
A Browsing Interface for S-expressions

Kei Yuasa .

T o k y o I n f o r m a . t i o n a n d C o m m u n i c a t i o n s R.esea.rch l , a b o r a . t o r y

M a t s u s h i t a E l e c t r i c I n d u s t r i a l Co . L t d .

3-10-1 H i g a s h i m i t a T a m a - k u K a w a s a k i 214 J a p a n

Abstract

This paper presents a new system for Lisp object iuspecting. The author has implemented a

system called "List Window" which provides Lisp programmers with a method for inspecting S-
expressions on a screen. This system was designed in order to help Lisp programming, especially
debugging.

When developing the List Window system, it was necessary to outl~Ul, a big list into a given sized

terminal with proper indentations. The system sets a focal point in a list and truncates elements
which are far from the focus. Main parts of this paper describe this method of truncating branches
of a list.

1 Introduction

Lisp is an "environment providing" language where a programmer develops, executes and debugs pro-

grams. He inputs and runs his functions in a "toplevel loop". When an e,'ror occurs in execution, he

debugs the program in an "error handler".. The toplevel loop and the error handler provide the same

r e a d - e v a l - p r i n t loop. However, the programmer 's behavior in the error handler is s tereotyped. He

usually types similar kinds of function calls repeatedly. List Window has been implemented to solve this

problem. It assists object inspeetion which is performed frequently in the error handler and accelerates

program debugging.

The List Window system was first developed on UtiLisp[6] based on a character display. Afterward,

it was ported to CLX, a Common Lisp[2, 3] with X-window interface. The new implementat ion utilizes

a mouse and a window as I / O devices. An internal algori thm for printing a list has been improved in the

second implementat ion.

This paper describes the designs of our systems, mainly the second implementat ion. Section 2 con-

siders problems in typical procedures in debugging and a method of displaying a big list on a terminal.

Section 3 describes the interface of List Window. And Section 4 devotes I.o l.h(" implementat ion of the

system.

2 Operations in Lisp

This section analyses the typical behavior of a Lisp programmer during debugging and explains problems

of conventional interface for Lisp systems.

A Lisp programmer interacts through Lisp's toplevel loop, a. simple r e a d - e v a l - p r i n t loop. There,

he defines functions, sets up variables and bther environments. Definitions writ ten ill an external file a.re

loaded by calling a file flmction, load . Afterward he executes one of his defined functions with some

arg~]ments.

When a program causes an error, the system enters an error handler which presents another r ead -

e v a l . - p r i n t loop. This error handler preserves the execution stack and the environments at the time tire

128 A C M S I G P L A N N o t i c e s , V o l u m e 26, No . 8 , A u g u s t 1991

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122598.122612&domain=pdf&date_stamp=1991-08-01

error happened. The programmer looks for the cause of the error using this handler.

2.1 O b j e c t I n s p e c t i o n d u r i n g D e b u g g i n g

Wha t a programmer does in the error handler is just inspecting objects. In making and executing the

programs, he changes the s tatus of Lisp ob.iects in the heap area. Get t ing an error means that / .he s tatus

of the object differs from what was expected. The purpose of debugging is to find the cause of the trouble

which may be a mistake in the function definition or in another environment. Anyway, a clue to the error

rests in the stack or in the heap area.

All non-garbage objects are connected by many kinds of pointers so tha t they are t raceable from the

execution stack or from interned symbols. "Referring functions" are used to trace these pointers. These

functions are symbol-value, symbol-function, symbol-property (for symbols), aref (for arrays), car,

cdr etc. (for lists).

As the object inspection consists of series of invocations of pointer tracing, the referring functious are

called repeatedly in the error handler. Besides, arguments to the functions are usually the same. Or a

result is used as the next function's argument. As a result, the prograrnmer suffers fi-om typing similar

function calls repeatedly.

2.2 Inspect ion of L i s t s

Print ing a big list is another problem in Lisp interactions. Some lists are too big to ou tput all the elements

on a screen. When a screen runs out of lines, parts of a list are scrolled out. Besides, a Lisp programmer

sometimes wants a list to be pre t ty pr inted so that he is able to grasp its s tructure. However, pret ty

printing requires much more lines since it inserts a lot of newlines and indentations. If he wants elements

which have been scrolled out, he should invoke some rcferring functions to extract a smaller sublist.

Most conventional Lisp systems have abbreviat ive printing. When these systems print out. a big fist,

some elements of it are abbreviated. A list can be "big" in two dimensions: "depth" which is the number

of C A R pointers and "length" which is the number of CDR pointers. Global variables * p r i n t - l e v e l *

and * p r i n t - l e n g t h * control the abbreviat ion of elements for printing. When the depth of an element

exceeds * p r i n t - l e v e l * , the printer abbreviates this node and replaces it with some simple symbol.

Though a user can freely set values to these two variables, it is not practical to change these dynam-

ically during objec t inspection. Besides, even if a list is t runcated properly to be printed on a single

screen, some list referring functions are needed to get the abbreviated elements.

The problem of the abbreviat ive printing is that the depth and the length of a node is always calculated

from the top of the list. Therefore, elements on deep or distant leaves are always invisible. To get them,

a. programmer has to call a series of functions to access sublists. Another pl'oHem of inspecting a list. in

the procedure is that there is no way of going back to previous list.s. As CAll. and CI.)R. pointers are one

directed, a user cannot get the root of a list from its leaves. If lie wants to go back to i]ltermedia.te cells,

he has to ext rac t it from the top of the list~.

2 . 3 R e q u i r e m e n t s

Our new system has been developed to solve the problems in object inspection which are described in

the above subsections. In order to offer a good environment for a Lisp progranlnler, the following parts

are required:

* Referring flinctions a.re called in a simple way

• A list should be pret ty printed on a single screen

. Abbreviat ion of list elements should be det.ermined from a. user's point of view

129

3 Inter face of List W i n d o w

A new interface, List Window, has been developed as a solution to the problems of objcct refcrenccs and

list, print ing mentioned in the last section. It allows a programmer to inspect ;tll the elements in one list

o n a s c r e e n .

List Window is invoked by a new function l i s t - w i n d o w . A text, window is opened and a.u inspccl.ed

list, is printed on it (Figure I). The l is t . is pret ty printed with indentat ions and some elements are

abbreviated when this list is too big to be printed within the window boundaries.

~X-LW []
(defun tw-truncate (x d &aux y)
(cond
((I.w-at~ x)
(con
((setq y (Ix:ar x)) (se'(f (a-fcar y) x) (se~f (a-tx:ar x) y)
(IwJtrunca~e-I:x:ar y d)))

(con
((selq El (bcdr x)) (self (a-fcdr 9) x) (self (a-bcdr x) y)
(tw-truncate-bcdr El ?))))

((tw-t i s'cp x)
(cord
((setq SI (fcar x)) (se~f (a-l:x:ar SI) x) (serf (a-fear x) y)

(I . t J -b 'unca te - fca r y ?)))
(cow
((setq y (tx:ar x)) (serf (a-fear y) x) (serf (a-bear x) ?)

(l . tJ-~runcate-lx:ar y ?)))
(cond ((>-- d ,max-dist*) (cond ((not (tw-nutt ?).) (serf 9.) 9.)))

(t (cond ((setq ?) ?)) ?)))
({l.tJ-quotep x)
(,cone
((setq y (lx:ar x)) (serf (a-fcar y) x) (serf (a-bcar x) ?)
(tw-truncate-bcar y ?)))

(cond ((setq 9 (bcdr x)) (serf (a-fcdr g) ?) (serf (a-bcdr ?) ?) ?))
(~cond,, ,~(~setq,,~ ?} (~se!f (a-lx:ar ?) ?) ?)))))

Figure 1: A List Displayed on List Window

3.1 M oving Focus

At the beginning, neighbors of a list 's top are displayed and far nodes are invisible. This is a si tuation

where the focns, which is the user 's view point, is located on the top. The focus and its neighbors are

pr inted prior to d is tant elements. Question marks represent ellipsis symbols which are subst i tut ions for

t runcated dis tant elements.
A user can move the focus anywhere ill the inspected list,. The only thing he needs is t.o click the

left mouse but ton on an element where hc wants to move thc focus. Distances from l,he new focus are

recalculated. Then, tim neighbors of the new focus become visible as shown in Figure 2. In the figure,

the focus is on the a tom "t" on the 15th line. Repeti t ion of the focus movements enables inspection of all

the elements in the list. Note that no explicit invocation of list referring functions are needed to extract

invisible elements.
List Window selects elements to display according to the s tructural distances. This method differs

from those of conventional window systems which display parts of text. Lisp Machine Lisp is equipped

with a viewing interface in which a list i s -pre t ty printed as a fiat text, and viewed in a window. The

window displays par t of the text and slides on it to enable inspecting throughout the list. l lowever, a list.

loses its s t ructure when it, is pret ty printed as plain text. In the conventional window systems, "distance"

means the number of lines on the text not a s tructural distance. Nodes s tructural ly close to the focus

may be dis tant in the flat text.. As a result, a user may not be able to see the actual neighbors of the

fOCUS.

130

61_x-i.W
i

((tw-tistp x)
(cond

El

x) (cond ((setq 9 ?) (serf ?)?)) (cond ((setq ?)?)))

((set q 9 (fcar.x)) (setf (a-bcar y) x) (setf (a-fcar x) ?)
(tg-truncate-Tcar y ?)))

(cord
((setq 9 (bear x)) (setf (a-fcar 9) x) (serf (a-Ix:ar x) 9)
(tw-truncate-bcar 9 ?)))

(con
((>= d ,max-dist*)
(cond
((not (tw-nutt (fcdr x))) (serf (a-fcdr x) (aLtoc-ettipsis x))
(tw-truncate-I:x:dr-ettlpsi s x))))

((~ t q t 9 (fcdr x)) (serf (a-I:x:dr 9) x) (serf (a-fcdr x) 9)
(tu-~runcate-fcdr y (1+ d))))

(cond
((setq y (Ix;dr x)) (serf (a-fcdr y) x) (serf (a-bcdr x) y)
(tw-'wuncate-bcdr 9 (1+ d~)))))) "~ ?

((tu-.quotep x) (cond ((setq y .) (serf ?)?)) (cond ((setq .) .))?)))

Figure 2: The Same List After Moving Focus

3.2 Pointer from Atomic Objects

List Window provides a method of tracing pointers in atoms. When a programmer wants to inspect the

value of a symbol which exists in the inspected list, he, simply selects t:l~is symbol with tim mouse and

invokes a "value" command from a mouse menu on this symbol. Then, a new list which is the symbol 's

value is displayed in the same window. The symbol 's definition and property list can be acquired in the
s a m e way.

When a new object is displayed in the window, the system must not abandoll the old list because the

user may trace back to it afterwards. There is no reverse pointer from the va.lue to the variable symbol.

The List Window system holds an internal object stack to preserve inspected lists. When a user traces

value or function pointers from symbols, they are pushed onto this stack. A "pop" command pops the

stack and restores the previous object .

The List Window system enables simple invocations of referring functions in order to provide an

inspecting interface. For lists, a new method of displaying helps tree walking in the inspected list. For

pointers from atoms, the object s tack holds the old objects for later restoration. Operat ions are all

performed by simple mouse operations.

3.3 Operat ions on a Character Terminal

Tim above subsections explain operat ions of List Window which runs on the X-window system. The old

implementat ion of the system runs on a character display and enables interactions using keys. Like in

screen editors, the focus movements and the operat ions on atoms are performed by simple key presses
and cursor movements.

4 I m p l e m e n t a t i o n

The internal implementat ion of l,ist Window is discussed iu this section. Giv(m a list, the I,isl. Window

syst,em first constructs an abbreviated list which is suitable for the size oF tl." window. Next, it displays

the list on the window and then controls interactions with tim user. in order to make the abbreviated

131

list, t, he system tries pretty printing ahead of actual printing. The following subsections explain these

steps.

4 .1 T r u n c a t i n g L i s t B r a n c h e s

The pretty printer in List Window is called with a list where some of the elemcnts may be abl)reviated. It

not only prints out the list but also counts the number of lines needcd for printing ahead. If this number

exceeds the size of the display window, it is necessary to truncate more elements to sl~rink the list.

Elements distant from the focus are truncated first. The distance between each node and the focus

is the number of CDR pointers. CAR pointers are neglected though conventional Lisp printers provide

the two variables, * p r i n t - l e v e l * and * p r i n t - l e n g t h * for CAR and CDR respectively. The reason is

that it is difficult to control the two independent variables automatically. The CDR, pointer is used for

distance calculation because most lists connect their elements with CDR, pointers.

Our system holds a threshold value *max-dis t* and truncates nodes whose distances are bigger than

it. If the list is proved printable within the window, the pretty printer prints it. Otherwise, it decrements

this *raax-dis t* and invokes a truncator.

Given a threshold and a focus position, the truncator abbreviates elements far from the focus. As

described before, the focus may be located anywhere. When it is on a leaf, the top of the list may be

truncated. Four examples of truncating are shown here. In each example, the threshold value is two and

the underlined symbol means the focal point.

In (1), the symbol c has a distance 2 and d has 3. Thus, the list (d e f) will be abbreviated. As ~

result, (1) becomes (2).

(~bcdef) (I)

4-~ b c 7) (2)

When a focus is located on a middle clement of the list, both ends are abbreviated. In (3), the first

two should be truncated. By replacing CAR and CDI~ of the top c(dl, w(- ' get. (d)

(a b c d e f g h f) (3)

(7 c d_~ ~ g 7) (4)

CA R pointers are never counted as distances. In (5), f and g have distances 1 and 2 respectively.

(a b c d e (~ (g h) i)) (5)

(? c d e (f (g 7) 7)) (8)

\¥hen a focus is located on a very deep element, a lot of elements are abbreviated. The list (7) is

shr,mk to (8).

(a b c (d e f (g h i i k I m) n) o) (7)

(? (? (? h ~ i k ~ ?) ?) 7) (S)

Ellipsis symbols in outer parentheses are not rather important when the focus is o,1 the middle symbol

j. These ellipsis symbols cause lots of newlines and indentations wh(~n this lisl is pretty l)ritlte(i. Ill these

cases, outer ellipsis symbols are abbreviated. After all, (7) becomes (9). lake in (9), if there are series of

132

left i)arcntheses from I, he t,op and the llrst atom is a n ellipsis symbol, oul,cr lists might ha.v,: a.I)hrcviatcd

elements.

((('.~ h i j k ~ ?))) (:~)

4 .2 Doubly Linked List

In the first implementat ion of List Window, the system used two working lists to inake an al)breviated

tree. One is a distance list and the or, her is an attr i l)ute list., I)oth having the sarne s tructure as the

original inspected list. The former holds the distances from the focus of each a.tomic element and the

latter holds the number of characters of the corresponding atom which are used in pre t ty l)rinting.

In this implementat ion, making the distance list causes a bot t le neck. Sittce a focus is not always

located at the top, the system should know the focus location before giving a distance to each node.

Thus, searching for the focus needs extra time. This is because a list, has only l)oiuters l)ointing in one

direction. As the focus may be located anywhere in a list, it is necessary that we can trace l)ointers in

both directions.
The second implementat ion of List Window adopts a doubly linked list. I;'igure 3 shows the structm'es

of this doubly linked list. The original list and its doubly linked form are shown in (i) and (ii) respectively.

Each node has four pointers, normal CAR, and CDFt ancl additional I)acl~wa.rd pointers of thein. At.omic

objects are represented as structures with ba.ckward pointers.

FrV-1

(i) original form (a (b c))

(ii) Doubly Linked Form of (i)

Figure 3: Doubly Linked last

The doubly linked structure helps t runcat ing of branches. Figure 4 shows tile basic three methods of

abl)reviations using doubly linked lists. I:1 tile figures, dot ted lines are new pointers after t runcat ing some

pointers. The system traces CAR, and CD'R pointers back and forth from the focus counting distances

fi'om it. When a CDIL pointer is traced, the distance is incremented. And if it, excecds the limit, the

node should be t runcated. Figure 4-(i) is the simplest form of t runcat ing forward pointers, which is the

same case as (1) in subsection 4.1. The t runcator traces pointers from left, to right. If the distance of a

traced node reaches the threshold, its CDR, is subst i tu ted for an ellipsis.

Figure 4-(it) explains trunca.ting of backward pointers, exemlHi[yiNg CXl~rcssi(m (3) in 4.1. If I.hu

rlista.nce of a traced node rea.ches the threshold, the I.ol) of I.he list is s¢.al'ch~'d lirsl.. Then t.hc (:A H. of t.h¢'

133

top is subs t i tu ted into an ellipsis and the CDI% skips the al.~l.~rcvia.tcd ch,.,,,,;,t.s.

l,~igure 4-(iii) expla.ins the case (7) in 4. l . If the distzmce of z~ t.r;.ice¢l Jiodc reacJms tJtc thrcshohl,

C,A R,'s a.nd CDR's of parent tops are replaced as shown.

I,;;~ch c(~ll of it doubly l i ,kcd list is r~.l~rosc'nnl.¢~d as ;tot nrl';ty ill I.h~, sysi., ' ltl . A c,'ll Ibr a c,,lls c,'ll h .h ls

I~a.ckw~u'd CAll. and C1)11. pointers as well as forw~trd l~oi.ters. I]csid,~s, it ha..~ ~'~l~i~.s of I.h,~s~. I'¢mr i~oi~nl.,~n's

for pointer l inking in an abbrevia ted list. This is because the original lbrrn of the list should not be lost

when the pointers are rewri t ten when l.runca.ted. After all, the arr:~y is ~.t, hmsl. [~)ur t, imcs ;~s I;trg~: as a..

original corm cell node. For an atomic ob.i,,et, ;t,~ a.rr:ty m~¢~ds ¢~xl.ra. sh,l.s I~r I~:wkward l>Oi~nu'rs, :tl.l.rihttl.~,s

of the a tom and so on.

[- - I - - I ~ [-i-i-:~]1 ~-1 I i

> " o
~aoing Path I I- .J ~ '

Limit of
Distance :

r

(i) Forward Pointer

I,~.1 ~ I - ~ [- - F - I ~ ~F- -J - -1 ~ F--V-1
• • •• : JIP ¢

• "• i -" < - - : -

O { Limit of Tracing Path

Distance

(ii) Backward Pointer

%

Q

Limit of
~q~kQ . ° : Distance Tracing Path

(iii) Elliminate Outer Ellipsis

Figure 4: ' IYuncat ing List Nodes

Though the doubly linked list needs ex t ra storage, it is not Jmccssa,'y t.o co,zstmte l,.,w cells wl,c,,

an abbrevia.ted list is ere&ted. \'VheH ~ focus is moved I.o ol.hcr Io<:~t,ioll arid ;m ~d~l~l'~.vi:~l.,~d li~l. is

reca.lctlla.ted, the systetn ilever g(',Jtcra:l.~'s garbage, mllothel" adv~mt.;~g~, o[I.t,, douldy liNk(.d list. is I.h:tl.

134

scanning of pointers in both direction is possible. The time spent for tracing the list is proportional to

the size of the list regardless of the location of the focus.

4.3 O u t p u t i n t o W i n d o w

After making an abbreviated tree, List Window displays it in a window. The system ha.s a.n internal

w'ctor called "screen att.ribute". Each element of this vector is associated with a character location of

the window. When List Window prints out a character, it reserves information about each node in the

vector. It contains the pointer to a corresponding node in the doubly linked list and the type of the

node. This information is used when a user interacts with List Window. When the focus is rnoved, the

new location of the focus is picked up from the vector using the coordinates of the mouse cursor. When

operations are performed on atoms, its operand is picked up from the mouse cursor location.

5 Evaluation

This section evaluates our new system. It is difficult to compare performances of user interface systems.

In this section, we consider the cost of operations needed for extracting some element in an inspected

list.

The list in Figure 1 is a definition of lw- i ; runca te , one of the functions of List Window. The list

includes 284 cons cells and 178 non-null atoms. It takes 45 lines to pretty print this list on an 80-column

terminal. The atom "d" in the 21st line in Figure 2 is the most distant element from the top of the list.

There are 19 CDR, pointers between them and the atom appears in the 31st line when pretty printed.

When this list is inspected with List Window using 80 columns and 24 rows, the element "d" is

invisible as in figure 1. However, only one mouse click is needed to let it be displayed on the screen(figure

2). Once the element is displayed, another mouse click moves the focus on it. After all, it. is possible to

set, the focus to this element by clicking the mouse button twice.

In a usual toplevel loop, tim operation is not so simple. In order to extract, the element, it is necessary

to trace 19 CDR. pointers and 7 CAR. pointers. And if the user traces a wrong pointer, he is not able to

retrieve because the Lisp pointers are one-directional.

In List Window, the focus and its neighbors are visible so that the user recognizes the list structure

easily. For example, in figure 1, it is obvious that the first cond in the second line has three conditional

branches: (lw-atom x), (l w - l i s t p x), (lw-quo tep x). When the list is viewed in a conventional

window system with a scroll bar, these predicates do not appear simultaneously in a 24 row terminal.

6 Summary

Tile system List Window has been developed in order to ease procedures in Lisp debugging. Tile purpose

was to provide users with an interface for browsing Lisp objects.

First, List Window is introduced as a new method of displaying a list on a limited region of a screen.

All elements are traceable by simple movements of the focus. Second, the system enables tracing pointers

from atomic objects by controlling an object stack. Thus, the user can reach any objects connected from

the first object. Operations are either mouse actions or key presses. Explicit invocations of referring

functions are no longer necessary.

7 Acknowledgement

q'he studies of List Window were pursued at tile University of Tokyo as a part of the doctoral research

of |he author. Tim author thanks Professor Eiiti Wada for his supervision and member of his laboratory

for their helpful advice.

135

Discussions with Dr. Atsushi Maeda. of Keio University contributed to improve I.Iw a.lgorithn~ of
trmlcating list elements in tile second implementation of the system. 'l'hanl~s ;Hso go to Dr. l<atsura

Kawakami and Mr. George Michelitsch of Matsushita Electric Industry for their advices oll writing this
paper.

R e f e r e n c e s

[I] George W. Furnas. Generalized Fisheye Views, Human Factors in Computing Systems, CHI '89
Conference Proceedings, ACM April 1986

[2] Guy Steele. Common Lisp the Language Digital Press, 1984.

[3] Symbolics. Program Development Utilities, in Symbolics Manuals, Syrnbolics, 1986.

[4] Kei Yuasa. Process Monitoring Interface for Multiproeess Lisp, Doctoral Thesis, Faculty of Engi-
neering, University of Tokyo, December 1988

[5] Kei Yuasa. Character Terminal Interface for S-expression Reprints of WGSYM, 90-SYM-54, IPS
Japan, Mar. 1990

[6] Wada Laboratory. UtiLisp Manual Revision 2.0, Department of Ma.thematical Engineering, Univer-
sity of Tokyo, Jan. 1988

136

