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Abstract and Introduction 
This paper describes the process guide, behavior model, 

icons, and diagrams of SCOOP-3, a pictorial method for de- 
veloping reactive systems. SCOOP-3's semantics are Con- 
current C++ or Ada: its icons and diagrams are mechanically 
translatable to these languages. SCOOP-3's process guide 
supports reuse, prototyping, and concurrent specification and 
design. Its behavior model (S-R Machines) integrates the no- 
tions of finite and infinite automata, data abstractions, and 
objects. My earlier notes in SEN demonstrated the Finite 
State Automata power of S-R Machines. This note demon- 
stxates their far greater power and expressiveness. SCOOP- 
3's black box, machine, and clear box diagrams have the 
same objective (and names!) as Mills' Box-Structured ap- 
proach: stepwise provable specifications and designs. 

sCOOP-3 Technical Process Guide 

Figure A is SCOOP-3's technical process guide. It sup- 
ports prototyping (it assumes the purpose of the jth system is 
to satisfy the jth set of requirements and evoke the (j + 1)th 
set of requirements). It supports reuse (for example, it places 
its explicit reuse step, process 2, early in the development 
cyc.le). It supports concurrent specification and design (we'll 
discuss this below). Notice that the work products of Figure 
A are three views of a system: black box, library, and clear 
box (which includes state machines). The black box is the 
system's expected external behavior. (Some writers use the 
terms interface or specification for black box.) The library is 
the system's set of reusable components, recruited to support 
its clear box. The clear box is its internal mechanisms, which 
generate its black box behavior. (Some writers use the terms 
body or implementation for clear box.) 

Stimulus-Response (S-R) Machines 

Central to SCOOP-3 is its notion of an S-R Machine. S-R 
Machines are modules of behavior; that is, they are architec- 
tural entities as well as behavior entities. Complex systems 
are built from networks of S-R Machines, which communi- 
cate with one another by message or call stimuli/responses. 
Figure B is the schematic of an S-R Machine. Its triangles 
are computations which operate on their inputs to produce 
their outputs. Its rectangles (open at one end) are memory 
(possibly unbounded in the case of "data..."). We have pro- 
vided Figure B to help you visualize the following definition. 
A general S-R machine is an 9-tuple: 
1. a finite set of kinds of stimuli (the S's in the input stream 

are members of this set), 
2. a finite set of kinds of responses, (the R's in the output 

stream are members of this set), 
3. a finite set of state values (the values stored in the vari- 

able "state" are members of this set), 
4. a distinguished state value (often called the start state), 
5. a data type ("data..." object belongs to this type), 
6. Guards: Boolean functions computed from (state, stimu- 

lus, data) triples (they determine which Stimuli are cur- 
rently acceptable), 

7. Next: computes the next state from the current ,(state, 
stimulus, data) triple, 

8. Output: computes a response from the current (state, 
stimulus, data) triple, 

9. Update: computes a data update from the current (state, 
stimulus, data) triple. 

We usually encapsulate "data...", its update procedures, 
and its query functions in an Data Abstraction. (Note the 
dashed lines enclosing these entities in Figure B.) 

To draw Figure B we had to stand on the shoulders of 
giants. Figure B encompasses all kinds of automata (for ex- 
ample, Finite State Machines and Pushdown Automata), 
Data Abstractions, the Objects of the double O school 
(OOPL, OORA, OOD . . . .  ), proceduraJ abstraction, variables, 
files, and the notions of data encapsulation, information hid- 
ing, strong module cohesion, nondetelrminisfic waiting, and 
guarded accept statements (to mention some-not all). 

For example, delete "Guards" and the entire "Data Part" 
and you have a classical (Mealy) Finite State Machine. (But 
keep the guards to reduce the blobs and arrows on State 
Transition Diagrams by orders of magnitude. See [2]) Delete 
"Guards" and you have a classical Data Abstraction. Use 
Concurrent C++ or Ada data structures and structured con- 
trol statements in the blobs on Figure B, and your have a 
machine with the deep simplicity, elegance, and power of 
Turing machines-but without their maddening primitiveness. 
Delete "Guards", the persistent "state" and "data..." (and the 
functions that update them) and you have functional or pro- 
cedural abstractions. 

It is easy to show that Figure B ~ Turing Machine Equiv- 
alent, and therefore capable of representing any formulaic 
computation: simply take "data..." to be a Turing tape and 
the Update and read functions to be Tunng's basic tape oper- 
ations. This point may seem purely academic; but it's very 
practical. We can't solve al._! problems with networks of com- 
municating Finite State Machines or hierarchies of Data Ab- 
stractions. We can solve ~11 problems (solvable by comput- 
ers) with S-R Machines. (Some of the OO literature implies 
that Data Abstractions are enough; they aren't: they must be 
orchestrated by some kind of step machine. The object view- 
point is very good at modelling the world as things: but in its 
eagerness to reduce the world to things, it has given less than 
enough attention to process and orchestrating behavior.) 

The machine in Figure B repeatedly executes the follow- 
ing behavior cycle. The machine evaluates its Guards (if 
any), and then waits for an acceptable stimulus (a stimulus to 
an open accept statement), accepts one when it arrives, com- 
putes a data update, computes its response (if any), anti com- 
putes its next state;then it revaluates its guards and starts 
another cycle. 

Concurrent C++ and Ada offer elegant ways to build S-R 
Machines, while SCOOP-3 offers elegant graphical represen- 
tations for Concurrent C++ and Ada. In the remaining sec- 
tion we'll give examples. We've chosen Ada for these ex- 
amples. The diagrams are similar for Concurrent C++. 
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Note 1. sud(j) is the jth version of 
the system under development. 
Note 2. The library is an input to all 
six processes, not just process 2. 

requirements(j)---I~ 

mrequirements~ + 1)-~ 

verified sys(j) 

Draw 
sud(j)'s 

black box. 

sud(j)'s system 
black box test )lans 

6 

verify that 
sud(j)'s clear 
box complies 
with sud(j)'s 
black box. 

sud(j)'s . 
mb lac  k box "-I~ 

2 

Draw sud(j)'s 
library diagram 
(i.e., identify its 
existing & new 
library units). 

I 
existing library 

unit black boxes 

5 

Draw sud(j)'s 
i _  sud(j)'s clear box 

clear box m (S-R Machine 
or 

Step Machine). 

Note 3. *SCOOP-3's representation principle is that a 
picture is sometimes worth a thousand words-and some- 
times not. Therefore, in all of its processes-especial ly pro- 
cess 4-text can be used instead of diagrams. 
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Figure A. Process for "Software Construction with Object-Oriented Pictures" 
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Figure B. Schematic S-R Machine (Turing Machine Equivalent) 
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Module Icons 

Module icons must set the values of five attributes: 1. li- 
brary (heavy border) or non-library (thin border); 2. package 
(doubled interior lines) or non-package (single interior line); 
3. concurrent (rounded corners) or sequential (angled 
comers); 4. black box (black fill) or clear box (clear fill); 5. 
generic (cross-hatched border) or ordinary (plain border). 
For example, the icon at the top of Figure C represents a 
generic, sequential, library, package black box. (Optionally, 
the top field of a unit icon displays its part number rather 
than the "task", "package", "procedure", "function" notation, 
which we used in this paper's figures. The explicit notation 
isn't necessary to identify the kind of program unit: the 
graphics do that; however, the explicit notation is helpful in 
introductory or teaching situations.) 

An S-R Machine Stack Example 

Figures C-D are a Stack, an example of a Data Abstrac- 
tion S-R Machine. Figure C is its black box. Figure C's ar- 
rows are stimuli: calls, or, in OO's suggestive jargon, mes- 
sages. The arrows point in the direction of the calls (message 
flow). Calls may have parameters, which may be of mode in 
(!), in out (!?), or out (?). Therefore, !? and ? parameters 
provide responses to call stimuli. Alternatively, the response 
to a call may be an exceotion (enclosed in square brackets in 
SCOOP-3). Function calls (a function is a value-returning 
subprogram) are distinguished from procedure calls by the ? 
prefix. If a call is parameterless, SCOOP-3 uses empty 
parentheses. Thus, an arrow whose label contains (...) is the 
basic call icon. 

Figure D is the Stack's clear box. Its state variable is 
"top"; its data variable (bounded in this case) is "bin". Con- 
sider the stimulus "push(! item)"; it's accepted when issued 
(that is, it's not guarded). If top < size, then push's Next 
function is "top := top + 1"; its Update function is "bin(top) 
:= item"; and it has no overt response. If top is not less than 
size, the push stimulus will not modify top or bin; however, 
it will elicit the overt response of the full stack exception. 
Consider the stimulus ( a function call) ".~count0"; its re- 
sponse is to return the value stored in the state variable top. 
Note that many of the connections in Figure B do not appear 
in Figure D. Figure B is general (or generic); while Figure D 
is a specific instance of an S-R Machine. 

A Reactive Example: A Drunk-Proofed, Theft-Alarmed 
Car Lock 

We now give an example large enough to illustrate 
SCOOP-3's process guide and its three kinds of diagrams. 
Our example is a pushbutton car lock, intended to deter 
thieves as well as prevent drunk drivers from operating their 
cars. Our strategy to deter thieves is to turn on a burglar 
alarm when someone tries to unlock the car with an incorrect 
sequence of digits (that is, a sequence not equal to the com- 
bination). Our strategy to prevent drunk drivers from operat- 
ing their cars is to reqtiire drivers to input the correct se- 
quence of digits r_apidly. (The data entry speed and skill of 
drunk subjects is badly degraded.) The pushbutton car lock 
could be used to operate the car door lock or the ignition. 

Process 1 (Figure A): Draw the system's black box 
(Figure 1). The purpose of a system's black box is to de- 
scribe the system's expected external behavior. The black 
box should depict the system's external objects, the stimuli 
they generate, and the responses they absorb. It should also 
describe the system's or component's program (syntactic) in- 

terface. Finally, the black box should capture behavior by 
means of one of the following: by a table of preconditions, 
stimuli, responses, and postconditions (for examples, see 
Figure C and Figure 3); by stimulus-response traces (for an 
example, see Figure 1); or by a reference to the user'.,; guide 
for an interactive system. 

Figure 1 is the black box for our Car Lock. It shows that 
pressing any digit button generates "a_digit" interrupt whilst 
pressing the 'L' button generates a "a_lock_request" inter- 
rupt. Note the $ sign next to the input port for digit: this sign 
indicates the Car Lock may time out of waiting for a digit. 
(The origin of this time-out icon is, "Time is money-$".) 
What looks like gibberish on the bottom of Figure 1 are S-R 
traces: we've used them to describe the Car Lock's expected 
external behavior. 

For simple systems and components, we may use a set of 
stimulus-response traces; a table of preconditions, S's, R's, 
and postconditions; or a reference to a user's guide, to de- 
scribe the unit's expected external behavior. For behaviorally 
complex systems these strategies are inadequate; we need a 
modelling language that can describe data, modes, or states, 
and structured mechanisms for manipulating them. State- 
charts and Structured Analysis (supplemented by State 
Transition Diagrams) are frequently used to describe com- 
plex reactive and interactive behavior. These notations are 
often used to write the system's SRS (i.e., describe its ex- 
pected external behavior). SCOOP-3 offers an alternative to 
these notations. For example, Figures 2-8 and especially 
Figures 5-8 are an elegant way to write an SRS-that is, de- 
scribe expected external behavior. 

Process 2 (Figure A): Draw the system's l ibrary 
(Figure 2). Some of the behaviors described by the black 
box may be (and therefore should be) woven from reused or 
reusable components. Process 2 is an implementation step 
since it identifies library units we'll use to build our "new" 
unit. Note (Figure B) that an S-R Machine distinguishes state 
and data. The list package encapsulates the data tart of the 
Car Lock S-R Machine. 

Process 3 (Figure A): Draw the new library unit black 
box(es) (Figure 3). Process 3 specifies the black boxes of 
any new library units named in Process 2. Process 3 should 
be conducted jointly with the developer responsible tor pro- 
cess 5, who will be these library units' first user. (A good 
way to promote a library unit's reusability is to ensure its ~.:  
ability during first use.) Figure 3 is the package list's black 
box. 

Process 4 (Figure A): Draw the new library unit clear 
box(es) (Figure 4). Figure A's processes 4 and 5 may be 
conducted concurrently-in accordance, of course, with the 
library unit black box contracts. Figure 4 contains the clear 
box of the package list, a data abstraction. 

Process 5 (Figure A): Draw the system's clear box 
(Figures 5, 6, 7, 8). The system's clear box should identify 
its state (or mode) machines. Figure 5 is a the Car Lock's 
clear box (in terms of its state machines). In Figure 5, the 
state machines are black boxes: we must make cleaE what 
they do later. 

We're concerned here with reactive systems, systems we 
characterize as event-driven or stimulus-driven. It's not that 
the environment can shove these systems around; but that the 
environment determines a stimulus sequence and the system 
determines an associated response sequence, a kind of dance. 
The environment and the system interact as practically equal 
partners, each making its contribution to observable behav- 
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Figure C. 
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ior. A reactive system usually has a reaction IOOD. which al- 
lows it to repeatedly select a stimulus and react to it appro- 
priately. A reactive system is similar to a martial arts expert, 
who sidesteps some stimuli and accepts and reacts to others, 
making the appropriate change of state and response. 

We believe that such systems are best designed by de- 
scribing their stimuli and what to do about them-when to ac- 
cept them and how to react to them. We have used an 
equivalence relation on stimuli, "is accepted in the same task 
states as", to partition the Car Lock task into three lower- 
level state machines: an "in every state" machine that ac- 
cepts 'L' stimuli, an "awaiting dl" machine that accepts dl 
stimuli, and an "awaiting d2 thru dn" machine that accepts 
d2, d3 . . . . .  dn stimuli.. 

(We've found equivalence relations on stimuli the most 
useful of all partitioning principles. Reference 1 applies this 
principle to more complex systems and also describes other 
approaches to partitioning. The following hierarchy of parti- 
tions is very useful. 

1. Packages of tasks for stimuli accepted in the same set of 
orthogonal states. (This use of "orthogonal" is due to 
Harel, [4].) A machine involves orthogonal states when 
its description uses concurrent threads of execution. 
Each thread of execution has associated with it a se- 
quence of states, which is orthogonal to the states in 
other threads of execution; 

2. Tasks for stimuli accepted in the same sequence of 
states; 

3. Task states for stimuli accepted in some subset of a 
task's set of states; 

4. Task accept statements for stimuli accepted by the same 
accept statement.) 

Figure 6 is the clear box for "in every state". Its accept 
statement waits nonbusily i~ eve ry  state for an interrupt 
caused by someone pressing 'L'. Its Out function is 
"output(lock_car)"; its Update operation is "list.be_empty"; 
and it Next transition is "state := awaiting_dl". It's a com- 
munication nicety (not really necessary) to show graphically 
the state machine's sending a "be empty" message to list. 

We recommend that engineers give the preconditions for 
each state machine's correct operation and the postconditions 
established by each state machine. For the most part, these 
conditions are self-documenting (as in the example of the 
text box "leaf" in the bottom center of Figure 6.) 

Figure 7 is awaiting_dl's clear box. For this clear box to 
function correctly, its predecessors must lock the car and 
empty the list and the length of the combination must be at 
least 2. Please check now to see that Figures 6 and 8 estab- 
lish (or maintain) the first two conditions, before they trans- 
fer control to awaiting_dl. 

Figure 8 is the clear box for "awaiting d2 thru dn". This 
machine times out of its wait for a digit after "maximum in- 
terdigit delay". It's implemented by a selective wait state- 
ment with a delay alternative (a timeout), a statement with 

. 

identical semantics in Concurrent C and Ada. Because 
Figure 8 contains the most complex logic we've seen so far, 
we'll explain in detail the execution of the S-R Machine in 
this state. Its first act (see Figure 5) when it executes another 
cycle of its reaction loop is to evaluate its guards to 
determine which state machines are open (that is, which state 
machines are currently receptive to a stimulus). In the 
"awaiting d2 thru dn" state, the open machines are "in every 
state" and, of course, "state = awaiting d2 thru dn". Thus the 
accept alternative: on Figure 6 and the accept alternative an...__d 

delay alternative on Figure 8 are all open. The delay 
immediately starts counting down, and the S-R Machine 
commences a wait for either an 'L' stimulus, a digit stimulus, 
or the expiration of the delay. If the delay expires before an 
'L' or digit arrives, the clear box on Figure 8 executes the 
delay statement's associated textbox (statements). But if a 
digit arrives before an 'L' stimulus or the delay expiration, 
the accept statement for "a digit" executes its associated 
statements. Note that there are two execution a r r o w s  de- 
parting this accept icon. These control flows are ordered. We 
specify execution order by the following convention: locate 
the execution arrow with an "o" (for _order or o_figin) on its 
tail, execute it, and then execute the other arrows, in a 
counter-clockwise order. You should have no difficulty 
reading the rest of Figure 8. 

Process 6 (Figure A): Verify the system's clear box 
complies with its black box (Proof Table). We agree with 
Harlan Mills that managers shouldn't let develooers execute 
their programs. (A different team should do the testing.) 
Managers should tax developers to prove their programs cor- 
rect, by reasoning, proof tables, and inspections (inspections 
are especially effective, because they bring other human in- 
telligence and knowledge of the world to bear on the prob- 
lem and its solution). (We've found that inspections of speci- 
fications or designs in the form of Figures 2-8 are about 
twice as effective as inspections of source text or other dia- 
gramming schemes, and that our formal, intuitive guidance 
and notation create programs of high conceptual clarity and 
integrity.) If developers execute their programs, they will be 
tempted to test whether they work, rather than prove that 
they work. There's a world of quality difference between a 
system that works because of state-by-state verification and 
conceptual integrity, and a system that works because its de- 
velopers have removed its readily detectable errors. 

The traces in Figure 1 constitute system test scenarios. To 
verify the S-R Machine's body, we must prove it generates 
these traces. For example, the Proof Table (which follows 
the Car Lock Figures) shows how the S-R Machine and its 
clear boxes generate the last trace in Figure 1. (The symbol -~ 
in the New State column means "go to the beginning of the 
next row.") 

DeBalkanizing the Life-Cycle: Concurrent Specification 
and Design 

In the traditional waterfall life-cycle model, system engi- 
neers write (in an informal language, usually) an SRS, de- 
liver it to the customers as a description of what the devel- 
oper will do, and toss it over the transom to software engi- 
neers, who actually design and implement the system. 

Here's Dave Parnas' description [3] of this approach: 
"Systems engineers do what comes before the software is 

written. They write large amounts of documents, they pile 
them on a government contract monitors desk, he accepts 
them, pays for them, they gather dust and all the work starts 
over again and that's why we never see that stuff . . . .  They do 
the system engineering and then somebody sits down and 
really designs the system.." 

Given the poor (but expensive!) results of this approach, 
we should be willing to try ¢0ncurrent specification and de- 
sign. In this approach, instead of the systems engineers toss- 
ing an SRS over the transom, management tosses software 
engineers over the transom to system engineering, and sys- 
terns engineers and software engineers work together to pro- 



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 4 Oct 1991 Page 47 

/ 
Stimulus 

precondition 

combination length >= 2 j 

lock_cHar 

unlock_c~. 

alarm on 
alarm_off 

subtype Digit_Type is Character range '1 '..'9'; 

task Car Lock is 
entry ~_digit(digit : in Digit_Type); -- bound to digit button interrupt 
entry a_lock_request; -- bound to 'L' button interrupt 
-- Address clauses which bind button interrupts to entries go here. 

end; 

S-R traces for combination = ('1', '3', '6', '9 ' ) . . I  I notes: S* = S arrived late; NR No Response 
< unlock_car, 'L', lock_car, '1 ', '3', '6', '9', alarm_off, unlock car, '1 ', '3', '6', '9', NR > 
< unlockcar, %', Iockcar, '1', '3', '9', '6', alarm_on, '1', '3'~6', '9', alarm off, unlock car> 
< unlock_car, %', lock_car, '1 ', '3', '6', '9'*, NR, 'L', lock_car, '1', '3', '6', '9'Talarm_off,unlock car> 
< unlock_car, °L', lock_car, '1 ', '3', '6', '9'*, NR, '1 ', '3', '6', alarm_on, '1', '3', '6', '9', alarm_offTunlock_car> 

Figure 1. Car Lock Black Box 

I task ~ 

Car_Lock 
body icon 

icon 

the heavy border 
denotes a library unit 

Figure 2. Car Lock Library 
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messages that 
change the list 

r o b e _  C ) ~  

m i n s e  ct0 

messages that 
query the list 

list behavior for combination = (a, b, c, d) 

Precondition Stimulus 

(x, y, ...) 
(a) 
(a, b) 
(a, b, c) 
(a, b, c) 
(a, b, c, d) 
(a, b, c, e) 
(a, b, c, e) 

be_empty call 
full call 
insert(c) call 
full call 
insert(d) 
correct call 
correct call 
be_empty call 

Response 

return false 

return false 

return true 
return false 

Postcondition 

0 
(a) 
(a, b, c) 
(a, b, c) 
(a, b, c, d) 
(a, b, c, d) 
(a, b, c, e) 
0 

package list is -- an abstract object; it encapsulates the list and the combination 
sub type  Digit_Type is Character range '1 '..'9'; 
subtype List_Length Is Positive range 2..Positive'Last; 
p rocedure  be_empty; -- makes the list empty 
p rocedure  insert(digit : in Digit_Type); -- inserts a digit into the next position in the list 
func t ion  full return Boolean; -- returns true if the list is full, else returns false 
func t ion  correct return Boolean; -- returns true if the list = the combination 

end; 

Figure 3. List  Black B o x  

package body list is 
n : constant  List_Length := 4; 
type List_Type is array(1..n) of  Digit; 
the_list : List_Type; 
the combination : constant.  L is tType  := ('1', '3', '6', '9'); 
index : Natural range O..n :-- O; 

p rocedure  be_empty is 
begin 

index := O; 
end be_empty; 

p rocedure  insert(digit : in  Digit_Type) is 
begin 

index := index + 1 ; 
the_list(index) := digit; 

end insert; 

funct ion full return Boolean is 
begin 

return index = n; 
end full; 

funct ion correct return Boolean is 
begin 

return index = n and then the_list = the_combination; 
end correct; 

end list; 

Figure 4,. List Clear B o x  
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" -  H ' I  unlocked, 
awaiting_d1, 
awaiting d2 thru_dn); Car_Lock 

state • States := unlocked; 

,I, 
-- Synch world with state. 

output(unlocl~car); -.--unlock_car 

( reaction: loop ) 

'L' lock car digit:d1 

Figure 5. Car Lock Clear Box 

preconditions 

none 

when 

in every state 

postconditions 

see tree leaf 

' L ' ~  accept 

-fl a lock 
request 

.~  output(lock_car); 
_empty() list.be_empty; 

state := awaiting_d1; 
k lock_car 

Figure 6. Clear Box for accepting 'L', a lock request 
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preconditions 

car is locked; 
list is empty; 
combination 
length >= 2; 

when 

state = awaiting dl 

,-,,.,.,dig it :d 1,--~l 

4, 
accept 

a digit 

--I list.insert(digit); 
state := 

awaiting d2 thru_dn; 

Figure 7. Awaiting_d1 Clear Box 

postconditions 

see tree leaf 

----'digit:d2..dn,~ t 

4, 
list.insert(digit); I 

alarm_off m 

.~,~unlock_carm 

preconditions 

car is locked; 
list = (dl); 
combination 
length >= 2; 

$accept 

when 

a digit 

T I 

I 
then 

4, 
output(alarm_off); 
output(u nlock_car); 
state := unlocked; 

< if list.full > 
I 

then 

< if list.correct > 

state = awaiting_d2 thru dn 

I I 

postconditions 

see tree leaves 

delay 

maximum 
interdigit 

delay 

-- The digit is too late. 
-- Make him start over. 

list.be_empty; 
state := awaiting_d1 ; 

I 
else 

4, 
output(alarm_on); 
list.be_empty; 
state := awaiting_d1 ; 

~ ,  alarm_on 

k t i m o - -  

~ Figure 8. Awaiting d2 thru dn Clear Box 
j 
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State 
initialization 
unlocked 
awaiting dl  
awaiting d2 thru dn 
awaiting d2 thru dn 
awaiting d2 thru dn 
awaiting dl 
awaiting d2 thru dn 
awmting d2 thru dn 
awaiting d2 thru dn 
awaiting dl  
awmting d2 thru dn 
awaiting d2 thru dn 
awmfing d2 thru dn 

Proof Table for the Last Trace on Car Lock Black Box (Figure 1) 
(Notes: ~ means 1st column of next row; '9'* means '9' arrived too late.) 

Stimulus 
n o n e  

Figure 
5 

'L' 
'1' 

8 '3' 
8 '6' 
8 time out 
7 '9'* 
8 T 
8 '3' 
8 '6' 
7 '1' 
8 '3' 
8 '6' 

'9' 

New List Value 
don't care 

0 
('1') 
('1', '3') 
('1', '3', '6') 

0 
('9') 
('9', '1') 
('9', '1', '3') 
('9', '1', '3', '6'), 0 
('1') 
('1', '3') 
('1', '3', '6') 
(T,  '3', '6', '9') 

Response 
unlock car 
lock car 
no res xmse 
no res xmse 
no res )onse 
no res ~onse 
no res ~onse 
no res xmse 
no res ~onse 
alarm on 
no response 
no response 
no response 
alarm off, 
unlock car 

Next 

- " 1  

duce an executable specification of the system (j = 1), using 
the notation illustrated in this paper. Instead of giving the 
customer a document stamped SRS and saying, "This is 
what we're ~oin~ to do." it gives him the 1st version of the 
system, and says, "This is what we've done so far; what else 
do you want us to do?" 

Of course, software bureaucrats will howl at the idea that 
developers use the same notation (and even the same teams) 
across the life cycle. Specifying in one notation, designing in 
another notation, and implementing in another notation is 
deemed to be a GOOD THING. This Balkanization and Ba- 
belization of the life cycle has created many fiefdoms and 
factions. They serve many selfish and entrenched interests, 
and these interests can and will marshall intellectual argu- 
ments why things should continue to be as they have been. 
But we must keep pointing out the results they achieve, rub- 
bing their noses in these results whenever we can. 

Summary 

Figures 1-8 are an SRS, a design, and an implementation, 
depending on what use you want to make of them. We be- 
lieve it's sound and efficient to make multiple uses of them, a 
kind of reuse we don't hear enough about These Figures and 
especially Figures 5-8 can serve as an SRS because they 
clearly, completely, and unambiguously describe the sys- 
tem's expected external behavior, and end-users familiar 
with the problem domain can understand the pictures (easier, 
for example, than they can understand Statecharts). Or, at the 
other end of the spectrum, these Figures can serve as an im- 
plementation because-after their mechaniCal translation into 
code (see the Appendix)-they're compilable, linkable, and 
executable. (Reference [1] contains additional arguments for 
using the same semantics and representations across the life 
cycle.) 

We have described a software development process that 
doesn't Balkanize the life cycle. We use the same notation 
across the life cycle; there is no semantic gulf, no changes in 
notation or culture. Our notation is formal and executable 
and lends itself readily to the precondition-postcondition 
kind of contract and to proof tables. Our S-R Machines unify 
classic and modem software engineering entities (Automata, 
Data Abstractions, Objects), and give a mathematical answer 

to the hot question of "What is an Object?". And, finally, 
prepared end-users and contract monitors readily understand 
our process and its products. 
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Appendix: Ada Source Code for Car Lock 

The following Ada source code was mechanically generated from Figures 1-8. 
The semantically identical Concurrent C++ code is syntactically similar. 

-- For the Car Lock task specification, see Figure i. 
-- For the package list's specification and body, see Figures 3 and 4 

with list; -- From Figure 2. 
task body Car Lock is -- from Figure 5 

type States is ( 
unlocked, 
awaiting_dl, 
await ing_d2_thru_dn) ; 

state : States := unlocked; 
begin 

output(unlock car); 
reaction: loop 

select 
-- no guard = in every state 
accept a_lock_request do -- from Figure 6 

output (lock car) ; 
list.be_empty; 
state := awaiting_dl; 

end; 
or 

when state = awaiting_dl => 
accept a_digit(digit : in Digit_Type) do -- from Figure 7 

list.insert(digit); 
state := awaiting d2 thru dn; 

end; 
or 

when awaiting_d2_thru_dn => 
accept a_digit(digit : in Digit_Type) do -- from Figure 8 

list.insert(digit); 
if list.full then 

if list.correct then 
output(alarm off); 
output(unlock car); 
state := unlocked; 

else 
output(alarm on); 
list.be_empty; 
state := awaiting_dl; 

end if; 
end if; 

end; 
or 

when awaiting d2 thru dn => 
delay maximum_interdigit_delay; 
list.be_empty; 
state := awaiting_dl; 

end select; 
end loop reaction; 

end Car Lock; 

-- from Figure 8 


