Group Projects in Software Engineering at York

> Dr Jim Briggs

Check for
Updates

Department of Computer Science
University of York
York, YO1 5DD, UK.
jim@minster.york.ac.uk

ABSTRACT

This paper describes the format of the second
year group project in software engineering under-
taken by all single-subject undergraduate students in
Computer Science at the University of York.

Introduction

We have been running group projects in software engineering
at York since 1979, though in 1979 the group consisted of only
one student! Currently the group project is a core course unit
for all students on our MEng Computer Systems and Software
Engineering and BSc/BEng Computer Science degree courses.
The project is also an optional unit for a small number of
Norwegian students visiting the Department on an exchange
scheme from the University of Oslo. The only undergraduate
students who do not do the project are those on our combined
degree course with mathematics, but it is our aim and intention
to involve those students in the near future. The total number
of students doing the project is 60-80 per year.

A number of students taking the course unit have some prior
industrial experience. The MEng students and a small number
of the BSc/BEng students have undertaken at least one vacation
placement with their sponsoring company. Increasingly we
have a number of mature students on our courses, many of
whom have worked in the computing industry before com-
mencing their studies. Typically the number of students in all
these categories amounts to 25% of the total.

The project fits into the curriculum in the summer term of the
second year. The students therefore have had the conventional
first year course units in introductory programming, algorithms
and data structures, supplemented by a lecture course on the
formal construction of programs, well before they come to do
the project. In the term immediately preceding the project they
are given an 18 lecture unit on System Specification that acts as
a theoretical companion course. The System Specification unit
reviews a variety of system specification techniques and studies
the requirements methodology CORE! and the specification
language 72 in detail. Students are introduced to the problems
of large scale software development and the software life-
cycle, and they learn systematic approaches to the specification
of requirements and system architecture, and spend some time
considering management techniques.

SIGCSE Vol. 23 No. 4

BULLETIN Dec. 1991

Objectives

The primary objective of the group project is to give the stu-
dents some experience of working together in groups.
Although it is not the first or only opportunity that the students
have for not working alone, it is the only course unit where
they work together in large groups. Very much secondary in
our view is the aim to teach the students new techniques in
software engineering. As was stated earlier, by the time they
get to the stage of the project they have already had several lec-
ture courses to teach them various aspects of the topic. The
project however does reinforce much of what they have learned
in theory, for example it forces them to practice the use of
CORE and Z taught to them in the previous term., Indeed the
aim is to expose them to the problems of team working to make
them realise how the techniques facilitate communication and
decision making in a team.

Format

The class of 60-80 students is divided into 4 teams (each of 15
to 20) and each team is divided into 5 groups, each of 3 or 4
students. Each of the 4 teams is working on the same problem,
but each team produces its system independently of the work of
the others. Within each team, each group is responsible for the
production of part of its team’s system.

The production of a system consists of the following stages:

(i) production of a CORE specification of the functionality of
the sub-components of the system;

(ii) formal specification of parts of the system in Z;
(iii) implementation (in Ada);
(iv) documentation;

(v) testing (independently by groups, and in combination with
other groups).

Each group implements its specifications, tests them, and com-

bines their work with others in their team to produce a working

system,

This year the problem set was one to implement ATM software
for a mythical bank. The five groups within each team were
appointed responsible for the bank staff’s user interface, the
customer user interface, the accounts database, the transactions
database and the updating of accounts. Other recent problems
have included an examination marks processing system,
software for a mythical television company’s parliamentary

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122697.122705&domain=pdf&date_stamp=1991-11-01

election coverage, a system for pricing menus in a cafeteria, a
departmental timetabling system, a literate programming sys-
tem, a program testbed generator and a communication system
for the Roman army.

Assessment

The project is assessed in four parts, two (deliverables A and
B) corresponding to material taught in the System Specification
unit, and two (deliverables C and D) corresponding to the pro-
ject itself.

For deliverable A each team submits a CORE specification for
the whole system, and each group submits a Z specification for
their subsystem. The specifications must be submitted in the
fifth week of the project.

For deliverable B each student produces an individual report on
their specifications. In histher report, the student must identify
the major early design decisions implicit in the CORE
specification for which the student’s group was responsible,
and explain why these, rather than any other, decisions were
appropriate. In addition each student must give an informal
description of the mapping from the CORE specification to the
Z specification, and from the Z specification to the Ada source
code, of the parts of the system for which the student was indi-
vidually responsible. Credit is given for identifying the key
issues in the specification and implementation and explaining
why the most critical design decisions were made. This report
is submitted in the seventh week of the project.

At the end of the ninth (and last) week the final two deliver-
ables are submitted. For deliverable C each team submits their:
(i) complete specification of the problem,

(ii) program listing;

(ili) documentation;

(iv) testresults;

(v) costing.

The project costing should indicate how much the system has
cost to produce, i.e. the real cost of the equipment, staff and
student time expended on the project. The students are given
various figures relating to the cost of the computing facilities
they use, and told to assume a proportion of their student grant

as labour costs. Staff costs are in terms of the number of hours
of lecturer or demonstrator time spent supervising the project.

For deliverable D each student submits an individual report on

the project as a whole. This report is in two main parts:

(i) a summary of the work done, in the form of a technical
diary arranged chronologically;

(il) advice offered to someone wishing to start a similar pro-
ject the following year, addressing in particular any two of
the following topics:

e the usefulness of the specification towards the
development of the system;

e the usefulness of the textbooks which he/she con-

sulted;
e the implemented part of the system and the results of
testing;
SIGCSE Vol. 23 No., 4 Dec. 1991

BULLETIN

49

s the effectiveness of the management structure of
his/her team and/or group.

The emphasis is expected to be on the specification, design,
testing and management aspects of the project. Perceptive
comments about software engineering, working in groups,
using specifications, etc. receive the most credit.

The marking of the deliverables concentrates primarily on the
individual reports, and uses the team deliverables largely as
reference material. Instead of assessing the students on what
they produce as a result of the project, we are in fact assessing
them on their personal review of what they did, how they did it
and, most importantly, why they did it that way. This avoids
the problem of either giving all students working together the
same mark, or of separating out each’s contribution and assess-
ing it separately. It also gives scope for the student who does
not contribute as actively to the product as the others to write a
report justifying his lack of contribution. Though unlikely, it is
conceivable that a reasoned argument as to why the student was
best kept away from the work at hand could attract as good a
mark as any other!

Staff resources

Staff time devoted to the administration and supervision of the
group projects is organised so that the peaks of effort occur
during vacations and the troughs occur during the intense
examination-paper marking period in June. Two days in March
are spent writing the project specification. The major part of
this is developing a scenario into which the project can fit; the
detail of the specification, including the instructions to the stu-
dents concerning format, assessment and timetabling varies
little from one year to the next.

During the course of the project, staff time is limited to three
contact hours per week. These form a contiguous timetabled
period during which the student teams are expected to meet,
either to carry out their work or to plan how to do it. A single
member of the lecturing staff supervises the four teams,
wandering between the four adjacent teaching rooms allocated
to them, observing the students, answering questions on the
specification, and, occasionally, offering advice. The member
of staff is supported by a graduate demonstrator who performs
a similar supervisory role, and who can offer technical advice
on CORE, Z, etc.

The biggest chunk of staff time is consumed after the project is
completed. Spending an estimated 20 minutes on each
student’s report means that something like 40 hours in total are
devoted to assessment. This normally takes place during the
summer vacation. The marks are carried forward and included
as part of the third year assessment scheme.

Student workload

From the students’ point of view, the project takes place over a
period of nine weeks, For the first six weeks, they are taking
four other course units in parallel with the project. In that
period, students are expected to spend a notional six hours per
week on the project, of which three hours are timetabled. Time
will be spent in meetings with group colleagues, management

meetings according to their team’s adopted structure, and
working alone on specifications and code. During the last three
weeks of the term there are no timetabled lectures, so the stu-
dents are expected to spend as much time as is necessary to get
the project finished. Typically, a student will spend most of
this period writing or testing code, and integrating theirs with
that of others. In the closing stages, everyone will go off by
themselves to write their individual reports.

The following is given to the students as a rough guide to the
progress they should be making on the project:

Week 1 Introduction to project and groups. Discussion. Ini-
tial ideas for CORE diagrams.

Week 2 Finalising CORE diagrams. Start of formal
specification.

Week 3 Continvation of formal specification.

Week 4 Completion of formal specification of the system.

Week 5 Submission of specifications. Design program.

Week 6 Implementation.

Week 7 Submission of specification report. Implementation
and testing.

Week 8 Implementation and testing.

Week 9 Submit program and project report.

The students have unrestricted access to the department’s com-
puting facilities (an Orion 1/07 is dedicated to undergraduate
use). Terminals are available 24 hours a day, seven days a
week. As might be expected, teams make little use of the com-
puter during the early specification stages, though some teams
do set up elaborate intra-team communication mechanisms,
During the coding, testing and integration phases, students can
use any software development tools they wish — either standard
UNIX tools or ones of their own.

It is interesting each year to observe the management structures
that the student teams set up. Most teams appoint an individual
to head the team, though they differ in whether he (never yet a
she) is an appointed “‘leader’’ or an elected ‘‘chairman”. Usu-
ally groups within each team appoint a group leader, and often
the five group leaders will form a sort of board of directors to
take higher-level decisions within the project or to provide a
means of communication and co-ordination between groups.
Some teams meet together in their entirety while some groups
never speak to other groups except through ‘‘formal’’ channels.
It must be said that the most successful groups in recent years
have tended to be those that are strongly led by a leader with
solid technical skills and, invariably, some previous industrial
experience.

Periodically, each team is asked to give a ten minute presenta-
tion on some aspect of their work, for example their progress
during the past week and plan of action for the following week,
or the external characteristics of the user interface to the sys-
tem. These presentations are made to the lecturer and demons-
trator (but not to the other teams) and take place during the
timetabled weekly session, typically at only one hout’s notice
to the students. This gives the opportunity for the staff to find
out what is going on in the teams and to comment on the techn-
ical decisions that the students have made. For the students it

SIGCSE

BULLETIN 701 23

No. 4 Dec. 1991

50

gives them an opportunity to focus or review their strategy and
gives one or more of them per team the opportunity to stand up
and speak to a room of 15-20 people. These presentations are
not assessed.

Conclusion

We have run group projects in software engineering at York for
several years as an exercise to give the students experience of
working together rather than individually. The setting up and
administration of the project is fairly straight-forward and,
except for the marking, takes up little staff time. Overwhelm-
ingly the students seem to enjoy the project, and their potential
employers often show interest in their experience of it at inter-
view. The professional bodies that accredit our courses (the
British Computer Society and the Institution of Electrical
Engineers) express satisfaction with it. The bottom line is that,
by doing the project, students learn that software engineering is
difficult, and that working in groups and as a team is difficult,

References

1. G.P. Mullery, “CORE - A Method for Controlled
Requirement Specification’’, IEEE Computer Society
Press, Proc 4th International Conference on Software
Engineering (1979).

2. JM. Spivey, The Z notwation: a reference manual, Pren-
tice Hall (1989).

Ak k kA K h Rk h kIR R AR RRRRR IR AR ARk khh ke hkhkkhhdhk®
AAPT-~ continued from page 47

Stasko J. T., (1990), TANGO, A Framework
and System for Algorithm Animation. IEEE

Computer, Vol 23, No 9, pp 27 - 39.
Stone D., (1989), Using Cumulative Graphic
Traces in the Visualisation of Sorting

Algorithms.,
No. 4,

ACM SIGCSE Bulletin,
pp 37 - 42.

vol. 21,

Waguespack L. J., (1989), Visual Metaphors
for Teaching Programming Concepts. ACM
SIGCSE Bulletin, Vol. 21, No. 1, pp 141 -
145,

