and
2 diskette drives. On this system (let me refer to it
simply as A1000) version APL2 was the exercised
version of Level I

The stronger system was a fully loaded (16
Megs fast RAM, 2 Megs chip RAM) Amiga 3000
using a 25 Mhz 68030 as CPU and a 25 Mhz 68832
as floating-point coprocessor, and equipped with a
170 Mbyte hard disk and two diskette drives.
APL2FPU was the version of Level II exercised on
the A3000 (the abbreviated designation I'll use for
this system).

The September 1990 issue of APL Quote Quad
(Vol. 21, No. 1) contained a review of Dyalog APL’s
port to PS/2. That review used some benchmarks
to compare the performance of this port with the
performances of APL&PLUS II and APL2/PC.
Although I would prefer to use different bench-
marks, I've decided to go along with those used in
the afore-mentioned review as a simple way of com-
paring Level II performance on Al000 and A3000
with that of Dyalog APL, APLPLUS II, and
APL2/PC on a 25 Mhz PS/2 Mod 70. That compar-
ison will require, of course, joint perusal of both
this and the earlier review.

The table below is puzzling at first glance,
because some items have two execution times (in
milliseconds). These are tests which make use of
either BV or BM (Boolean vector and matrix,
respectively). The Dyalog APL review contained
the listing of a test program TESTO. Line 5 reads:

BM<50 100pBV<«21000p2

Since O0I0 has been set to zero, both BV and
BM consist only of ones and zeros. But with Level
II (or with APL2/370, or quite possibly with some of
the interpreters noted in that other review), this
manner of construction leads to infeger arrays—i.e.,
the zeros and ones are two-byte integers (or two-
byte integers on APL2/370). APL.68000, however,
does have a Boolean type wherein but one bit is
allocated per item; and that type for BM and BV
can be constructed using

BM«<50 100pBV+1=71000p2

Doing so has a substantial impact on the exe-
cution time of most (though not all) of the items
making use of BM or BV. In the tabulation below,
wherever there are two numbers side by side, the
first refers to the integer arrays and the second to
Boolean arrays. Although the Boolean scan and
Boolcan compare tests get massive speed gains via
Boolean arrays, the compression tests favor the
integer arrays a bit (dropping execution time by

March 1991 — Volume 21, Number 3

about 309%). Presumably, the latter tilt towards
integer operands for “/” is the natural consequence
of generalizing compression to replication in APL2,
a pgeneralization which allows an integer operand
having no Boolean counterpart.

Al1000 A3000
INT ADD 3gl.0 67.5
FP ADD 8717.0 187.3
INT MULT 713u.3 238.0
FP MULT 13829.1 199.y4
INDEX 126.%, 180.8 28.4, 42.u4
CHAR COMPR 125.1, 178.0 29.5, 3.3
INT COMPR 11%3.0, 173.2 42.0, 27.9
INT +RED 25.0 k.0
INT [RED 2.1 4.0
BOOL SCAN 6779u.3, 100.0 17358.4, 18.0
MAT ROTAT 576.2 ihk.1
CHAR TRANS 753.8 171.5
INT TRANS 8on.1 178.0
VEC OF VECS 1019.3 22u.2
PARTITION 456.9 105.6
RHO EACH 630.1 157.8
VEC COMPAR 21.1 3.0
INT SRT 710.2 151.4
BOOL COMPAR 437.0, 1B85.1 108.6, 38.0
IOTA 1552.3 76.2

Although the numbers for A3000 are generally
in the same ball park as those in the tabulation
found in the Dyalog APL review, substantially
better than the PS/2 Mod 70 in a few instances (the
BOOL SCAN test with Boolean BM, and the dyadic
IQTA test), but substantially poorer in many
instances (e.g., MAT ROTAT, CHAR and
INT TRANS, INT SRT, and BOOL COMPAR), its
relative performance seems a bit weak to me, con-
sidering the potential strength of a 25 Mhz
68030/68882 combination. I can only speculate
about the reasons —one contributing source possi-
bly being the multitasking operating system of the
Amiga, which makes it impossible for the system to
devote its exclusive attention to an APL computing
task.

Overall, 'm not really unhappy with these num-
bers. In a practical sense more power would simply
be a luxury. I did find some evidence that the algo-
rithm employed by APL.68000 for the interpretation
of B may mneed some fine-tuning. The following
comparison between A3000 with APL.68000 Level II
and a PS/2 (20 Mhz 80386/80387) with APL2/PC

uses two test expressions:

@*0.5 -«—where Q+?40000p999999
B84 <«—where A+(750000+740 40p99999):25000

the first to test the performance of the 25 Mhz
68882 relative to the 20 MHz 80387 (since both have
a single instruction for square root), the second to
compare execution times in inverting a large
matrix. In all cases, in order to remove any
dependence upon data, (JRL is initialized to 16807
before the use of “?”.

APL Quote Quad

29

v ID PEST X;C;%
L1] C+c(Z«'TEST' ,35ID),";AT;AS"
[2] C«C,"AT«0AI[2]) ('aS5+',X) '0AI[2]1-AT"
[3] DO«(OFX C),': !
[u] 22
[51] C+<0EX Z
v
25 Mhz 43000 20 Mhz PS/2
Expression _..Level II ___APL2/PC_
1 PEST 'Q+0.5" 680 4510
2 TEST 'BA' 13720 5220
Conclusions

Notwithstanding the few complaints(?) I've made
in this review, APL.68000 Level II for the Amiga is
an excellent product worth every penny of its very
reasonable price. It provides a surprisingly large
portion of APL2/370 features for an initial release.
MicroAPL’s proven track record lends credence to
my belief that it won’t be long before as much of
APL2/370 as is appropriate to a personal desktop
computing system will be fully incorporated into

Level II. ™

CPCUG APL Lessons
Now Available for Several Interpreters

Dick Holt
HRH Systems
Box 4496
Silver Spring, MD 20914
202-586-4449

A series of twenty-six interactive self-teaching
on-disk lessons are now available for TryAPL2, IBM
APL2, STSC APL*PLUS and Pocket APL, Sharp,
and I-APL. Based on the work of Z. V. Jizba, these
lessons were transferred to multiple APL formats
by the APLSIG of the Capital PC User Group
(CPCUG) for use in their 1991 APL classes. Les-
sons were edited to make them more generic, and
to incorporate classroom experience.

CPCUG lessons are downloadable free from the
BBS\APL: 301-384-3672, 300/1200/2400 baud, N-8-1,
24 hours a day. See File menu Y.

Lessons may be ordered by mail from HRH Sys-
tems at the above address, for US$19, postage-paid
worldwide. Mail orders should specify disk size and
APL version (.TRY, .ATF, .AWS, .SAW, or .IWS).
Checks accepted in any national currency.

Lessons will be sent free upon request to East-
ern Europe and the Soviet Union. CPCUG lessons
were also a part of the APL91 Software Exchange.n

