
A C M S][GSOFT S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 4 Oct 1991 Page 42

System Construction with Object-Oriented Pictures

George W. Cherry
Thought**Tools, Inc.
5151 Emerson Road

Canandaigua, New York 14425

Abstract and Introduction
This paper describes the process guide, behavior model,

icons, and diagrams of SCOOP-3, a pictorial method for de-
veloping reactive systems. SCOOP-3's semantics are Con-
current C++ or Ada: its icons and diagrams are mechanically
translatable to these languages. SCOOP-3's process guide
supports reuse, prototyping, and concurrent specification and
design. Its behavior model (S-R Machines) integrates the no-
tions of finite and infinite automata, data abstractions, and
objects. My earlier notes in SEN demonstrated the Finite
State Automata power of S-R Machines. This note demon-
stxates their far greater power and expressiveness. SCOOP-
3's black box, machine, and clear box diagrams have the
same objective (and names!) as Mills' Box-Structured ap-
proach: stepwise provable specifications and designs.

sCOOP-3 Technical Process Guide

Figure A is SCOOP-3's technical process guide. It sup-
ports prototyping (it assumes the purpose of the jth system is
to satisfy the jth set of requirements and evoke the (j + 1)th
set of requirements). It supports reuse (for example, it places
its explicit reuse step, process 2, early in the development
cyc.le). It supports concurrent specification and design (we'll
discuss this below). Notice that the work products of Figure
A are three views of a system: black box, library, and clear
box (which includes state machines). The black box is the
system's expected external behavior. (Some writers use the
terms interface or specification for black box.) The library is
the system's set of reusable components, recruited to support
its clear box. The clear box is its internal mechanisms, which
generate its black box behavior. (Some writers use the terms
body or implementation for clear box.)

Stimulus-Response (S-R) Machines

Central to SCOOP-3 is its notion of an S-R Machine. S-R
Machines are modules of behavior; that is, they are architec-
tural entities as well as behavior entities. Complex systems
are built from networks of S-R Machines, which communi-
cate with one another by message or call stimuli/responses.
Figure B is the schematic of an S-R Machine. Its triangles
are computations which operate on their inputs to produce
their outputs. Its rectangles (open at one end) are memory
(possibly unbounded in the case of "data..."). We have pro-
vided Figure B to help you visualize the following definition.
A general S-R machine is an 9-tuple:
1. a finite set of kinds of stimuli (the S's in the input stream

are members of this set),
2. a finite set of kinds of responses, (the R's in the output

stream are members of this set),
3. a finite set of state values (the values stored in the vari-

able "state" are members of this set),
4. a distinguished state value (often called the start state),
5. a data type ("data..." object belongs to this type),
6. Guards: Boolean functions computed from (state, stimu-

lus, data) triples (they determine which Stimuli are cur-
rently acceptable),

7. Next: computes the next state from the current ,(state,
stimulus, data) triple,

8. Output: computes a response from the current (state,
stimulus, data) triple,

9. Update: computes a data update from the current (state,
stimulus, data) triple.

We usually encapsulate "data...", its update procedures,
and its query functions in an Data Abstraction. (Note the
dashed lines enclosing these entities in Figure B.)

To draw Figure B we had to stand on the shoulders of
giants. Figure B encompasses all kinds of automata (for ex-
ample, Finite State Machines and Pushdown Automata),
Data Abstractions, the Objects of the double O school
(OOPL, OORA, OOD), proceduraJ abstraction, variables,
files, and the notions of data encapsulation, information hid-
ing, strong module cohesion, nondetelrminisfic waiting, and
guarded accept statements (to mention some-not all).

For example, delete "Guards" and the entire "Data Part"
and you have a classical (Mealy) Finite State Machine. (But
keep the guards to reduce the blobs and arrows on State
Transition Diagrams by orders of magnitude. See [2]) Delete
"Guards" and you have a classical Data Abstraction. Use
Concurrent C++ or Ada data structures and structured con-
trol statements in the blobs on Figure B, and your have a
machine with the deep simplicity, elegance, and power of
Turing machines-but without their maddening primitiveness.
Delete "Guards", the persistent "state" and "data..." (and the
functions that update them) and you have functional or pro-
cedural abstractions.

It is easy to show that Figure B ~ Turing Machine Equiv-
alent, and therefore capable of representing any formulaic
computation: simply take "data..." to be a Turing tape and
the Update and read functions to be Tunng's basic tape oper-
ations. This point may seem purely academic; but it's very
practical. We can't solve al._! problems with networks of com-
municating Finite State Machines or hierarchies of Data Ab-
stractions. We can solve ~11 problems (solvable by comput-
ers) with S-R Machines. (Some of the OO literature implies
that Data Abstractions are enough; they aren't: they must be
orchestrated by some kind of step machine. The object view-
point is very good at modelling the world as things: but in its
eagerness to reduce the world to things, it has given less than
enough attention to process and orchestrating behavior.)

The machine in Figure B repeatedly executes the follow-
ing behavior cycle. The machine evaluates its Guards (if
any), and then waits for an acceptable stimulus (a stimulus to
an open accept statement), accepts one when it arrives, com-
putes a data update, computes its response (if any), anti com-
putes its next state;then it revaluates its guards and starts
another cycle.

Concurrent C++ and Ada offer elegant ways to build S-R
Machines, while SCOOP-3 offers elegant graphical represen-
tations for Concurrent C++ and Ada. In the remaining sec-
tion we'll give examples. We've chosen Ada for these ex-
amples. The diagrams are similar for Concurrent C++.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122552.122556&domain=pdf&date_stamp=1991-10-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 43

Note 1. sud(j) is the jth version of
the system under development.
Note 2. The library is an input to all
six processes, not just process 2.

requirements(j)---I~

mrequirements~ + 1)-~

verified sys(j)

Draw
sud(j)'s

black box.

sud(j)'s system
black box test)lans

6

verify that
sud(j)'s clear
box complies
with sud(j)'s
black box.

sud(j)'s .
mb lac k box "-I~

2

Draw sud(j)'s
library diagram
(i.e., identify its
existing & new
library units).

I
existing library

unit black boxes

5

Draw sud(j)'s
i _ sud(j)'s clear box

clear box m (S-R Machine
or

Step Machine).

Note 3. *SCOOP-3's representation principle is that a
picture is sometimes worth a thousand words-and some-
times not. Therefore, in all of its processes-especial ly pro-
cess 4-text can be used instead of diagrams.

new library
~ u n i t names m "

r
new library

unit black boxes

Draw the new
library unit

black boxes.

I
new library

unit black boxes

,L
4

Draw* the new
library unit

clear boxes.

I
new complete

library units

Figure A. Process for "Software Construction with Object-Oriented Pictures"
>

Finite State
Control Part

~sponse (S-R) Machine

I I
(Unbounded)

Data Part

1 - 1 S ' s , , , ~ - I I ~ , I ~ Guards

state

I

I

I

I

I

I

I
o m

Feedback from the Environment

Figure B. Schematic S-R Machine (Turing Machine Equivalent)
)

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 4 Oct 1991 Page 44

Module Icons

Module icons must set the values of five attributes: 1. li-
brary (heavy border) or non-library (thin border); 2. package
(doubled interior lines) or non-package (single interior line);
3. concurrent (rounded corners) or sequential (angled
comers); 4. black box (black fill) or clear box (clear fill); 5.
generic (cross-hatched border) or ordinary (plain border).
For example, the icon at the top of Figure C represents a
generic, sequential, library, package black box. (Optionally,
the top field of a unit icon displays its part number rather
than the "task", "package", "procedure", "function" notation,
which we used in this paper's figures. The explicit notation
isn't necessary to identify the kind of program unit: the
graphics do that; however, the explicit notation is helpful in
introductory or teaching situations.)

An S-R Machine Stack Example

Figures C-D are a Stack, an example of a Data Abstrac-
tion S-R Machine. Figure C is its black box. Figure C's ar-
rows are stimuli: calls, or, in OO's suggestive jargon, mes-
sages. The arrows point in the direction of the calls (message
flow). Calls may have parameters, which may be of mode in
(!), in out (!?), or out (?). Therefore, !? and ? parameters
provide responses to call stimuli. Alternatively, the response
to a call may be an exceotion (enclosed in square brackets in
SCOOP-3). Function calls (a function is a value-returning
subprogram) are distinguished from procedure calls by the ?
prefix. If a call is parameterless, SCOOP-3 uses empty
parentheses. Thus, an arrow whose label contains (...) is the
basic call icon.

Figure D is the Stack's clear box. Its state variable is
"top"; its data variable (bounded in this case) is "bin". Con-
sider the stimulus "push(! item)"; it's accepted when issued
(that is, it's not guarded). If top < size, then push's Next
function is "top := top + 1"; its Update function is "bin(top)
:= item"; and it has no overt response. If top is not less than
size, the push stimulus will not modify top or bin; however,
it will elicit the overt response of the full stack exception.
Consider the stimulus (a function call) ".~count0"; its re-
sponse is to return the value stored in the state variable top.
Note that many of the connections in Figure B do not appear
in Figure D. Figure B is general (or generic); while Figure D
is a specific instance of an S-R Machine.

A Reactive Example: A Drunk-Proofed, Theft-Alarmed
Car Lock

We now give an example large enough to illustrate
SCOOP-3's process guide and its three kinds of diagrams.
Our example is a pushbutton car lock, intended to deter
thieves as well as prevent drunk drivers from operating their
cars. Our strategy to deter thieves is to turn on a burglar
alarm when someone tries to unlock the car with an incorrect
sequence of digits (that is, a sequence not equal to the com-
bination). Our strategy to prevent drunk drivers from operat-
ing their cars is to reqtiire drivers to input the correct se-
quence of digits r_apidly. (The data entry speed and skill of
drunk subjects is badly degraded.) The pushbutton car lock
could be used to operate the car door lock or the ignition.

Process 1 (Figure A): Draw the system's black box
(Figure 1). The purpose of a system's black box is to de-
scribe the system's expected external behavior. The black
box should depict the system's external objects, the stimuli
they generate, and the responses they absorb. It should also
describe the system's or component's program (syntactic) in-

terface. Finally, the black box should capture behavior by
means of one of the following: by a table of preconditions,
stimuli, responses, and postconditions (for examples, see
Figure C and Figure 3); by stimulus-response traces (for an
example, see Figure 1); or by a reference to the user'.,; guide
for an interactive system.

Figure 1 is the black box for our Car Lock. It shows that
pressing any digit button generates "a_digit" interrupt whilst
pressing the 'L' button generates a "a_lock_request" inter-
rupt. Note the $ sign next to the input port for digit: this sign
indicates the Car Lock may time out of waiting for a digit.
(The origin of this time-out icon is, "Time is money-$".)
What looks like gibberish on the bottom of Figure 1 are S-R
traces: we've used them to describe the Car Lock's expected
external behavior.

For simple systems and components, we may use a set of
stimulus-response traces; a table of preconditions, S's, R's,
and postconditions; or a reference to a user's guide, to de-
scribe the unit's expected external behavior. For behaviorally
complex systems these strategies are inadequate; we need a
modelling language that can describe data, modes, or states,
and structured mechanisms for manipulating them. State-
charts and Structured Analysis (supplemented by State
Transition Diagrams) are frequently used to describe com-
plex reactive and interactive behavior. These notations are
often used to write the system's SRS (i.e., describe its ex-
pected external behavior). SCOOP-3 offers an alternative to
these notations. For example, Figures 2-8 and especially
Figures 5-8 are an elegant way to write an SRS-that is, de-
scribe expected external behavior.

Process 2 (Figure A): Draw the system's l ibrary
(Figure 2). Some of the behaviors described by the black
box may be (and therefore should be) woven from reused or
reusable components. Process 2 is an implementation step
since it identifies library units we'll use to build our "new"
unit. Note (Figure B) that an S-R Machine distinguishes state
and data. The list package encapsulates the data tart of the
Car Lock S-R Machine.

Process 3 (Figure A): Draw the new library unit black
box(es) (Figure 3). Process 3 specifies the black boxes of
any new library units named in Process 2. Process 3 should
be conducted jointly with the developer responsible tor pro-
cess 5, who will be these library units' first user. (A good
way to promote a library unit's reusability is to ensure its ~.:
ability during first use.) Figure 3 is the package list's black
box.

Process 4 (Figure A): Draw the new library unit clear
box(es) (Figure 4). Figure A's processes 4 and 5 may be
conducted concurrently-in accordance, of course, with the
library unit black box contracts. Figure 4 contains the clear
box of the package list, a data abstraction.

Process 5 (Figure A): Draw the system's clear box
(Figures 5, 6, 7, 8). The system's clear box should identify
its state (or mode) machines. Figure 5 is a the Car Lock's
clear box (in terms of its state machines). In Figure 5, the
state machines are black boxes: we must make cleaE what
they do later.

We're concerned here with reactive systems, systems we
characterize as event-driven or stimulus-driven. It's not that
the environment can shove these systems around; but that the
environment determines a stimulus sequence and the system
determines an associated response sequence, a kind of dance.
The environment and the system interact as practically equal
partners, each making its contribution to observable behav-

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 45

Figure C.

Stimulus Stimulus Response

push(! it~ em)
, 1 . d [full_sta(,tackj.~ 4-

? count

generic
Stimulus/ type Item_Type is private;
Response size : Positive;

(parameterless package Stack is
function call) procedure push(item : in ItemType);

procedure pop (item : out Item_Type);
procedure reset;
function count return Natural;
full_stack, empty_stack : exception;

end Stack;

() m

\
Stimulus

(parameterless
procedure call)

Precondition Stimulus Response Postcondition

return 0 0
0 (a)
(a, b, c)
(a, b, c)
(a, b, c)
(a, b, c, d)
0

count call
push(a) call
push(b) call
pop(x) call
reset call
count call
push(e) call
pop(x)

return x = c

return 3
full stack
err~ty stack

0 (a)
(a, b)
(a, b)
0
(a, b, c)
(a, b, c, d)
0

A Stack S-R Machine Black Box (assuming size = 4)

Response
- [exception]

I bin : array(1..size) of Item_Type;
top • Natural := O;

cross-hatched border
denotes a generic unit

push(! item) ! procedure

[full_stack] l,,I push

else then

4, 4,
raise

full_stack;

item

I
top := top + 1 ;

bin(top) := item;

bin(size)

• "Z, bm(1) ~ ~ • "',,,,...-,.,..~/~.///4 ,tam

Yl T ~ item :=bin(top);
top := top - 1 ;

/ 3rocedure
I~ pop(? item)

pop ~ / [emptystack]

then else

4, 4,

.__•I
functi°n

? count() count

4,
! returntop; J4

Figure D. A Stack S-R Machine Clear Box

3rocedureL

reset r

I top :=0; I

reset()

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oc t 1991 Page 46

ior. A reactive system usually has a reaction IOOD. which al-
lows it to repeatedly select a stimulus and react to it appro-
priately. A reactive system is similar to a martial arts expert,
who sidesteps some stimuli and accepts and reacts to others,
making the appropriate change of state and response.

We believe that such systems are best designed by de-
scribing their stimuli and what to do about them-when to ac-
cept them and how to react to them. We have used an
equivalence relation on stimuli, "is accepted in the same task
states as", to partition the Car Lock task into three lower-
level state machines: an "in every state" machine that ac-
cepts 'L' stimuli, an "awaiting dl" machine that accepts dl
stimuli, and an "awaiting d2 thru dn" machine that accepts
d2, d3 dn stimuli..

(We've found equivalence relations on stimuli the most
useful of all partitioning principles. Reference 1 applies this
principle to more complex systems and also describes other
approaches to partitioning. The following hierarchy of parti-
tions is very useful.

1. Packages of tasks for stimuli accepted in the same set of
orthogonal states. (This use of "orthogonal" is due to
Harel, [4].) A machine involves orthogonal states when
its description uses concurrent threads of execution.
Each thread of execution has associated with it a se-
quence of states, which is orthogonal to the states in
other threads of execution;

2. Tasks for stimuli accepted in the same sequence of
states;

3. Task states for stimuli accepted in some subset of a
task's set of states;

4. Task accept statements for stimuli accepted by the same
accept statement.)

Figure 6 is the clear box for "in every state". Its accept
statement waits nonbusily i~ eve ry state for an interrupt
caused by someone pressing 'L'. Its Out function is
"output(lock_car)"; its Update operation is "list.be_empty";
and it Next transition is "state := awaiting_dl". It's a com-
munication nicety (not really necessary) to show graphically
the state machine's sending a "be empty" message to list.

We recommend that engineers give the preconditions for
each state machine's correct operation and the postconditions
established by each state machine. For the most part, these
conditions are self-documenting (as in the example of the
text box "leaf" in the bottom center of Figure 6.)

Figure 7 is awaiting_dl's clear box. For this clear box to
function correctly, its predecessors must lock the car and
empty the list and the length of the combination must be at
least 2. Please check now to see that Figures 6 and 8 estab-
lish (or maintain) the first two conditions, before they trans-
fer control to awaiting_dl.

Figure 8 is the clear box for "awaiting d2 thru dn". This
machine times out of its wait for a digit after "maximum in-
terdigit delay". It's implemented by a selective wait state-
ment with a delay alternative (a timeout), a statement with

.

identical semantics in Concurrent C and Ada. Because
Figure 8 contains the most complex logic we've seen so far,
we'll explain in detail the execution of the S-R Machine in
this state. Its first act (see Figure 5) when it executes another
cycle of its reaction loop is to evaluate its guards to
determine which state machines are open (that is, which state
machines are currently receptive to a stimulus). In the
"awaiting d2 thru dn" state, the open machines are "in every
state" and, of course, "state = awaiting d2 thru dn". Thus the
accept alternative: on Figure 6 and the accept alternative an...__d

delay alternative on Figure 8 are all open. The delay
immediately starts counting down, and the S-R Machine
commences a wait for either an 'L' stimulus, a digit stimulus,
or the expiration of the delay. If the delay expires before an
'L' or digit arrives, the clear box on Figure 8 executes the
delay statement's associated textbox (statements). But if a
digit arrives before an 'L' stimulus or the delay expiration,
the accept statement for "a digit" executes its associated
statements. Note that there are two execution a r r o w s de-
parting this accept icon. These control flows are ordered. We
specify execution order by the following convention: locate
the execution arrow with an "o" (for _order or o_figin) on its
tail, execute it, and then execute the other arrows, in a
counter-clockwise order. You should have no difficulty
reading the rest of Figure 8.

Process 6 (Figure A): Verify the system's clear box
complies with its black box (Proof Table). We agree with
Harlan Mills that managers shouldn't let develooers execute
their programs. (A different team should do the testing.)
Managers should tax developers to prove their programs cor-
rect, by reasoning, proof tables, and inspections (inspections
are especially effective, because they bring other human in-
telligence and knowledge of the world to bear on the prob-
lem and its solution). (We've found that inspections of speci-
fications or designs in the form of Figures 2-8 are about
twice as effective as inspections of source text or other dia-
gramming schemes, and that our formal, intuitive guidance
and notation create programs of high conceptual clarity and
integrity.) If developers execute their programs, they will be
tempted to test whether they work, rather than prove that
they work. There's a world of quality difference between a
system that works because of state-by-state verification and
conceptual integrity, and a system that works because its de-
velopers have removed its readily detectable errors.

The traces in Figure 1 constitute system test scenarios. To
verify the S-R Machine's body, we must prove it generates
these traces. For example, the Proof Table (which follows
the Car Lock Figures) shows how the S-R Machine and its
clear boxes generate the last trace in Figure 1. (The symbol -~
in the New State column means "go to the beginning of the
next row.")

DeBalkanizing the Life-Cycle: Concurrent Specification
and Design

In the traditional waterfall life-cycle model, system engi-
neers write (in an informal language, usually) an SRS, de-
liver it to the customers as a description of what the devel-
oper will do, and toss it over the transom to software engi-
neers, who actually design and implement the system.

Here's Dave Parnas' description [3] of this approach:
"Systems engineers do what comes before the software is

written. They write large amounts of documents, they pile
them on a government contract monitors desk, he accepts
them, pays for them, they gather dust and all the work starts
over again and that's why we never see that stuff They do
the system engineering and then somebody sits down and
really designs the system.."

Given the poor (but expensive!) results of this approach,
we should be willing to try ¢0ncurrent specification and de-
sign. In this approach, instead of the systems engineers toss-
ing an SRS over the transom, management tosses software
engineers over the transom to system engineering, and sys-
terns engineers and software engineers work together to pro-

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 47

/
Stimulus

precondition

combination length >= 2 j

lock_cHar

unlock_c~.

alarm on
alarm_off

subtype Digit_Type is Character range '1 '..'9';

task Car Lock is
entry ~_digit(digit : in Digit_Type); -- bound to digit button interrupt
entry a_lock_request; -- bound to 'L' button interrupt
-- Address clauses which bind button interrupts to entries go here.

end;

S-R traces for combination = ('1', '3', '6', '9 ') . . I I notes: S* = S arrived late; NR No Response
< unlock_car, 'L', lock_car, '1 ', '3', '6', '9', alarm_off, unlock car, '1 ', '3', '6', '9', NR >
< unlockcar, %', Iockcar, '1', '3', '9', '6', alarm_on, '1', '3'~6', '9', alarm off, unlock car>
< unlock_car, %', lock_car, '1 ', '3', '6', '9'*, NR, 'L', lock_car, '1', '3', '6', '9'Talarm_off,unlock car>
< unlock_car, °L', lock_car, '1 ', '3', '6', '9'*, NR, '1 ', '3', '6', alarm_on, '1', '3', '6', '9', alarm_offTunlock_car>

Figure 1. Car Lock Black Box

I task ~

Car_Lock
body icon

icon

the heavy border
denotes a library unit

Figure 2. Car Lock Library

SOFTWARE ENGINEERING NOTES vol 16 no 4 ACM SIGSOFT Oct 1991Page 48

messages that
change the list

r o b e _ C) ~

m i n s e ct0

messages that
query the list

list behavior for combination = (a, b, c, d)

Precondition Stimulus

(x, y, ...)
(a)
(a, b)
(a, b, c)
(a, b, c)
(a, b, c, d)
(a, b, c, e)
(a, b, c, e)

be_empty call
full call
insert(c) call
full call
insert(d)
correct call
correct call
be_empty call

Response

return false

return false

return true
return false

Postcondition

0
(a)
(a, b, c)
(a, b, c)
(a, b, c, d)
(a, b, c, d)
(a, b, c, e)
0

package list is -- an abstract object; it encapsulates the list and the combination
sub type Digit_Type is Character range '1 '..'9';
subtype List_Length Is Positive range 2..Positive'Last;
p rocedure be_empty; -- makes the list empty
p rocedure insert(digit : in Digit_Type); -- inserts a digit into the next position in the list
func t ion full return Boolean; -- returns true if the list is full, else returns false
func t ion correct return Boolean; -- returns true if the list = the combination

end;

Figure 3. List Black B o x

package body list is
n : constant List_Length := 4;
type List_Type is array(1..n) of Digit;
the_list : List_Type;
the combination : constant. L is tType := ('1', '3', '6', '9');
index : Natural range O..n :-- O;

p rocedure be_empty is
begin

index := O;
end be_empty;

p rocedure insert(digit : in Digit_Type) is
begin

index := index + 1 ;
the_list(index) := digit;

end insert;

funct ion full return Boolean is
begin

return index = n;
end full;

funct ion correct return Boolean is
begin

return index = n and then the_list = the_combination;
end correct;

end list;

Figure 4,. List Clear B o x

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 49

" - H ' I unlocked,
awaiting_d1,
awaiting d2 thru_dn); Car_Lock

state • States := unlocked;

,I,
-- Synch world with state.

output(unlocl~car); -.--unlock_car

(reaction: loop)

'L' lock car digit:d1

Figure 5. Car Lock Clear Box

preconditions

none

when

in every state

postconditions

see tree leaf

' L ' ~ accept

-fl a lock
request

.~ output(lock_car);
_empty() list.be_empty;

state := awaiting_d1;
k lock_car

Figure 6. Clear Box for accepting 'L', a lock request

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 51)

preconditions

car is locked;
list is empty;
combination
length >= 2;

when

state = awaiting dl

,-,,.,.,dig it :d 1,--~l

4,
accept

a digit

--I list.insert(digit);
state :=

awaiting d2 thru_dn;

Figure 7. Awaiting_d1 Clear Box

postconditions

see tree leaf

----'digit:d2..dn,~ t

4,
list.insert(digit); I

alarm_off m

.~,~unlock_carm

preconditions

car is locked;
list = (dl);
combination
length >= 2;

$accept

when

a digit

T I

I
then

4,
output(alarm_off);
output(u nlock_car);
state := unlocked;

< if list.full >
I

then

< if list.correct >

state = awaiting_d2 thru dn

I I

postconditions

see tree leaves

delay

maximum
interdigit

delay

-- The digit is too late.
-- Make him start over.

list.be_empty;
state := awaiting_d1 ;

I
else

4,
output(alarm_on);
list.be_empty;
state := awaiting_d1 ;

~ , alarm_on

k t i m o - -

~ Figure 8. Awaiting d2 thru dn Clear Box
j

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 16 no 4 Oct 1991 Page 51

State
initialization
unlocked
awaiting dl
awaiting d2 thru dn
awaiting d2 thru dn
awaiting d2 thru dn
awaiting dl
awaiting d2 thru dn
awmting d2 thru dn
awaiting d2 thru dn
awaiting dl
awmting d2 thru dn
awaiting d2 thru dn
awmfing d2 thru dn

Proof Table for the Last Trace on Car Lock Black Box (Figure 1)
(Notes: ~ means 1st column of next row; '9'* means '9' arrived too late.)

Stimulus
n o n e

Figure
5

'L'
'1'

8 '3'
8 '6'
8 time out
7 '9'*
8 T
8 '3'
8 '6'
7 '1'
8 '3'
8 '6'

'9'

New List Value
don't care

0
('1')
('1', '3')
('1', '3', '6')

0
('9')
('9', '1')
('9', '1', '3')
('9', '1', '3', '6'), 0
('1')
('1', '3')
('1', '3', '6')
(T, '3', '6', '9')

Response
unlock car
lock car
no res xmse
no res xmse
no res)onse
no res ~onse
no res ~onse
no res xmse
no res ~onse
alarm on
no response
no response
no response
alarm off,
unlock car

Next

- " 1

duce an executable specification of the system (j = 1), using
the notation illustrated in this paper. Instead of giving the
customer a document stamped SRS and saying, "This is
what we're ~oin~ to do." it gives him the 1st version of the
system, and says, "This is what we've done so far; what else
do you want us to do?"

Of course, software bureaucrats will howl at the idea that
developers use the same notation (and even the same teams)
across the life cycle. Specifying in one notation, designing in
another notation, and implementing in another notation is
deemed to be a GOOD THING. This Balkanization and Ba-
belization of the life cycle has created many fiefdoms and
factions. They serve many selfish and entrenched interests,
and these interests can and will marshall intellectual argu-
ments why things should continue to be as they have been.
But we must keep pointing out the results they achieve, rub-
bing their noses in these results whenever we can.

Summary

Figures 1-8 are an SRS, a design, and an implementation,
depending on what use you want to make of them. We be-
lieve it's sound and efficient to make multiple uses of them, a
kind of reuse we don't hear enough about These Figures and
especially Figures 5-8 can serve as an SRS because they
clearly, completely, and unambiguously describe the sys-
tem's expected external behavior, and end-users familiar
with the problem domain can understand the pictures (easier,
for example, than they can understand Statecharts). Or, at the
other end of the spectrum, these Figures can serve as an im-
plementation because-after their mechaniCal translation into
code (see the Appendix)-they're compilable, linkable, and
executable. (Reference [1] contains additional arguments for
using the same semantics and representations across the life
cycle.)

We have described a software development process that
doesn't Balkanize the life cycle. We use the same notation
across the life cycle; there is no semantic gulf, no changes in
notation or culture. Our notation is formal and executable
and lends itself readily to the precondition-postcondition
kind of contract and to proof tables. Our S-R Machines unify
classic and modem software engineering entities (Automata,
Data Abstractions, Objects), and give a mathematical answer

to the hot question of "What is an Object?". And, finally,
prepared end-users and contract monitors readily understand
our process and its products.

References

1. Cherry, George. W. Software Construction by Object-
Oriented Pictures: Specifying Reactive and Interactive
Systems. Thought**Tools, Canadaigua, N.Y. 1990.
[This book describes the SCOOP-3 TM method, including
S-R Machines (also called Abstract State Machines). It
is available from Dorset House Books, 1-800-342-
6657.]

mSCOOP-3 is a trademark of Thought**Tools, Inc.

2. Cherry, George. W. "S-R Machines: A Visual Formal-
ism for Reactive and Interactive Systems", Software
Engineering Notes, July 1991, 52-55. [This paper shows
how to reduce the blobs and arrows on visual represen-
tations of Finite State Machines by orders or magni-
tude.]

3. Observation by Dr. Parnas at the 1989 Workshop on
Formal Methods for Trustworthy Computer Systems
(FM89) Springer-Verlag, New York.

4. Harel, D. "On Visual Formalisms", Communications of
the ACM, May, 1988, 514-530. [Harel's criticisms of
State Transition Diagrams led to his Statecharts and our
S-R Machines.]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES voi 16 no 4 Oct 1991 Page 52

Appendix: Ada Source Code for Car Lock

The following Ada source code was mechanically generated from Figures 1-8.
The semantically identical Concurrent C++ code is syntactically similar.

-- For the Car Lock task specification, see Figure i.
-- For the package list's specification and body, see Figures 3 and 4

with list; -- From Figure 2.
task body Car Lock is -- from Figure 5

type States is (
unlocked,
awaiting_dl,
await ing_d2_thru_dn) ;

state : States := unlocked;
begin

output(unlock car);
reaction: loop

select
-- no guard = in every state
accept a_lock_request do -- from Figure 6

output (lock car) ;
list.be_empty;
state := awaiting_dl;

end;
or

when state = awaiting_dl =>
accept a_digit(digit : in Digit_Type) do -- from Figure 7

list.insert(digit);
state := awaiting d2 thru dn;

end;
or

when awaiting_d2_thru_dn =>
accept a_digit(digit : in Digit_Type) do -- from Figure 8

list.insert(digit);
if list.full then

if list.correct then
output(alarm off);
output(unlock car);
state := unlocked;

else
output(alarm on);
list.be_empty;
state := awaiting_dl;

end if;
end if;

end;
or

when awaiting d2 thru dn =>
delay maximum_interdigit_delay;
list.be_empty;
state := awaiting_dl;

end select;
end loop reaction;

end Car Lock;

-- from Figure 8

