
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oc t 1991 Page 31

Testing and Evolutionary Development

Dr. Anneliese von Mayrhauser
Computer Science Department

Colorado State University
Fort Collins, CO 80523

1. The Evolutionary Testing Problem
As software use changes and evolves, the software
must change and evolve with it. Traditionally this
meant

determine the current operational profile
and excerpt a set of test cases for it.
match it with the currently existing test
cases and determine which are still valid
delete the invalid ones and add test cases
that represent new, enhanced or modified
software capabilities.

Operational test cases and system test cases can
comprise a huge number of tests. This makes it
desirable to identify those test cases that do not
have to be rerun vs. those that do. On the other
hand, this can be impractical, especially for large
scale systems. It might therefore be more cost
effective to try and rerun the whole battery of tests
again. With evolutionary development this can
carry a hefty price-tag. Thus, it is very desirable to
have a tool and a methodology to describe tests,
their purpose (as evidenced in the operational
profile) and how classes of changes will affect tests,
create the need for new ones, and make old ones
obsolete.

Additionally, tests happen all through the software
development life cycle. They usually are related.
For example, an aspect of the operational profile
may be reflected in a particular design module.
Hence, one or more test cases exist that test the
proper functioning of that design module. These
relationships exist and should be preserved and
properly modified as software evolves. This poses
challenges. The next sections will describe a
classification of tests and the design of a test
analysis and modification tool that could make
testing evolving software easier.

2. Operational Profile and Software Evolution
Most of what has traditionally been called software

maintenance is really adaptive and perfective in
nature and falls under evolutionary development.
Changes are made to software because
requirements change and thus the operational
profile. The first task is then to identify which
requirements change and what type of change it is.
There may be three types:

adding requirements
deleting requirements (probably rare)
modifying existing requirements.

Associated with requirements are sets of test cases
that test each requirement. These are either
described via the operational profile or the
acceptance test (sometimes the two are in fact
equivalent). Requirements and test cases can be
related through a two-way link, i. e. each
requirements phrase is associated with one or
more test case identifiers. An example of such a
tool is BUSTER from A T& T Bell Laboratories
[ARCH90].

When new requirements are added, each new
requirement must have at least one new test case
associated with it that tests the new requirement.
Thus a new link is established between
requirements and (a set of) test cases. Individual
test cases and packages or suites of test cases may
be named.

When an existing requirement is deleted, its test
cases can be deleted also. This, however,
presupposes that one test case only tests one
requirement. This is hardly a parsimonious
approach to testing. Thus it must be determined,
whether a test case that has been identified as a
candidate for removal, is connected with another
requirement that is not being deleted. A two-way
link will enable such a cross-check. This establishes
a many-to-many relationship between requirements
and test cases.

When an existing requirement is modified, all test

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122552.122554&domain=pdf&date_stamp=1991-10-01

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 4 Oct 1991 Page 32

cases are listed that test this requirement. Then we
must determiine which of them will have to change,
which can stay as is, and which need to be replaced
by new ones.. Thus test cases are subject to the
same three change operations:

* delete a test case
* a d d a test case
* modify a test case.

When a test case tests more than one requirement,
the following rules apply:

test cases that need modifications due to
a change in a requirement lose their link
to the modified requirement (but not their
links to other requirements that may
exist). The modified requirement is linked
to a new test case that reflects the
modifications in the requirement. Test
cases that need to be replaced are handled
the same way.
no change for test cases that need no
modifications.

This approach provides a minimal solution to
updates for test cases that are requirements driven.
It is by no means complete nor will it solve all
problems. Note that we have taken an approach
that is similar to some configuration management
tools. We describe evolution (change) in terms of
type of change and its resulting effect on the
configuration items (in this case requirements and
test cases). To implement this concept, we need a
requirements "editor" and a test case "editor" as
well as a browsing mechanism that allows us to
navigate through requirements and test
information and find the spot where changes need
to be made.

3. Dealing with Size Complexity.
Large software systems may have thousands of
requirements and test cases. The simple, linear,
unstructured approach to requirements and
associated test case changes is no longer realistic.
It would be too hard to find what we want to
change, navigation becomes difficult. The answer
to handling the complexity of changes to
requirements and test cases lies in structuring them
and using the structure to navigate. We also must
avoid information overload for the regression
tester. Thus structure and browsing facilities
become indispensable.

3.1. Structuring Requirements
This is not a new idea, but should be exploited for
regression testing purposes. Requirements
Diagrams provide levels of requirements for
systems and subsystems down to the actual
function level ([VONM90]). Let us call this lowest
level of requirements an "atomic requirement".
This structure can be captured and used to
structure and name sets of requirements, making
navigation easier. The advantages of capturing the
levels of refinement of an abstract requirements
diagram as a named hierarchical set of objects are

functionally related requirements objects
are clustered. This is a simpler, but similar
approach to [HSIA88], but as we will see,
no less powerful.
test case suites can be associated with a
chosen level of abstraction. This provides
the basis for requirements "editing" and
associated test case "editing" at the highest
applicable level of abstraction.
we can provide for inheritance properties
of requirements and test cases via
appropriate rules with this structure.
the requirements representation lor
testing purposes relates naturally to the
requirements representation of abstract
requirements diagram tools. A user does
not have to translate between the
requirements structure the tools provide
and the requirements structure for testing
purposes: it is the same and can be
captured from the Requirements Diagram
tool's internal representation.

So far, we are not yet dealing with qualitative
requirements such as security, performance,
adaptability, maintainability, performance, etc. (for
a complete list and discussion of qualitative
requirements see [VONM90], Chapter 4).
Commonly, these requirements apply to more than
one atomic requirement. Thus we should associate
such qualitative requirements as qualitative
characteristics with the highest level of the named
requirements objects to which they apply. We
suggest to use an attribute vector to represent
these qualitative requirements for a requirements
object at a particular level of abstraction. This
provides the following:

the ability to represent several instances of
an attribute associated with a particular
qualitative requirements type. For

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oct 1991 Page 33

example, a performance requirement for
computing taxes in a tax preparation
system may specify that data and
computation must fit into 1 Megabyte of
storage, that response time for editing tax
data must be under 2 seconds while
compilation of a tax form must not take
longer than 35 seconds. Here we find 2
types of performance attributes, storage *
requ i rements and response t ime
requirements. For type response time 2
values exist, for two different collections
of requirements (note that the functional
requirement "editing" and "tax form
compilation" are not at the atomic level).
these attribute vectors can then be
associated with test suites: if the attribute
value is present, this means that a
"capability" exists to execute the associated
test suite. Thus we end up having a
structure analogous to a capability based *
architecture ([WULF81]). It has been
suggested ([VONM90]) that they are a
natural extension to the concepts of
abstract data types, and, when associated
with rules or policies are very flexible.
This is a very useful structure for
requirements from a testing point of view
as it makes it possible to use different *
testing criteria or strategies within this
structure (modifying rules or policies).

Editing operations on the requirements structure
are fairly easy:

* adding new requirements requires finding
the proper level of insertion and adding a
connection between the new requirement
and its next higher level of abstraction. To
illustrate impact we can highlight or
otherwise mark a path from the insertion
through the abstraction hierarchy to the
top.

* deleting requirements deletes the subtree
for which the requirement to be deleted is
a root, as well as the connection between
the deleted requirement and the next
higher level of abstraction. Impact
illustration is represented by a path up the
abstraction hierarchy.

* modifying requirements involves changes
in the text associated with the
requirement, refining a requirement
(adding a subtree), or editing the

qualitative requirements via changes to the
attribute vector (see below). Impact
illustration marks a path up and down the
abstraction hierarchy.

Editing operations for the attribute vector involve
the following:

deleting a qualitative requirement at a
specific level of the abstraction hierarchy
deletes the value of the attribute slot at
that level. Since values are inherited at all
lower levels of abstraction, this also
removes the deleted qualitative from all
lower level functional requirements that
belong to the cluster. Test cases associated
with testing the deleted qualitative
requirement are removed, unless they
possess links to other functional or
qualitative requirements (links).
adding a qualitative requirement involves
assigning a value (and possibly a type
distinction) for the appropriate attribute.
Whether new test cases have to be defined
depends on whether existing test suites
can be reused (e. g. a test suite testing
functional requirements can also be used
to test performance requirements).
modifying a qualitative requirement. This
usually involves modifying the attribute
value in the attribute vector. Associated
test cases may need no change at all (e. g.
when response time must be less than 20
seconds is changed to response time must
be less than 15 seconds). Some changes in
qualitative requirements require test case
modifications or the writing of new test
cases (e. g. when the requirements states
that software must be capable of handling
100 transactions per hour and that is
increased to 120 per hour. This may
require rewriting test cases so that at least
120 transactions per hour are generated).
We will discuss ways to represent other
situations when we discuss test case
structuring.

3.2. Structuring Test Cases.
Analogous to requirements, test cases can be
functional or qualitative. A test case is associated
with a runnable script (inputs plus anything that is
necessary to actually execute the test case),
expected output, test case identifier, and
structuring information. We will also later

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oc t 1991 P a g e 34

introduce test case attributes that will allow us to
use testing and regression testing rules. For now,
primary concern is how to structure test cases and
how this structure changes with editing operations
on the test case identifiers and the test case
structure. This test case structure is hierarchical
and subtrees can be named (i. e. suites of test
cases). The hierarchical structure represents a
"consists o f ' relationship. Test cases for qualitative
requirements are represented with a test suite
vector containing a reference to a test suite that
tests the appropr ia te qualitative requirement in the
attr ibute vector slot of the corresponding
requirement. We also need a test suite table that
contains definitions for and references to all
named collections of test cases and test suites.

Editing operat ions on the test cases:

deleting a test case or a named set of test
cases: remove the test case from the test
case table and (through double links) from
the test case structure and all test suite
vectors. If the link from the deleted test
suite to a subset name is the last one,
remove the subset. This latter operat ion
may be delayed to an occasional "garbage
collection" operat ion that marks and
deletes test case definitions.

A delete operat ion for a test case may
have been the result of a delete operat ion
for a f unc t i ona l or qua l i t a t ive
requirement. A test suite associated with
a functional requirement object that is
deleted is marked for deletion (the link
between them is removed). If the test suite
has no other links to requirements, it is
removed and links to other test suites are
removed also (it may have been part of
another test suite or it may be connected
to named subsets as in T consist of t l and
t2). Note that we will find rules in the test
rule section that may result in a test
modification rather than a test deletion.
These will be discussed separately. Here
we are solely concerned with a delete
opera t ion for test objects.

Deleting a qualitative test object (test case
or test suite) usually is the effect of
deleting a qualitative requirement. It is
easily accomplished by removing the name
of the test object from the corresponding

slot of the test suite vector.

Implementing the test case structure is
possible using a doubly linked list
structure. In the current scenario (all test
case change operat ions are triggered by'
requirements change operations), this is.
not really necessary as long as we keep a
counter for each test suite/test case name',
that records how many links still point to
it. This makes it easy to determine
whether the test entity should be removed
(nothing points to it any more) or not.

adding one or more test cases. This
usually happens due to changes in the
Requirements structure and may involve
the following:

add test case identifier to a set of
existing ones (a new named
subtree)
for a test case (suite) that tests a
qualitative requirement, add its
name in the appropr ia te slot(s)
and establish l inks.

modifying one or more test cases. Content
changes happen in the appropr ia te test
script itself. Since we are concerned here
more with the structure and how it
facilitates change, we do not as yet provide
support for this. However, for impact
analysis purposes, we can mark the
changed test case(s) for regression test to
indicate that change actually took place
and the suite should be rerun. Since test
cases are referenced by their names, no
test case structure changes are necessary.

When test case changes affect the test case
structure (e. g. a suite is used to test a
qualitative requirement in addition to a
functional requirement), appropr ia te links
are generated and entries are made into
the attribute vector (see add, delete
functions).

4. Rules for Test Case Update
4.1. Regression Test Rules - Requirements Driven.
4.1.1. Requirements Deletion
We assume that most changes in test suites come
about as a result of changes in test cases. Not all
changes in requirements simply result in the

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oc t 1991 Page 35

corresponding change operation for the test objects
associated with it. For example, the deletion of a
qualitative requirement, let's say a performance
requirement, may result in no test case deletion at
all (if all tests from a performance test are also
used for functional tests as well). Thus, whether or
not a test will be deleted depends on whether it is
currently used for a purpose other than testing the
(deleted) requirement. This would be apparent
through the number of links to the test case.
Conversely, a deletion of a functional requirement
may involve the deletion of qualitative tests as well
as functional tests (namely those associated with
qualitative requirements for a stated function).
When functional tests are also used for qualitative
purposes this may simply delete the same test
cases. However, stress tests are not always used for
testing functional requirements. Then we indeed
have two delete operations, one for the functional,
one for the qualitative aspects of the requirement
being deleted and the test cases associated with
both.

Impact analysis determines which test
cases need to be rerun. We can use the
requirements or the test case structure to assess
impact. In the requirements structure we marked
impact of a requirements change as a path up the
abstraction hierarchy to the highest level
abstraction of the requirements cluster (subtree).
m maximal regression test set would identify all
test suites for the marked requirements structure.
The rationale for such a rule is that a requirement
modification changed a requirement not just at the
level where it occurs, but also provided a modified
abstraction to the next higher level which in turn
then provides a modified abstraction to the
requirements level above and so forth. Thus a
maximal rule like regression testing all test suites
that are associated with the path upwards from a
requirements modification makes sure that the
requirements cluster associated with a changed
requirement still works.

A more minimal rule would require to select only
those test cases that are associated with the level
of abstraction where the requirements change
happened and those test cases for the level
immediately above. This still regression tests the
changed requirements cluster, but not as
extensively.

We can also use the modifications in the test case
structure itself to determine regression test suites.

If a test suite changed at a given level in the
structure, the modified suite gets used for
regression testing. The rationale for this rule is
that it is important to make sure the new test suite
works. Also, a test suite is identified as a
meaningful collection, because it tests some
underlying abstraction, functional or qualitative.
Therefore the test cases are related and if one
changes, the whole test suite, and the code they
test could be-impacted.

Other test rules beyond the requirements and test
case structure require a formal specification for
test cases to state purpose and intent, even design
principles. Without them, interpretation of the
'why' of test case change and therefore a more
detailed set of rules for regression test
configurations is not possible.

4.1.2. Requirements Addition
When requirements area added (functional or
qualitative) new functional and qualitative test
cases must be added to test them. Sometimes
functional requirements tests can also be used for
qualitative tests, they simply are interpreted
differently (see earlier remark on performance vs.
stress tests). The impact of adding new
requirements follows a path up the abstraction
hierarchy. Whether it is minimal (includes next
higher level only) or maximal (all the way to the
top) depends on how conservative regression test
must be. Both functional and qualitative
requirements should be retested. At higher levels
the content of a test case may need modification.
This holds for functional and qualitative
requirements.

4.1.3. Requirements Modification
All test cases, functional or qualitative, that are
associated with a modified requirement must be
checked for necessary modification. This may for
example involve changing the required response
time value (if that is the nature of the
requirements change). The impact of a
requirements change means that at least the next
higher level of abstraction is affected. Thus,
depending on whether a minimal or maximal
approach is to be followed, the next or all higher
levels in which the modified requirement is a part
must be regression tested. There is also an impact
down to the next lower level of requirements, thus
they need regression testing, too. In addition, test
case content may need changes.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 36

4.2. Rule Structure versus Requirements/Test
Structure
While we have some rules for identifying a suite of
regression test cases, these are not the only
possible rules, therefore, a tool should be able to
work with various sets of rules, indeed be able to
accommodate rules that reflect new insights into
the regression testing process. To provide this
flexibility, we propose a test structure that
separates the requirements and test editor from the
rules mechanism and determines a regression test
suite based on a set of given rules which may
change.

First, we separate the requirements and test
(structure) editor from other tool components.
Thus editing operations on the requirements, test
cases and their structure do not overlap with
regression test definition. Analysis of the changes
in requirements and test structure identifies
dependency information that can be used as input
to testing rules and regression test definition. The
next level of tool identifies the rules to be used for
definition of tests that form a regression test suite.
This structure separates concerns and also provides
a possible interface to an existing tool for
requirements analysis ([VONM89]). This tool
records requirements in the structure discussed
above, performs a benefit analysis, and identifies
candidates for successive versions based on
priorities and evolutionary changes. Thus the
regression testing mechanism described here
complements the earlier tool. Further, a similar
approach to regression testing and the
representation of test structure vs. content vs. rules
is taken in [JEON91] for white box testing as part
of a Maintenance Toolkit ([VONM91]). More
work is still required to be able to use a truth
maintenance system for updating black box
regression test suites as was done for the white box
testing in [JEON91]. We also have an experimental
test case language with a YACC based parser for
black box testing ([BARE90]).

5. Conclus ions
This paper presented a structure based approach to
representing requirements and test cases in an
evolutionary context. Types of changes and their
impact on regression test suites was discussed.
When combined with a hierarchical browser with
zoom-in/out capabilities this mechanism can
provide significant help in updating and identifying
regression tests. Formal specifications, or even
more detailed classification of test case intent can

make rules for test suite identification and update
more precise. More work is needed in this area.

References:
ARCH90

BARE90

HSIA88

JEON91

VONM89

VONM90

VONM91

WULF81

Archie, K. C.; "Environments for
Testing Software Systems", AT&T
Technical Journal, March/April
1990, p.65-75.
Bareiss, C.; yon Mayrhauser, A.;
"Parser for a test case language",
Illinois Institute of Technology,
AvM-12-1990.
Hsia, P.; Yaung, S. H.; Jiam, S.,
H.; "Another Approach to System
Decomposition: Requirements
Clustering", COMPSAC, 1988, p.
75-82.
Jeon, T.; von Mayrhauser, A.;
"Architecture for Knowledge-
Based Regression Testing",
accepted, Second Grea t Lakes
Computer Science Conference,
Oct. 17-19, 1991.
von Mayrhauser, A.; Johnson, D.;
"A Requirements Analysis Tool
for Evolutionary Software
Development", Illinois Institute of
Technology Technical Report,
AvM-12-1989.
von Mayrhauser, A.; "Software
Engineering: Methods and
Management", Academic Press,
1990.
von Mayrhauser, A.; "AMT -the
Ada Maintenance Toolchest",
Triada 1991, Oct. 23-25, 1991,
San Jose, CA.
Wulf, W., A.; Levin, R.; Harbison,
S.; " H Y D R A / C . m m p : An
Experimental Computer System",
McGraw-Hill, 1981.

