Check for
Updates

TAKING DESIGN SERIOUSLY: EXPLORING TECHNIQUES

USEFUL IN HCI DESIGN

JOHN KARAT
TOM DAYTON

A workshop was held in Seattle on April st in
conjunction with the CHI'90 conference. The call for
participation in the workshop asked for position
papers from individuals that described techniques
found useful in some way in carrying out HCI design.
For the purpose of the workshop, an intentionally
broad view of what was considered as a technique was
used (e.g., position papers that addressed design
process, task-analysis methodologies, and skills
necessary for design, were all considered as addressing
techniques). In this report we present an overview of
the workshop. Additional reports of subgroup
discussions, focused on some of the major themes that
emerged during the day, are presented in papers by
Braudes, Hix and Casaday, Carter, and Notess.

The title of the workshop was “Taking design
seriously: ixploring techniques useful in HCI design.”
The workshop was intended to provide a forum in
which researchers and practitioners could present and
discuss a range of techniques that they felt provided
useful information to the design process. Of the 35
position papers submitted for the workshop, 23 were
invited to participate (21 were actually represented at
Seattle). The workshop actually extended beyond the
one day of face-to-face discussion, and included
distribution of position papers to participants in
advance of the workshop, and an electronic mail
discussion of the meeting plans and agenda.

Basically the workshop was divided into three phases
of activity. For the first part of the day everyone had

SIGCHI Bulletin ~ October 1990

26

5 minutes to summarize what they felt were important
issues for HCI design. This was not necessarily a
summary of the material contained in the position
papers, since everyone was assumed to have read
them. It provided introductions of people to the
group, and the beginning of an effort to identify key
topics for additional discussion. After the
introductions, there was a brief discussion of how to
divide the participants into discussion groups. This
resulted in forming four subgroups: Group HCI
Design - Problems and Prospects, Design Tools and
Craft, Interface Design Decisions and Representations,
and Design Methodologies. While we had some
notions of how the topics differed (e.g., that design
methodologies includes higher level techniques than
representation methods does), we did not attempt to
provide detailed definitions of the topic areas before
breaking for subgroup discussions.

The workshop broke into four groups for the next
three hours with the understanding that on reforming,
each subgroup would present a 20 minute summary
of its discussion (summaries from the subgroups are
contained in the additional reports in this issue). The
summaries were presented with a chance for
discussion. The workshop closed with an open
discussion and plans for follow-up activities, including
expansion of position papers for a book on the
workshop.

Volume 22, Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122475.122480&domain=pdf&date_stamp=1990-11-01

Position Papers

The workshop position papers provided an interesting
look at the wide range of topics and approaches that
must be considered in HCI design. The community
is concerned with far more than evaluation
methodologies. Below, we provide very brief
summaries of the position papers (the workshop
participants have been asked to elaborate the papers
into chapters for a book to be published early next
year). For this report we group the papers into five
headings: group factors in design, integrating
methodologies, methods for task analysis, new design
paradigms, and design skills and craft. The grouping
here is really just one way to view the relationships
between the papers, and does not necessarily reflect the
discussion group breakout; some participants elected
to participate in discussions unrelated to their papers.

Group Factors in Design

A number of the participanis focused on social factors
in design, particularly facilitating group interactions.
John Karat from IBM Research (“Supporting
collaboration in the design team to meet I1CI
objectives”) presented a summary of work being done
in collaboration with John Bennett. Bennett and
Karat have focused on developing a perspective on the
social side of the system design and development
process. They point out that it is possible to have
valuable and potentially effective technological tools
and still miss the target for achieving systems that
provide effective HCT access to function. In design
meetings they sce the need to foster parallel and
complementary discussions of 1) available technology
and of 2) ideas on how it can be used during design.

George Casaday from DEC ("Methodological support
{or the human intetface design meeting”) also discussed
the role of group activities. His paper described a
framework for collaborative work on human interface
design in the context of a design meeting. The
framework creates a structure for conversation and a
flexible discipline for thinking; it is much influenced
by current practice in software engineering, particularly
in object oriented analysts.

Mark Notess from Hewlett-Packard (“From madness
to method: Making the most of human factors input
during user interface design”), described experience
with methods for improving the relationship between
human factors professionals and other members of a
development team. Recommendations based on
experience covered ownership of design (separating the
roles of evaluators and designers was seen as
necessary), including designers as test observers,
involving human factors specialists in early design
discussions as external consultants, developing hitlists
of issues for focus, and adoption of test methods that
work with immature software.

SIGCHI Bulletin October 1990

27

Integrating Methodologies

Several of the participants addressed attempts to
integrate user-centered techniques with software
engineering methodologies. The claims were that
existing methodologies give insufficient guidance to
designers for addressing usability issues. Bob Braudes
from Georgetown and George Washington
Universities (“Integrating conceptual modelling into
software engineering”) presented one of several
frameworks in which user-centered design topics are
combined with software engineering methodologies.
His system (ConMod) represents an approach for
incorporating the notion of conceptual models from
user interface practice into a software engineering
design practice. Conceptual specifications of a model
are generated and used to ensure that the design team
and members of the end-user community agree on the
system being developed. This specification may also
be used as a basis for the prototyping and
implementation effort.

Other integrated methodologies were presented and
discussed. James Carter from the University of
Saskatchewan (“Analyzing structured task analyses
leads to better HCI designs”) described an attempt to
integrate user-centered design with software
engineering methodologies. His multi-oriented task
analysis (MOST) methodology grew from an
elaboration of the ten task analysis questions of
Rubenstein and Hersh (1984). A MOST task analysis
includes an analysis of: the various types of users and
the structure of their relations to each other; the
existing fasks and their structures (and tasks not
currently done that should be a part of the
application); the logical content and structure of the
data; the existing tools, and any constraints on the
design of a new system.

Gregory James from the University of California,
Irvine ("Applying software process modelling to user
interface design”) discussed the problem of the inability
of software engineering models to handle user interface
issues. James secks the solution to the problem in a
marriage of software engineering process modelling
with the user-centered advances of HCL. Process
models can provide the rigor and structure for
integrating the human computer interaction advances.
Together these two disciplines can aid developers in
the design and construction of user interfaces.

Chris Rouff from the University of Southern
California presented work done in collaboration with
Fllis Horowitz (“A methodology and system for
graphically specifying and rapid prototyping user
interfaces”). Rouff described a methodology and
supporting system currently under development for
graphically specifying and rapidly prototyping
multiwindow user interfaces. An interface is specified

Volume 22, Number 2

by drawing the components, indicating the flow of
control between the components, and providing
program semantics to be executed. As the designer
draws the interface, the system builds and maintains a
modified statechart representation of the interface.
The methodology consists of the steps the designer
takes to specify the interface.

Bernard Catterall from the IHUSAT Research Institute
("The HUFIT Planning, Analysis and Specification
(PAS) Toolset - easing product designers effectively
along the road to user-centered design”) discussed
experiences with a tool set in HCI design. The
HUFIT PAS Toolset was developed to provide design
teams having little or no previous expertisc in human
factors, with a set of high-level tools for the effective
input of user and task information into the planning,
analysis, and specification phases of the information
technology product life cycle. The five components
of the toolset are user mapping, user and task
characteristics, usability specification for evaluation,
user requirements summary, and functionality matrix.
Catterall noted that the continued demand for training
seminars on the tool set beyond the end of the project
indicates the growing demand for tools of this nature.

Susan Harker, also from the HUSAT Research
Institute (“Human factors in the design of information
technology systems: A UK and Buropean
perspective”) provided an additional view of European
projects in HCI. A number of projects done as part
of research and development programs sponsored by
national bodies and the Buropean Community have
contributed to the development of our understanding
of designers and design processes, and offered the
opportunity to explore various aspects of design
support. The studies that Iarker addressed included
studies of the design of special purpose software
(bespoke products) and studies of the design of generic
or off-the-shelf products. A number of issues that
caused difficulty in effectively bringing a user-centered
view into the process were identified, and efforts are
underway to introduce new methods and tools into
design.

Methods for Task Analysis

Some of the position papers focused on the analysis
and representation of the tasks to be carried out with
the system under design. Allan Maclean from Rank
Xerox BuroPARC (“Design Rationale: Developing a
framework for software design”) also addressed details
of a general design framework. Work that he
presented has been carried out in collaboration with
Victoria Bellotti, Tom Moran, and Richard Young.
Macl.ean described “Design Rationale” as a
semi-formal notation used to represent the design
space around an artifact being produced, and suggested

SIGCHI Bulletin October 1990

28

that it is an appropriate design output. This space
includes an explicit representation of reasons for
choosing among alternative options. The main
concepts cutrently used for the representation are
“Questions” which highlight key issues in the design,
“Options” which are effectively answers to the
questions and “Criteria” which are the reasons that
argue for of against the possible options.

Peter Polson attended to present work jointly done
with Clayton Lewis, John Reiman and Cathleen
Wharton at the University of Colorado ("Cognitive
walkthroughs: A method for theory-based design of
user interfaces”). This work represents an attempt to
bridge a gap between cognitive psychology theory and
HCI design practice. All sides agree that it is difficult
to apply current theoretical models within the
constraints of real-world development projects.
Polson et al. derived a cognitive walkthrough
procedure for systematically evaluating features of an
interface in the context of a theory of exploratory
learning. Consideration of the walkthrough procedure
sheds light on the consistency with which such a
procedure can be applied as well as on the accuracy
of the results.

Rex Hartson, Deborah Hix, and Antonio Siochi, from
Virginia Tech (“Support for user-centered design from
the behavioral view”) presented a possible notation
(User Action Notation or UAN) for capturing
behavioral information for software engineering. Since
software engineering traditionally deals with
algorithms, data structures, data abstraction, and
program correctness, there is reason to believe it can
help with the mechanics and structuring of the
interface development process. However, since
software engineering does not deal explicitly with
users, it would be a surprising coincidence if it also
provided guidance for a user-centered focus. The
UAN was developed to address this issue.

John McGrew from Pacific Bell (“Tools for task
analysis: Graphs and matrices”) addressed experience
with a different form of task analysis. McGrew stresses
the use of representational forms (graphs and matrices)
that are understood by system developers to describe
users’ tasks. Methods derived from graph and matrix
theory facilitate transfer of knowledge from text and
outline into a form more useful to system developers.

New Design Paradigms

Some of the papers called for new approaches to
design, involving either different models of how to do
design, or different techniques to employ. Andy Cohill
from the College of Architecture at Virginia
Polytechnic (“Information Architecture: A new
approach to software development”) described an
architecture that seeks to account for not only the

Volume 22, Number 2

technical aspects of information systems development,
but also the organizational and environmental aspects
of development. Recognizing that systems design is a
process that can be solved by more than one
development method will be a major step, but what is
also needed is a new kind of project manager -- the
mformation architect -- who understands the multiple
dimensions of development and can guide that process
in a rapidly changing environment.

Meredith Bricken from the University of Washington
("Virtual world design”) brought the workshop a view
of designing systems for a new type of environment.
Bricken addressed virtual world design with
constderation of a number of topics. These included
differences from traditional interface design, different
models of virtual reality (system, vser, and design
models), questions of what makes effective, useful
virtual worlds, and interface technology and software
tools we need to develop for virtual world interaction,

Thomas Lanning from GTE (“Let the users design”)
stressed the importance of including potential system
users in design. The role that he advocated is more
than users’ pass/fail validations in an iterative design
process. Value was scen in including the users in all
the design phases that influence their perceived value
of the end product - such as concept generation,
requirements definition, specification definition, and
detailed design. It is likely that this topic would have
received greater attention had there not been a separate
workshop on it taking place at the same time.

Lawrence Miller from the Aerospace Corporation
represented work done in collaboration with Steven
Lewis and April Gillam (“A modcl-based framcwork
for designing interactive computer systems”). From
experiences with developing complex aerospace
systems, Miller et al. argued that design of interactive
computer systems must move from the marvelous
hand crafted efforts of the first Xerox Altos and Stars,
to an automated process of very good, but not
necessarily optimal, interfaces. Further, all decisions
about the interaction - the nature of windows, the size,
shape, and format of menus, the selection of
appropriate output media and modes, and their
coordination (the integration of various input and
cominand forms) - must be stated clearly and
obviously to designers, with the interface having
predictable behavior, and allowing reasonable default
behavior when more detailed methods are not nceded,
They sce a route to this through the development of
knowledge-based user interface management systems.

Design Skills and Craft

Several papers presented discussions of the importance
of developing skills to be used in design, rather than

SIGCHI Bulletin October 1990

providing details of some specified technique. David
Wroblewski from MCC (“Interface design considered
as a craft”) advocated that building effective
human-computer interfaces is a craft, performed by
skilled practitioners engaged in a detailed and extensive
inquiry into the particulars of a task domain.
Supporting the design of good interfaces requires
understanding and supporting craftspeople at their
craft. Wroblewski focused on important implications
of such a craft view. First, craftspeople do not
rigorously separate design from implementation.
Therefore, their tools must support design in the
practice context, rather than in a prior, separate phase.
Second, craftspeople use their practice both to create
solutions and to evolve their tools, blurring the
distinction between tools and materials. Therefore,
design tools must themselves be modifiable, else an
tmportant result of practice is lost.

Patricia Craig from Microsoft (“Graphic design in
software development”) discussed the design team’s
need to include individuals with particular skills. Craig
emphasized the role of graphic designers as individuals
whose objective is to create products that
communicate as well as look pleasing. The
composition of the design team was also mentioned
as an important factor in several other position papers
(specifically those focused on group factors), though
not in as much detail as in Craig’s paper.

Harold Miller-Jacobs from The Analytic Sciences
Corporation ("Rapid prototyping: Ilow valuable in
computer systems design?”) addressed various aspects
of the value of rapid prototyping in design. In addition
to the obvious benefits of prototypes when compared
to text specifications for clearly conveying interactive
aspects of HCI, Miller-Jacobs stressed the focusing
value of prototypes. Rapid prototyping ensures that
everyone is addressing the same system, because there
is a representation of it on the screen in front of them.

Gary Klein (“The use of video technology for the fast
prototyping of artificially intelligent software”)
extended the notion of rapid prototyping to include
the use of other technology (in this case video) as a
means of delivering the prototype. Klein provided a
case history and description of the use of scripted
enactments of interactions with a system. e
described improvements to desigh which were
attributed to 1) the structure provided by the process
of developing a detailed screenplay; 2) the ability to
visually illustrate complex technical concepts; 3) the
ability to inexpenstvely illustrate expensive technology,
and, 4) the ease of distribution of this material on
videotape.

John Tang from Xerox PARC (“Applying video-based
interaction analysis methods to study users and guide

Volume 22, Number 2

the design of new technology”) also discussed the use
of video in design by presenting a case study in the
development of a graphics system for cooperative
work. Tang stressed that designing technology to meet
users’ needs requires involving social scientists who are
skilled at analyzing human activity in concert with
designers who are skilled at translating those analyses
into design prototypes. Intensively analyzing users for
innovative insights into the design of new technology,
and informally analyzing for evolutionary
improvements in iterative design, has been leading to
a better understanding of collaborative activity and
prototype tools to support that activity.

Subgroup Presentations and Discussion

We devoted the last third of the day to reports from
the four subgroups accompanied by discussion from
the whole group, and to a general discussion. The
subgroups--Design Methodologies, Design Tools and
Craft, Interface Design Decisions and Representations,
and Group HCI Design-- summarized their meetings
in their papers in this issue of the Bulletin. In this
overview we synopsize the oral presentations and the
resulting whole-group discussions. The book of the
workshop papers also will contain an overview chapter
that will describe the discussion in more detail.

Design Methodologies

The members were Bob Braudes, Rex Hartson, Greg
James, Larry Miller, Hal Miller-Jacobs, Peter Polson,
and Chris Rouff. The discussion within the group
focused on techniques for analyzing the tasks to be
carried out by users of systems. In summarizing the
subgroup discussion, Polson represented task analysis
as a series of representations, progressing from a
collection of objects and the actions taken on them,
down to the physical requirements of the action
sequences, the cognitive operations behind these
sequences, and finally the feedback. Braudes
mentioned that it is also necessary to consider task
interrelationships to determine completeness and
consistency of a conceptual model. It was clear from
the discussion that the appropriate granularity for
identifying the task to be analyzed, could vary during
the design process.

Polson claimed that once we have specified the action
sequences (in some form, using some technique), we
can deal with various learning and performance issues.
For example, Polson’s use of cognitive walkthroughs
has focused on learning, whereas the GOMS model’s
real strength is in performance. Hartson commented
that User Action Notation has also been used to
address performance (e.g., cognitive loading).

Given that there are various techniques for analysis
(the discussion did not seek to define a best technique)

SIGCHI Bulletin October 1990

and various ways to view tasks, can we provide
practical guidance? Miller talked about the need for a
representation that is uniform across all the entities
and relations of interest in the design of interactive
systems, so the practice isn’t swamped by theoretical
concerns. He suggested that we have accurate low
level cognitive theory that tells us whether a type of
interaction will work and where errors might occur,
but that we need to take the theories Polson, Hartson,
and others have been working on, and provide them
in a framework that user interface engineers can use.

Design Tools and Craft

This group was composed of Meredith Bricken, Jim
Carter, Andy Cohill, Patricia Craig, Tom Lanning,
Allan Maclean, and Dave Wroblewski. The
discussion began with an attempt to classify differences
between engineering design and “real” (artistic) design,
and with the assertion that the craft of HCI design lics
between these two extremes. Wroblewski commented
that the group struggled a lot with the absence of a
standard nomenclature for these issues, and pointed to
literature that discusses design (in all arenas, not just
in HCI) as discovery. He advocated thinking about
methods as aids to discovery--means of revealing
constraints, and of opening up the design space by
breaking down existing constraints, Maybe current
tools can’t do the creative things that differentiate good
design from mere automated layout, but perhaps tools
can be built to catalyze creativity.

Polson commented that much of the work on low
level cognitive modeling has the same motivation in
the HCI domain, as finite element analysis and other
standard engincering methods have in the structural
domain (e.g., buildings and bridges). One difference
is that structural architects use a lot more of their
resources in evaluation than we do in software design.
Software is interesting in that you can construct an
artifact, Jook at it, go back and tear it up, and try
again. But with the building next door you wouldn’t
do that. The tools should be as abstract and
theoretically driven as possible, because (1) we can do
it computationally, which can ultimately be more cost
effective, and (2) the theoretical structures give us a set
of categories to cumulate our design experience.

Cohill gave what he labeled a minority view: Tools
make it easier to manipulate complex designs, but they
are not part of design; people design in their heads.
McGrew and Wroblewski responded that tools are
needed to scale up design activity from a small team
to a large one. Some designs are too large to fit in one
person’s head, so each designer must explicate their
thinking for communication to the others. Cohill
agreed, but emphasized that it’s dangerous to think
that we’d necessarily have better design if we had
better tools and methods. The tool can become the

Volume 22, Number 2

driving force of the design, the quantitative evaluation
can become the sole definition of design quality, and
thus the design can become limited by the bounds of
the tool. MacLean and Braudes disagreed, saying that
tools and other methods, especially evaluative ones
and even quantitative evaluations, can give insights
into design. Cohill accepted their point, but drew the
distinction that evaluation and design are separate
activities, which we often confound. They are one
entity only in the sense that the design process is an
iterative cycle of the two separate activities. McGrew
objected that we cannot eliminate the dangers of
relying too much on tools. In many real-world
industrial environments the tools are part of the official
design process. Often, knowledge of the tools is the
only formal training given to people who are assigned
the task of design.

Lanning said that iteration and evaluation are abstract,
general techniques that are the kind of meta-level tool
we need. We already have many tools specific to
narrow applications or domains, which were built by
people doing the craft of design to solve an immediate
problem. For example, a technique for laying out
iconic interfaces isn’t useful for an audio interface.

We need generic methods both to help people do their
job and to stimulate creativity. Rouff clarified the
point by saying that it might be useful to distinguish
between the activity or process of design and the
artifact being designed. He felt most people would
agree that tools and methodologies to help represent,
manipulate, and evaluate the design artifact are
beneficial, but that there are certain aspects of the
design process to which it would be difficult to apply
tools, and perhaps that’s where many hard research
questions arise.

Interface Design Decisions and Representations

The members of this subgroup were George Casaday,
Tom Dayton, Deborah Hix, John Karat, John
McGrew, and Antonio Siochi. ITix stated the group’s
goal as discovering how 1o capture design decisions.
The group decided that a key obstacle to design is the
absence of a widely accepted terminology, structure,
method, or process for organizing the development of
the human-computer interface, in particular for
communicating our thoughts about design or
development issues. Three notations were proposed:
McGrew’s graph/matrix technique, cognitive
walkthroughs, and user action notation. The group
addressed three sub-questions: What categories or foci
are involved in design decisions? What broad
categories of things do you have to do in design?
What approaches do we use, and how do they map
onto the various categories? The group used a
diagram from Casaday’s position paper which
presented six foci for HCI design: user mental

SIGCHI Bulletin October 1990

activities, user physical activities, context for design,
functional design, physical design, and implementation
policies (for details, see the Hix and Casaday report in
this issue).

Maclean commented that one way to choose a
notation is to pick one that can handle all the foci of
the model; user action notation, for example, covers

-three. Cohill asked whether a notation for mental

activities was feasible--a notation that covered all the
nodes. Karat said that the snowflake model is
intended not to be all inclusive, but to help put tools
and methods into broader context. It may be that
different techniques are more appropriate for the
different foci. Carter said similar models exist, such
as the MOST methodology in his position paper.

Lanning asked where the entertainment value (i.e.,
aesthetics, polish, fun level, user preference) of the
interface goes in this snowflake model of design issues.
McGrew said it could be folded into the functional
design focus. Lanning suggested that implementation
policies might comprise forty to fifty percent of design,
instead of the single vertex it is accorded in the
snowflake model. McGrew assented that
implementation is important and that it is really part
of all the other vertices, but he thought
implementation should continue to have its own
vertex to emphasize its importance.

Miller thought it ironic that user physical activities
occupy little of the model, whereas they get the money
and glamour in the real world--the gee whiz stuff such
as the data glove. Casaday explained that the model
gives physical actions short shrift because in the real
world, there are no choices--designers are stuck with a
mouse and a bit-mapped screen.

Group HCI Design

This group was Bernard Catterall, Susan Harker, Gary
Klein, Mark Notess, and John Tang. Notess
explained that they first listed the characteristics of
multidisciplinary user interface design groups and the
tasks the groups set for themselves: For instance,
design groups exist in an organizational context that
changes often, and membership is interdisciplinary.
These characteristics raise issues such as how to
communicate intuitions and visions to implementers
who just want to know what to do. The group then
came up with some solutions: Prototyping and
scenarios are good for all the members of an
interdisciplinary design team, because people don't
need much training to relate to such concrete,
narrative, rich notations. Another solution is to have
a decision matrix that tracks all the different
constraints and their weighting, and then looks at the
decisions that were made, and why. He mentioned
that there’s been some work on a spreadsheet model

Volume 22, Number 2

for doing just that. The subgroup also concluded that
software engineers should be trained in general design,
not just in things like algorithm design. Finally
mentioned was the need to bring the tools to the
designers who need them, instead of waiting for the
people to come to the tools.

Lanning responded to the group’s enthusiasm for
prototypes as the communications medium, by
pointing out that whoever controls that medium has
a political stranglehold on the design activity. Suppose
a graphics designer wants to use some medium to
show an idea, but the medium is controlled by a
software organization that thinks the idea is trivial?
Bricken suggested that this could be overcome by
placing the medium under control of a committee
representing all the users of the medium. Ilartson
suggested that instead the tools be made usable by
anyone--for example, a Hypercard stack could be fed
into anyone’s computer.

Harker said that the subgroup found a group processes
reason for iteration’s importance, thus supporting the
other subgroups’ emphases on iteration: Without
iteration, each member of an interdisciplinary team
just throws in their contribution and sees it disappear.
With itcration, they get repeated chances to compare
views across disciplines.

General Discussion

Polson started by saying that if we’re going to make
any real progress in the field, it’s necessary to bring
some order out of the chaotic, large amount of extant
work on task analysis, user representations, and so on,
He mentioned that workers at the Fraunhofer Institute
in Germany had, as of last summer, uncovered 30 or
40 different methods of task analysis! Software
engineers have every right to be suspicious of methods
we suggest, Polson remarked, because we can’t give a
convincing (to them) argument for any one method
over the plethora of others, and because many
methods have existed for years but weren’t taught in
the engineers” undergraduate training.

Another problem Polson mentioned was that these
task analysis methods are not user friendly. He asked
the workshop to think about how long it took any of
us to really master a professionally relevant notation,
like mathematics or logic or a programming language.
He asserted it’s a task at least as complicated as
learning to read. Notess suggested that a combination
of English, graphics, and prototyping is better than
inventing a new notation that no one already knows,
even if that makes some non-English speakers slightly
disadvantaged. Karat added that looking at a
prototype--sitting down in front of the system to see
if you like it--beats being presented with a long
analysis with some well based theory and quantitative

SIGCHI Bulletin ~ October 1990

32

predictions, such as a GOMS analysis. Tang threw in
an interesting analogy from his group: Conveying
design by prototypes or scenarios is more like learning
from apprenticeships than from formal textbooks. He
agreed that natural language and prototypcs are casicr
to understand than new, formal notations are.

Hix agreed with Polson that we need success stories to
entice people to use new methods, but asked, how are
we to get them? Polson responded that he is trying to
do that by exporting the cognitive walkthrough
method. So far he has discovered that it cannot easily
be applied to large tasks or to many subjects; an
interface that allows the user to do 500 tasks is too
onerous to analyze. Karat noted that Hix’s study, in
which 80% of the users of User Action Notation could
follow it exactly, is an example of the sort of case study
that we need. He mentioned that this sort of positive
information hasn’t been carried into the literature very
well.

Notess pointed to the bright side: User testing finally
has become successful now that it has been refined,
made less expensive and time consuming, and more
adapted to particular situations. Polson emphasized
this point for interfaces that carry high costs of failure,
such as the current generation of automated aircraft.

Braudes thought that designs can’t be tested by cither
showing users prototypes alone or showing them
design documents alone, because there are some things
in the documentation that are not going to show up
in the prototype no matter how good the prototype is.
Braudes advocated use of some form of structured
inglish that might be easy for users to learn. Klein
agreed, and added that we must be clear about who the
audience is: Formal notations may be fine for
communicating among researchers, but prototyping is
needed for getting users” comiments. Braudes
disagreed, saying that showing users a pretty interface
is not going to communicate whether the design does
certain tasks. Klein persisted that we know from
experience that users have trouble learning new
notations.

Carter jumped in with the assertion that the set of
records in a MOST analysis provides a structured task
analysis record, but informally and in English. The
methodology provides ways to further structure the
results if desired. Harker asked if the design solution
generated from that analysis can be reflected back to
the user, Carter said yes, because much of the
solution’s documentation can be done in English
sentences. Catterall believed both forms are needed,
but was convinced it is difficult to make the formal
notations user friendly. Tor instance, some academics
have objected to his representation because it is user
friendly. McGrew thought that users must be trained
some, because there is no notation that everyone can
use. He’s been able to train field technicians and

Volume 22, Number 2

contractors in little time.

Siochi said that when you produce the description of
the interface using English, you typically produce a
book, and that we all know users faithfully read their
user manuals! Notcss brought up the example of the
OSF Motif style guide. Hix contended the Motif guide
was not very satisfactory, and suggested a more concise
presentation such as User Action Notation. Notess
and others agreed that more precision is nceded, and
said OSF is trying to do that. But Hartson objected
that there is a limit to the precision of natural
language. e went through the novice’s Macintosh
manual, and discovered that some of the instructions
are precise enough only for some contexts. For
example, it says that clicking the mouse does a
selection, which implies that selection happens when
you push the button down and let it up, but that’s
incorrect--selection happens when the button goes
down. Though most people don’t care about the
difference, designers and implementers do. Carter
rejoined that Iartson had just explained in natural
language what really goes on, so Carter didn’t belicve
natural language is quite so bad for description--people
just use it sloppily. He didn’t think artificial language,
with its problems of translation and information loss,
is the panacea cither, so he favored precise English.

Hartson objected that there are many style guide users
who will say it’s a losing battle to go around mopping
up English sloppiness, and Hix contended that getting
people to write precise English is very difficult.
Hartson observed that this argument was exhausted in
the database and Al communities some time ago, and
that it ended favoring artificial language. McGrew
contended that precise natural language is almost
impossible to read (any mathematics text is an
example); some redundancy and ambiguity are
necessary.

McGrew argued that we can’t create a universal
notation, so we must make one that is just natural
enough for the notation’s users to be able to learn it
in the training time we can afford to give (we must
train them some). Karat distinguished between (1)
designing systems for a particular end user population:
We will design some systems for experts in some
domain, from whom we can require much background

knowledge. We will design other systems for people
who have never seen this system before, who should
be able to walk up and correctly guess how to use it;
and (2) designing systems for designers to use. We
ought to attend to whether the design techniques we're
advocating are really useful for designers, not for users
of the interface.

Lanning shifted gears by declaring that many design
techniques are necessary. Maybe at one time, he said,
the methods of the software engineer were good
enough, but then we decided we needed experimental
and cognitive psychology. Now we finally admit that
we need graphic designers, and people who understand
the organizational environment. The days of giving
the interface to somecone with a single background are
over, because a good job requires a large range of
techniques. Ile concluded that, unfortunately, there
is not yet a recipe for putting together the perfect
multidisciplinary design team. Karat added that he
hopes we're moving away from assuming there is a
single formula for success. He observed that for a
while, there seemed to be a search for a single Holy
Grail of design techniques. Now there is an attempt
to create some framework in which a range of things
can be found, so we can more intelligently compare
what the techniques cover.

What is design, and how should we do it? Karat
concluded the discussion by summarizing the
workshop. He stated that the ideas presented ranged
from including people with certain skills in the process,
to cognitive walkthroughs and user action notation.
As techniques move from theory to practice, the focus
becomes the costs and benefits of the techniques. The
costs for bringing any technique into practice include
learning; methods that require PhDs and ten years
experience, unless they produce the HCI equivalents
of Beethovens, are unlikely to get used. This is where
case studies and success stories are needed. If you've
got a technique that you're fond of, people will latch
onto it more from successful case studies than from
just another paper on the next generation of a familiar
technique. While the workshop did not develop a
clear description of IICI design, it did offer participants
a chance to hear the case for a number of techniques
that were claimed to be useful.

SIGCHI Bulletin October 1990

Volume 22, Number 2

