Check for
Updates

knowledge representation with
objects and object behavior (i.e.,
methods). For “procedural
programmers” who are not
convinced of the power of this
paradigm, the chapter is good
reading. The treatment of object
oriented databases was somewhat
disappointing in light of the
excellent coverage given
beforehand. The chapter may
require several readings for the
novice but is well worth the
effort.

The weakest section of the book
was the coverage given to expert
systems. The treatment was
generally too abstract and too
brief for a novice to comprehend
easily. In addition, the cases used
to illustrate both backward and
forward chaining were too
simplistic to give readers a sense
of how expert systems might be of
a more serious benefit. The
discussion was quite similar to
most you will find in introductory
texts on expert systems. One
exception was the discussion of
knowledge representation.
Generally, mapping from
real-world objects to a computer
representation of those objects is
a difficult task in itself. Explaining
to others how it is done is even
that much more difficult. Their
brief discussion of an “intuitive
model of knowledge
representation” makes for
worthwhile reading,.

Probably the most exciting and
rewarding sections of the book
were those which covered recent
developments in hypertext,
hypermedia, and text retrieval.
Hypertext is the creation and
representation of links between
discrete pieces of data;
hypermedia is the same kind of
associative linking but between
such non-textual elements as
pictures, sound, and other media.
As a technology, it is a way of
presenting and using information
that is unlike a book. Books
represent a linear arrangement of
information that provides the
reader with a single path through
a topic. Hypermedia, on the
other hand, is non-linear and
associative in nature; allowing the

SIGCHI Bulletin October 1990

user to navigate through various
chunks of information at her
discretion. The historical and
technical discussions of hypertext
and hypermedia systems are well
done, and the authors also
present the social and
psychological implications of this
technology. The latter discussion
is enlightening and thought
provoking. The section on text
retrieval presents a fascinating
account of recent developments in
information technology. Text
retrieval, like hypermedia, is the
storage, retrieval, and
management of information that
is embedded within text (i.e.,
long documents). It is well written
and gives the reader an idea of
how tasks such as computerized
library research will change over
the next decade.

The first five sections of this book
described the components that
would be necessary for building
intelligent databases: object
oriented database systems, expert
systems for deduction, and
various forms of hypermedia. The
concluding section of this book
describes the integration of these
technologies within an
architecture called FORM. How
integration between these facilities
would be carried out is described
in great detail, from a description
of how objects are represented in
FORM to the structure of the
intelligent database engine within
it. It is, in every sense of the
word, a section that pulls together
very well the ideas and concepts
developed earlier. Overall, this is
an excellent book about some
very exciting technological
developments and is highly
recommended.

SOFTWARE PROTYPING, FORMAL
METHODS AND VDM

Sharam Hekmatpour and Darrel
Ince, Addison-Wesley, 1988.

Reviewer: Lindsay Groves; Dept.
of Computer Science; Victoria
Univ, of Wellington; PO Box 600;
Wellington, New Zealand;
lindsay@comp.vuw.ac.nz.

This book is about rapid software
prototyping based on formal
methods. The first three chapters

78

comprise an introduction to rapid
prototyping, beginning with an
examination of the traditional
software life~cycle and the
problems which motivate the need
for rapid prototyping, followed by
a review of current approaches
and techniques. The remaining
seven chapters and the two
appendices describe and illustrate
a particular prototyping
methodology and a prototyping
environment, called EPROS,
which supports this methodology.

This prototyping methodology uses
a formal notation adapted from
VDM for describing functional
specifications and a form of state
transition diagrams for describing
user interfaces. A key component
of EPROS is a wide-spectrum
language, called EPROL, which
includes the notation for
functional specifications, notation
for describing user interfaces
(state transition diagrams, forms
and menus), and imperative
programming constructs similar to
those in Pascal and C. The
approach is illustrated by two case
studies: a “cross-usage” system
for recording which modules in a
program use and are used by
which modules (Chapter 6), and
a library system (Chapter 10 and
Appendix B).

The introduction to prototyping
explains all the issues quite well,
but does not present any new
insights. The authors discuss
different kinds of prototyping and
make some comments about the
relationship between prototyping
and other parts of the software
life~cycle. Some discussion of
how prototyping might be
incorporated in a more complete
life-cycle model showing when
prototyping is appropriate, as in
Boehm’s Spiral Model [1], would
help to give a more rounded view
of where prototyping fits into the
soltware development process.

The review of prototyping
techniques is divided into
discussion of techniques for
functional prototyping and
techniques for user interface
prototyping. In each case the
various techniques are described
quite briefly, presenting enough
information to give the reader a

Volume 22, Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122475.1048000&domain=pdf&date_stamp=1990-11-01

glimpse of each approach, but
certainly not enough to enable the
reader to evaluate the different
approaches or judge their merits
in relation to the techniques
incorporated in the EPROS
methodology. There is a table at
the end of Chapter 3 listing
domain of application and
advantages and disadvantages of
each technique, but otherwise
there is no evaluation or
comparison of the techniques
discussed.

The description of EPROS begins
with a general description of the
EPROS system (Chapter 4). I
found this to contain too few
details to be very informative,
though it made a lot more sense
when I reread it after reading the
sections in Chapters 6 and 10
(showing EPROS being used to
test the specifications for the case
studies) and glancing over
Appendix A (a Reference Manual
for EPROS).

Chapter § introduces the notation
for expressing functional
specifications. The main emphasis
in functional specifications is on
defining abstract data types using
the abstract model approach.
Data structures used in the
abstract model are defined using
predefined types and structuring
mechanisms such as sets, lists,
trees, and mappings. Operations
are defined in terms of pre- and
post-conditions. Although the
Preface says that a knowledge of
VDM is assumed, this description
is self-contained, albeit rather
terse, and would be quite straight
forward reading for anyone with a
basic knowledge of logic and
discrete mathematics. Lack of
previous exposure to this type of
notation and style of specification
would, however, make the
examples and case studies heavy
reading.

Chapter 7 introduces the
imperative notation in EPROL
that is used for implementation,
which is described as being a
mixture of Pascal and C. In fact,
there is much more than this to
the language, as it includes all of
the EPROL mechanisms for

SIGCHI Bulletin October 1990

defining data types, including lists
as built-in data types, and
polymorphism. Chapter 8
describes the use of state
transition diagrams to specify
dialogues and the EPROL
notation for dialogues, menus,
and forms. This is generally well
explained, though I felt the
connection between menus (and
forms) and the description of a
dialogue using state transition
diagrams needed some
clarification. A reader who was
interested in user interface
prototyping, but not in functional
prototyping, should be able to
read this chapter after looking
over the notation introduced in
Chapters 5 and 7.

Chapter 9 introduces structures
called “clusters” and the
associated notion of
“meta—abstraction.” A cluster is a
form of procedural abstraction
providing great flexibility in
defining the syntax used to invoke
the abstraction and the
information that can be passed to
it. Clusters are illustrated by
defining abstractions to create
menus and dialogue boxes. This is
the most novel material in the
book, and to a researcher
possibly the most interesting. I
would have appreciated seeing
further examples to illustrate the
power and scope of the idea.

The two case studies are carefully
chosen and positioned to illustrate
the techniques that have been
introduced. They are about the
right size to illustrate the
techniques in non-trivial
examples, without introducing too
much complex detail. The first
case study, in Chapter 6,
illustrates the techniques for
prototyping from functional
specifications., After a description
of the problem, an initial
specification is presented and
verified (showing that the
operators preserve the data type
invariant), then the specification
is tested using EPROS. A first
refinement of the prototype is
presented, in which a more
explicit data structure is used.
The new data structure is shown
to provide an adequate

79

representation, and one of the
operators is verified.

The second case study is
introduced in Chapter 10, where
the problem is described and an
initial functional specification is
given, tested, and verified.
Appendix B gives the state
transition diagrams for the user
interface and a listing of the final
prototype (after three refinement
stages), complete with user
interface, in which all data is
represented using explicit
structures (no sets or mappings),
and all operators are implemented
using the imperative constructs of
EPROL.

The Preface states: “This book is
intended for four classes of
readers: researchers in software
engineering, developers who use
formal methods in software
development, industrial staff who
are looking for viable prototyping
techniques, and university
lecturers who are interested in
using a software tool in their
formal methods and prototyping
courses.” This is a very broad
audience, and it is doubtful
whether any book would
adequately meet the needs of all
four classes. My impression is that
the first part of this book would
be a good introduction to
software prototyping for someone
with little background in software
engineering, though such a reader
would probably get lost in the
formal details in the rest of the
book. A reader who is better
acquainted with the problems and
techniques of software engineering
and is interested in learning about
a particular prototyping system
would find little of interest in the
first few chapters, but would find
the rest of the book interesting,
though somewhat lacking in
detail. I believe a practitioner or
instructor would want to see more
examples of the specification
methodology in use, while the
researcher would want to see
more details about the prototyping
system.

This lack of detail is my main
criticism of the book. I finished
almost every chapter feeling I
wanted to know more (though

Volume 22, Number 2

that may be a good thingl). In
particular, I wanted to know how
EPROS executes its functional
specifications and just what kinds
of specifications it can execute.
There is a brief note on page 81
to the effect that “certain styles
of VDM predicates, while
expressible in EPROL, are not
executable,” but no explanation
of what these are, nor what
EPROL does with specifications
containing them. I also wanted to
know what facilities EPROL
provided to support the process of
refining prototypes: are there
tools to assist in constructing the
refined specifications or to
manage the different versions of
the specifications that result? The
body of the book is only 137
pages (222 including references,
appendices, and index), so
concern about size should not
have prevented more detail being
provided.

These criticisms aside, I enjoyed
reading the book and will
certainly refer to it in the future.
It is generally well written and I
found very few errors. The
bibliography is extensive,
containing around 270 entries,
though none is dated later than
1986. I am eager to try using
EPROS and will consider using it
in teaching. Although the book
says nothing about the availability
of EPROS, I contacted Sharam
Hekmatpour and discovered that
EPROS (which is implemented in
LISP and runs under Unix) is
available free of charge, and can
be obtained by anonymous FTP
from the University of Melbourne
(munnari.oz.au).

[1] Barry W. Boehm, “A Spiral
Model of Software Development

and Enhancement”, Computer,
May 1988, pp 61-72.

COMPUTERS IN THE HUMAN
CONTEXT

Tom Forester (Ed.), The MIT
Press, 1989, 548pp.

Reviewed by: Lynne Alexander,
Consultant; Interfaces Xcetera;
Houston, Texas.

This collection of 43 articles
presents a variety of opinions on

SIGCHI Bulletin October 1990

how information technology (IT)
affects humankind. The editor
chose articles representing
contrasting opinions on many
themes and issues. The articles
offer historical and philosophical
perspectives on IT. Most offer or
imply suggestions on directions for
the future use and development
of IT. Most of the articles are
reprints from other publications.

The book is well organized. It is
divided into four parts:

1) Computers and Society,
2) Computers and People,

3) Computers and
Organizations, and

4) Computers and the Future.

Each part is divided into three or
four chapters, and each chapter
contains two or three articles. The
editor’s introduction gives an
excellent’ preview of the
assembled articles, how they
relate to one another, and their
purpose in the book, Each article
is abstracted with a paragraph
written by the editor detailing the
article’s particular purpose in the
book. Each part ends with a
section on “Selected Further
Reading.”

The first part consists of three
chapters on IT in general (not
only computers). The first two
chapters (“IT as Revolution” and
“IT as Evolution”) debate how
advances in information
technology have affected society
from a historical perspective. The
last chapter (“The Future with
IT") contains articles that suggest
how the growth of IT will affect
the historical perspective on our
society and how IT might change
society in the future.

The second part deals with how
computers are used by people.
Chapter 4 (“Minds and
Machines: the AI Debate”)
contains three viewpoints on the
potential uses and abuses of
artificial intelligence. “Machines
and Users,” Chapter 5, introduces
human factors issues in computer
design. This chapter includes a
well written article (“Desighing the

80

User Interface”) by Ben
Shneiderman, summarizing some
of the ideas put forth by his most
recent book. The next chapter,
“IT in the Home,” is a debate on
whether Home Informatics (new
technologies to bring information
to the home) will eventually
create the “electronic cottage”
(people working and obtaining
information at home). Chapter 7
is a discussion of the role
computers play in the classroom
(“IT in Schools”).

Part three of this book presents
various authors’ disillusionment
with the role computers have
played in the office, factory,
commerce, and management. The
articles describe difficulties with
past and current computer
solutions to problems, the issues
these solutions present to
industry, and potential remedies
to the problems. One particularly
interesting article in this part gives
a quantitative assessment of the
negative role computerization has
played in the banking business.
An emphasis of this part is the
importance of maintaining the
role of humans in industry, i.e.
that computers have not replaced
humans effectively.

The last part consists of some
entertaining articles on IT issues
we will probably be dealing with
in the future. Included is an
informative article on intellectual
property ownership. Equally
interesting is an article on the
people who commit computer
crimes and what to do to prevent
this kind of crime. This part
considers ethical, political,
economic, social, and global
issues.

In general, 1 found this book to
be an interesting read. It provides
me, as a technical person, with
information to formulate my own
ideas on moral issues that I face
in my profession. The author
certainly did a lot of work to
accumulate many well written
articles on the subject of
information technology and how it
affects humans. However, the
majority of the articles seemed to
be somewhat pessimistic and
foreboding about the effects of

Volume 22, Number 2

