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Examples of Automatic Asymptotic Expansions

Bruno Salvy

Abstract

We describe the current state of a Maple library, gdev, designed to perform asymptotic expansions
for a large class of expressions. Many examples are provided, along with a short sketch of the underlying
principles. At the time when this report is written, a striking feature of these examples is that none
of them can be computed directly with any of today’s most widespread symbolic computation systems
(Macsyma'!, Mathematica*, Maple® or Scratchpad T17).

Exemples de développements asymptotiques automatiques

Résumé

Nous décrivons I’état actuel d’une bibliothéque Maple—gdev—congue pour calculer automa-
tiquement des développements asymptotiques, et ce pour une classe d’expressions étendue. De
nombreux exemples sont présentés, ainsi qu’une bréve description des principes sous-jacents. A
I’heure actuelle, aucun de ces exemples ne peut étre obtenu de facon directe sur les systemes de
calcul formel les plus développés (Macsymal, Mathematica!, Maplefou Scratchpad 117).
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Examples of Automatic Asymptotic Expansions

Bruno Salvy
LIX, Ecole Polytechnique
91128 Palaiseau Cedex (France)
and
INRIA, Rocquencourt
78150 Le Chesnay (France)

Abstract

We describe the current state of a Maple library, gdev, designed to perform asymptotic expansions
for a large class of expressions. Many examples are provided, along with a short sketch of the underlying
principles. At the time when this report is written, a striking feature of these examples is that none
of them can be computed directly with any of today’s most widespread symbolic computation systems
(Macsyma'!, Mathematica*, Maple® or Scratchpad T17).

Introduction

Current symbolic computation systems generally lack facilities for manipulating asymptotic expansion com-
putations of a form more complex than the first terms of a Taylor series or a Puiseux expansion (involving
fractional powers). We introduce a set of programs whose aim is to contribute to fill this gap. The emphasis
here is on examples displaying the variety of difficulties a general purpose program must be prepared to en-
counter. With each of these examples is given a glimpse of the built-in choices which make these procedures
work where others won’t.

All these examples have been attempted using the built-in asymptotic capabilities of Maple, Mathematica,
Macsyma and Scratchpad. In all the cases (although Maple seems to perform better on simpler examples)
none of these systems could solve the problem directly, their answers ranging from non-evaluated expressions
or error messages to segmentation faults or (apparently) infinite computations.

In the first part of this report, we give an overview of automatic asymptotic expansions of functions given
in an explicit form. Once this is obtained, it becomes feasible to implement methods that deal with non
explicit expressions. Two such applications are presented in part 2 and 3. The first one is specialized in
discrete problems for which a generating function is available and the second one deals with a large class of
expressions given as integrals. In these two last parts, not many details are given and the reader is supposed
to know or to accept the principles of the methods which are implemented.

Foreword
In all the following examples, the toplevel procedure is gdev, which stands for “generalized development”.

Its synopsis is:
gdev(expr,var=limpoint,<nbterms>,<dir>)
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where
— expris the expression to be studied,

— wvar=limpoint is an equation indicating the variable with respect to which the expansion will be com-
puted and the point this variable is approaching, this point being any complex point or plus or minus
infinity,

— nbtermsis an optional parameter specifying the number of terms required in the expansion (the default
is 1),

— dir is an optional parameter specifying the direction taken by the variable to approach its limit. This
may be one of straight or inverse. The former means that the variable tends to its limiting point
following a straight line starting from 0 and the latter means that it follows a straight line coming from
infinity. At the origin, ‘straight’ means from the right on the real axis and ‘inverse’ means from the
left. At plus or minus infinity, the variable always comes from 0. The default is ‘straight’.

Another procedure glimit is built on top of gdev and computes only the limit of the expression. The
synopsis is the same, except that no number of terms is required.

I Expansions of expressions given in a closed form

Usually systems perform well on Puiseux scales and poorly on more general scales. It is then necessary to
define clearly what is meant by ‘asymptotic scale’ and ‘asymptotic expansion’.

Definition 1 Let P be a point set and L a limiting point of P. Let Sp be a set of functions defined on P,
with values in the complex plane. Sp is said to be an asymptotic scale at £ when for any couple (¢1,¢2) of
functions in Sp, the limit of p1(x)/p2(x) when x tends to L in P is defined and is one of 0,+0c0.

Definition 2 Let Sp be an asymptotic scale at L and f a complex valued function defined on P. Then f
is said to admit an asymptotic expansion of Poincaré type at £ when there exist an n-tuple (a1,...,a,) of
complex numbers and an n-tuple (¢1,...,¢n) of elements of Sp such that

Vie{l,..n},Yo€Sp pi=o(p)=>f—Y ajp; =o(p).
i=1

Usually, scales at a finite point @ with which systems are at ease include {(z — a)”,n € N} (Taylor scale),
{(z — a)P,p € Z} (Laurent scale) or {(z — a)",r € Q} (Puiseux scale) and the analogous of these scales at
plus or minus infinity.

Beyond these scales, systems are usually at a loss, being unable to determine automatically in which
scale the computation must be performed. The following examples show some typical instances of what
basic cases our library is able to handle, that were unobtainable previously.

1.1 Examples at a finite distance on the real axis

a. A logarithmic scale
EXAMPLE 1:

> gdev(1ln(cot(-x/1n(x))),x=0,3);



I Expansions of expressions given in a closed form

(In(1/x)) + (In(In(1/x))) + (- 1/3 ———————- ) + (0(—————--- )
1n(1/x) In(1/x)

Here, the program automatically determines that the expansion’s natural scale is

{_m@m@nmnu{<_£IY} .
ke

b. An exponential scale

EXAMPLE 2:

> gdev(exp(tan(x))-1,x=Pi/2,2);

/ 1\
-2 -——-]
/ 1 \\ Pi /
(=== I )
I 1 I
lexp(-—=—---——- )|
I x|
I 1-2-—|
\ Pi /
/ 1\
-2 --—-]
/ x \/ 1 \\ Pi /
+ (- 1/6 Pi |1 = 2 ====| |—mmmmmmmmmmmmm | )
\ Pi / | 1 I
lexp(-—=—--———- )|
I x |
I 1-2-—|
\ Pi /
/ x \2 1 2
+ (0(11 - 2 ==——] exp(-—————-------—- ) )
\ Pi / / x \
[1 -2 -——-| Pi
\ Pi /

In this example, there is an essential singularity at #/2 and the natural scale for this expansion was




c. An extended definition of asymptotic expansions

Many extensions of the definition of asymptotic expansions given above appear in the literature (see e.g.
[5, 15]) and we choose an intermediate one which allows more general expansions without sacrificing im-
plementability: In our program, the coefficients a; are allowed to be functions of bounded variation. The
following example shows a use of this extended definition:

ExXAMPLE 3:
> gdev(x~2#sin(1/x)/sin(x),x = 0,2);

3 5
(sin(1/x) x) + (1/6 sin(1/x) x ) + (0(x ))

d. A careful look at orders of expansion

One must be very cautious concerning the management of the orders of the expansions of the subexpressions,
this is critical in examples with numerous cancellations. In Maple, the given order is the order taken in
the intermediate computations, to get the following result, it is necessary to specify an order of 44 ! In
Mathematica, the program does not seem to terminate.

EXAMPLE 4:
> gdev((tan(sin(x"4))-sin(tan(x"4)))/x"28,x = 0,2);
29 8 16

(1/30) + (——— x ) + (0(x ))
756

This example needs another comment. Some systems have chosen to compute expansions with an absolute
order. However, as soon as we allow expansions in more general scales, there is no other choice than to define
the order as the number of terms in the expansion.

1.2 At infinity

There is no real difference between expansions at a finite point and expansions at infinity. The following
example involves an intermediate expansion in the scale {exp(—nz)/2"} which does not appear in the result:

EXAMPLE b:

> f:=1n(x)"2-1n(x)*1n(x+exp(-x))+arctan(ln(x));

2
f := 1n(x) - 1n(x) 1n(x + exp(- x)) + arctan(ln(x))

> gdev(f,x=infinity,2);

1 1
(1/2 Pi) + (- ————- ) + (0(-——-——- ))
1n(x) 3



I Expansions of expressions given in a closed form

EXAMPLE 6: Euler’s I' function is defined as
I'(z) :/ e Tt
0

and is known in Maple as GAMMA. Asymptotic expansions of expressions involving it often necessitate
difficult intermediate scales, even though they may not appear in the result. In the following example, the
final result necessitates an “extended” expansion:

> f:=GAMMA (x+sin(x))/GAMMA(x)*x~(-sin(x));

(- sin(x))
GAMMA(x + sin(x)) x
f 12 ———— -
GAMMA (x)
> gdev(f,x=infinity,2);
2
1/2 sin(x) - 1/2 sin(x) - 1/12 1
1) + (- ) + (0(——--))

b4 2

X

ExaMPLE 7: The W function is defined in Maple by
W(x)exp(W(x)) = =.
The limit and the scale of the following expansion are not totally obvious by hand:

> gdev(x~(1/W(x)),x=infinity,2);

exp(1) 1n(1n(x)) In(1n(x))
(exp(1)) + (-———=——————-———- ) + (0(-—===————- ))

ExaMPLE 8: The following function is taken from Hardy [8] who uses it to describe the difficulty of finding
a scale:

> fr=sqrt(x)*(1n(x)) "2*exp(sqrt(In(x))*(1n(1ln(x))) "2*exp(sqrt(In(1ln(x)))*
> (In(In(I1n(x))))"3)):

which reads

f=+vzhn?zexp {Vlnm (Inln ;1:)2 exp [VIinlnz (Inlnln r)?’] } )
Then the following limit is difficult to obtain:

> glimit(£/exp(x),x=infinity);



What happens is that the only simple scale in which this function can be expanded is a scale containing
the function itself:

> gdev(f/exp(x),x=infinity,2);
1/2 2 1/2 2 1/2 3
X In(x) exp(ln(x) In(1n(x)) exp(1ln(1n(x)) In(1In(1n(x))) ))

Of course special functions can be handled by the same tools and sometimes they even need our generalized
definition of an expansion:

EXAMPLE 9:

> gdev(BesselJ(2,1n(x)),x=infinity,2);

1/2 1/2
sin(1ln(x) + 1/4 Pi) 2 cos(ln(x) + 1/4 Pi) 2
- ) + (- 18/8 — === )
1/2 1/2 1/2 3/2
Pi 1n(x) Pi 1n(x)
1
+ (0(-—-———-- )
5/2
1n(x)

1.3 With parameters

Parameters only make worse the comparison problem for constants. Since, by a theorem of Richardson [13],
this problem is undecidable in general, tools have to be developed that handle more or less extensive classes
of expressions.

ExamMpLE 10:
> bin:=binomial (p+n-w-1,n-w-1)/binomial (p+n-1,n);

binomial(p+ n - w -1, n - w - 1)

binomial(p + n - 1, n)

> gdev(bin,n=infinity,2);

GAMMA(p) n GAMMA(p) p w GAMMA (p)
(== ) + (- ——— - + 1/12 ———————————- ) + (0(1/n))
GAMMA(p + 1) GAMMA(p + 1) GAMMA(p + 1)

The reader will notice that the coefficients in the above expansion could be simplified further. Our library
deliberately adopts a conservative attitude by leaving simplification to the system. The user can use the
tools provided by Maple to get the result in his preferred form.

1.4 When the variable is an integer

Expansions with an integer variable may be defined when the expression is not valid for the continuous
variable. An automatic handling of equivalence classes is then often necessary:



Il Expansions of coefficients of generating functions

ExXAMPLE 11:

> t:=1+cos(n*Pi/2)+1/n:
> gdev(1ln(t),infinity);
When n modulo 2 = 1 the result is:

1
(1/n) + (0(-—--))
2
n

When n modulo 4 = 0 the result is:
(In(2)) + (0(1/n))
When n modulo 4 = 2 the result is:

(- 1n(n))

The splitting into equivalence classes arises when a constant (i.e. an expression independent of the main
variable) is possibly zero. We modified the standard solver of Maple so that in a number of cases, it can
return an “infinite” list, and then a few procedures manage these infinite lists and perform the necessary
computations on them (intersection, union, membership). The procedure gdev then splits the computation
and attempt to maintain the number of cases as small as possible. This is how the odd numbers remain
grouped in the previous example.

With this first section, we have given a general view of the capabilities of our library in the case of
expressions in closed form. This in turn will become the basic engine for specific applications such as the
ones we describe in the next two sections.

II Expansions of coefficients of generating functions

By definition, the generating function of a sequence f, is

When the generating function assumes a closed form, it is generally possible to retrieve the asymptotic
behaviour of its coefficients. A method of singularity analysis was initiated by Darboux [3] and extended
to logarithmic cases by Jungen [11] and Flajolet and Odlyzko [6]. When this method does not apply, one
resorts to saddle point methods such as described by Hayman [10] and others [9, 12, 18]. These strategies
are implemented in our procedure eguivalent which is part of the larger system Ay€?, designed to perform an
automatic analysis of algorithms and data structures (see [7]).
The synopsis of this function is
equivalent (expr,varl,var2,<nbterms>)
where

— expr is the generating function to be studied,

varl is the main variable in ezpr,
— wvar? is the index variable which will be used in the result,

— nbterms is an optional integer specifying the number of desired terms (default is 1).



II.1  Algebraic singularities

Basically, the principle of the method is to notice that the coefficients of an analytic function with algebraic
singularities are asymptotically determined by its singularities and its local behaviour in their neighbourhood.
For instancef

[2"] L + L —3(n+1)+L+O 1
(1-2)?  V3+z] (=3)r/mn 3np3/2 )7
illustrates the general rule: the singularities are p1 = 1 and pa = —3. The local expansion about p; is

3/(1 = z/p1)?, hence a contribution of 3(n + 1)p(1_n) to the coefficient. Similarly the local expansion about
p2 is 5/y/1 — z/pa, hence a contribution of 5p;" /+/mn. Thus the general algorithm for analytic functions

with algebraic singularities is the following:
1. Find the singularities.
2. Find the local expansions.
3. Translate these expansions into expansions of the coefficients.
4. Sum these contributions.

A further optimization is achieved by considering only those singularities of smallest modulus, since the
other ones will give exponentially smaller contributions to the coefficients.

ExaAMPLE 12: Bernoulli numbers which are defined by their generating function, namely
(o]

B, ,
ezZ—IIZFZ'

n=0

They appear in many classical formulae such as the Taylor series of several trigonometric functions, the
Euler-MacLaurin formula for summations, Stirling’s formula. ..

Since their generating function has two equimodular smallest singularities (2iw, —2i7), we obtain an
oscillating result:

> equivalent(z/(exp(z)-1),z,n,5);

cos(1/2 n Pi) 1

I1.2 Logarithmic singularities

When the singularities are not algebraic, some transfer theorems are still available. These theorems [11, 6]
enable us to use the same algorithm as before with a slight modification in step 3, when we translate the
local expansion into the coefficients’ expansion.

ExaMPLE 13: Children rounds are defined [16] as sets of cycles with a child in the middle of each cycle.
The number of children rounds with n children gives rise to a nice expansion (gamma is Euler’s v constant,

v & 0.5772156):

> equivalent((1-z)~(-z),z,n,5);

t We recall the classical notation [2"]f(z) meaning “the coefficient of 2™ in the Laurent expansion of f about 0”.



Il Expansions of coefficients of generating functions

2
1n(1/n) gamma 1n(1/n) (- 8 - 4 gamma) 1n(1/n)
1 -1/n + 2 ————————- -2 - -2 - -
2 2 3 3
n n n n
2 2 3
17 - 8 gamma + 1/3 Pi - 2 gamma In(1/n)
o + 0(- ———=—————- )
3 4
n n

I1.3 Entire functions

When the generating function is entire or has essential singularities, it is no longer possible to find the
asymptotic expansion of its coefficients by singularity analysis; instead one uses saddle point methods [10, 9,
12, 18] which find a suitable path of integration around the origin, through this special point called saddle
point and then apply Cauchy’s formula. The next example is an application of this method.

ExamMPLE 14: Bell numbers enumerate the number of partitions of a set into non-empty subsets. Their
generating function is

B(z) = e 1

The asymptotic of Bell numbers is a quite difficult problem to which are devoted several pages in the book
by de Bruijn [4], here the expansion is derived automatically:

> equivalent(exp(exp(x)-1),x,n);
The saddle point is W(1 + n)

Saddle point’s expansion:

2

In(1n(n)) In(1n(n))
(1n(m)) + (- In(1n(n))) + (~=—---=-== ) + (0(=—-m-mmmmm- )

1n(n) 2

1n(n)
Result:
exp(-1) exp(exp(_saddlepoint))
(1/2 === )
1/2 1/2 n 1/2
(1/2) Pi _saddlepoint _saddlepoint exp(_saddlepoint)

exp(exp(_saddlepoint))

_saddlepoint _saddlepoint exp(_saddlepoint)



In this case, the saddle point’s expansion cannot be substituted in the final result, since the scales are
incompatible (one cannot get a convergent expansion). This is always the case when the generating function
grows fast enough.

I1.4 Singularities in implicit form

It may happen that one cannot find an explicit form for the singularities (e.g. when they are roots of a high
degree polynomial). Then the computation is carried out with as much information as we can obtain about
the singularities. This of course makes the decision problem for constants more difficult, but not always
impossible:

EXAMPLE 15:

> equivalent(1/(1-z*1n(1/(1-z))),z,n,5);

Root0f(1 + _Z 1n(1 - _Z), .7407536434)

1 - Root0f(1 + _Z 1n(1 - _Z), .7407536434)

- RootO0f(1 + _Z 1n(1 - _Z), .7407536434)

In(1 - Root0Of(1 + _Z 1n(1 - _Z), .7407536434)))

n
/ RootO0f(1 + _Z 1n(1 - _Z), .7407536434) )

n RootOf(1 + _Z 1n(1 - _Z), .7407536434)
where RootOf(1 + zIn(1 — z), @) means the root of
14+zIn(1—-2)=0

which is the closest to a.

III Asymptotic expansions of integrals

Still based on the engine detailed in the first section—the asymptotic expansion of expressions given in closed
form—we present here an application to the asymptotic expansions of integrals of the type

b(z)
/ F(z,t)dt
a(z)

when z tends to a real limiting point (a real constant or plus or minus infinity). Of course we cannot handle
so wide a class of integrals, but a large subclass can receive an automatic treatment.

10



Il Asymptotic expansions of integrals

The principle of this method is to use Parseval formula for Mellin transforms (see e.g. [2]). One starts
by trying to find a change of variables which transforms the integral into the nicer form

/0 " fetg(dr, (1)

this first step being carried out by pattern-matching together with a possible computation of functional
inverse. Then, under certain conditions, Parseval formula gives the following identity

00 c+ioco
/0 gyt = — / M Mg 1 - )z,

27 Jolieo

where M[f; z] denotes the Mellin transform of f defined by

mipd = [ et

and ¢ lies in the common strip of analyticity of M[f;t] and M[g;1 — t]. Mellin transforms can be computed
in the same manner as Laplace transforms using an extensive table together with a pattern-matching which
takes into account properties of the transform. The next step consists in shifting the path of integration
to the right, thus expanding the integral into a sum of residues and a remaining integral. Under suitable
conditions, this last integral can be bounded and one obtains a true asymptotic expansion,

| retai = - Y ResmMIf0MIgi 1 - it = a)+ OGC), @

c<Ra<C

where the sum is taken over all the singularities of the integrand whose real part is greater than ¢ and smaller
than C.
The automation of this process is (almost) straightforward when one of the following cases occurs:
(i)
oo my

flz)me™ % E Z cij In(z) z= (3)

i=0 j=0

at infinity, with (d) > 0 or d imaginary, ¢;; complex numbers, m; finite integers and «; complex
numbers with increasing real parts, or

(ii)
g(z) ~ e—cle" Z Z a;;j ln(x)jmﬁ’ 4)

i=0 j=0

about 0, with R(¢) > 0 or ¢ imaginary, a;; complex numbers, n; finite integers and §; complex numbers
with increasing real parts.

In fact in both cases, the singularities of the Mellin transforms, as well as the singular part of their local
expansions about these singularities can be deduced directly from the above formulae, without computing
explicitly the Mellin transform (which might not be possible).

In case (i), when d = 0 the singularities of M[f; z] are at the «; and the singular part of its local expansion
can be deduced from d and the ¢;;. When d # 0, then the singularities of M[f;] lie in the left half-plane
and we do not need to worry about them.

Similarly in case (ii), when ¢ = 0 the singularities of M[g; 1 — z] are at the 1 4+ #; and the singular part of
its local expansion about the singularities can be deduced from ¢ and the a;;. When ¢ # 0, the singularities
do not bother us.

11



Of course these two cases may happen together, which makes the job harder if some singularities collide,
since then the knowledge of both the expansions is not enough to compute the residue of the product about
a common singularity.

To sum up, the algorithm is the following:

1.
2.
3.

Ot

N

Compute the expansion of f at infinity and check that it fits in a scale such as the one used in (3).
Compute the expansion of g about 0 and check that it fits in a scale such as the one used in (4).

If d # 0 and ¢ # 0, then the expansion of (1) is exponentially decreasing and we cannot find it without
a change of variable (not automated).

From the expansions check that the strips of absolute convergence of the transforms overlap, otherwise
give up.

If d # 0 and ¢ = 0, then compute explicitly M[f; z] and translate the expansion (4) into (2).

bl

If ¢ # 0 and d = 0, then compute explicitly M[g; 1 — z] and translate the expansion (3) into (2).

If ¢ = 0 and d = 0, then compute both M[f;z] and M|[g;1 — z] and still use the information given by
(3) and (4) to compute the residues at non colliding singularities, part of the residues otherwise.

It is important to notice that this algorithm relies on being able to expand an expression in rather
general scales and cannot be implemented without the tools described in the first section. There follows a
few examples of the use of this part of our library.

IT1.1 The F; function
The exponential integral E; is defined by

El(z):/ ¢ du (largz| < )
1

Uu

from which an asymptotic expansion is easily computed:

EXAMPLE 16:

> El:=Int(exp(-z*u)/u,u=1..infinity):

> gdev(El,z=infinity,7);

1 1 1 1 1
(=== ) + (= —mmmmm ) + (2 - ) + (- 8 ——————-—- ) + (24 -————--—- )
z exp(z) 2 3 4 5
z exp(z) z exp(z) z exp(z) z exp(z)
1 1 1
+ (- 120 ————-———- ) + (720 ——-—--——- ) + (0(--------- ))
6 7 8
z exp(z) z exp(z) z exp(z)

Which yields automatically the first terms of the classical expansion:

_, (=D)"n!
El(Z)ze ZZTLT

nz0

12



Il Asymptotic expansions of integrals

II1.2 The Stieltjes transform of an oscillating term

We recall that the Stieltjes transform of a function f is defined by

S[fie] = /0 h %dr,

(see e.g. [17]).
ExaMPLE 17: This is the asymptotic expansion of S[sin(1/t)/t; z] when z tends to infinity:

> S:=Int(sin(1/t)/t/(t+x),t=0..infinity);

infinity
/
| sin(1/t)
S := [ it dt
I t (¢ + x)
/
0

In this case, the program finds the change of variable t = 1/u and using the previous notations we have
f(z) = 1/(1 + 2) and g(z) = sin(z), hence d = 0, ¢ = 0 and the singularities of M[g; 1 — z] are the positive
even integers, where they collide with half of the singularities of M|[f; z] since these lie at all the positive
integers. The program will compute the Mellin transforms

M[f;s] =T(s)['(1 —s), M[g;1—s] = cos (%) I'(l-s),

and then will compute the residues. Note that in this collision of singularities logarithmic terms will appear:
> gdev(S,x=infinity,4);
Pi - 1 + gamma In(x) Pi 1
(1/2 ——-) + (—————-———- ) + (- ————- )+ (- 1/4 ——) + (0(——-))

X 2 2 3 4
X X X X

I11.3 Stieltjes transform with a logarithmic term

EXAMPLE 18:

> S:=Int(sqrt(t)*exp(-t)*log(t)/(1+t*x),t=0..infinity);

infinity
/ 1/2
| t exp(- t) 1n(t)
I dt
| 1+t x
/
0

In this example (with the same notations), f is the same as above, but g has an algebraico-logarithmic
singularity at the origin. The logarithm will induce a logarithm in the expansion and similarly the square
root will produce half-integer exponents:

13



> gdev(S,x=infinity,3);

1/2 1/2
Pi gamma Pi 1n(2) Pi 1n(x)
(= === =2 e ) + (—mmm—- )
X X 3/2
x
1/2 1/2 1/2
Pi Pi gamma Pi 1n(2) In(x)
+ (4 ——- -2 ————————- -4 ————————— ) + (0(——-- )
2 2 2 5/2
x x x x

II1.4 Generalized Stieltjes transform

The generalized Stieltjes transform of a function f is defined by
= _f7)

Sglf;x,u] = dr,

Q[f €L u] /0 (1,—1—7')” T

(see [17]). Once again, this leads to automatic expansions:

ExXAMPLE 19:

> S:=Int(exp(-1/t"2)/t/(t+x)"~(1/2),t=0..infinity);

1
infinity exp(- ----)
/ 2
I t
S := ittt dt
I 1/2
/ t (£ + x)

As above, the program finds the change of variable ¢ = 1/u, then f = 1/4/1+ z is algebraic at infinity
and its transform has singularities at the half-integers, where they collide with half the singularities of the
transform of g = exp(—u?)/y/u, whence the logarithms and the non-integer exponents in the result:

> gdev(S,x=infinity,4);

1/2 1/2 1/2
- 2Pi In(2) + 1/2 Pi gamma In(x) Pi

14
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1/2 1/2 1/2
- 1/4 Pi + 3/4 Pi 1n(2) - 3/16 Pi gamma In(x)

Note the difference between these last two examples. In the first one there was no collision of singularities:
the terms with integer exponents came from the singularities induced by the expansion of f at infinity and
the logarithms together with the half-integer exponents came from the expansion of g about the origin. In
the second example, there was no logarithm in any local expansion, but f and g gave rise to singularities at
the half-integers, and from this conjunction the logarithms were born.

III.5 An example with the Airy function

The Airy function is defined by

1 [ 1
Ai(z) = —/ cos(gt?’ + zt)dt,
0

T
(see for instance [1]) and satisfies the remarkably simple differential equation

w’ — zw = 0.

Once the procedure of our first section knows how this function behaves at 0, it is not difficult to obtain non
trivial expansions:

ExaMPLE 20:

> S:=Int(Ai(t*x)*t~(-1/2)*sin(+t~(3/2)),t=0..infinity);

infinity
/ 3/2
| Ai(t x) sin(t )
I dt
I 1/2
/ t
0

Still using the same notations, f(z) = Ai(z) is exponentially decreasing at infinity, while g(z) = sin(2%/?)/y/z
is algebraic at the origin with an expansion inducing singularities at the integers 3k 4 2, the computation of
the residues comes down to finding a closed form to M[Ai;s]. Inputing this into the program gives:

MIJAL s] =
[A; 5] 2
> gdev(S,x=infinity,5);
1/6 13/86 25/6
3 GAMMA (2/3) 3 GAMMA (2/3) 3 GAMMA (2/3)
(1/2 ————————— ) + (- 1/18 ———————————————— )+ (1/108 ———————————————- )
2 5 8
Pi x Pi x Pi x
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37/6 49/86
3 GAMMA (2/3) 11 3 GAMMA (2/3) 1
+ (= 1/B67 —==mmmmmmmmmmmm- I ) + (0(=--))
11 30618 14 17
Pi x Pi x X

Conclusion

Non trivial automatic asymptotic expansions can be derived, provided asymptotic scales are carefully han-

dled. Once a good engine for performing expansions in large scales is implemented, expansions which were

not even expressible in symbolic computation systems previously can be obtained quite easily. Work is in
progress to take benefit of this implementation of asymptotic scales to program various asymptotic meth-

ods in a general setting. The nuts and bolts of our implementation of asymptotic scales will be described
elsewhere (see [14] for a preliminary report).
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