
@ @ Computer Graphics, Volume 25, Number 4, July 1991

A Rapid Hierarchical Radiosity Algorithm

Pat Hanrahan David Salzman Larry Aupperle

Department of Computer Science 68 Francis Avenue Department of Computer Science
Princeton University Cambridge, MA 02138 Princeton University
Princeton, NJ 08540 Princeton, NJ 08540

Abstract
This paper presents a rapid hierarchical radiosity algorithm
for illuminating scenes containing lar e polygonal patches.

“JThe afgorithm constructs a hierarchic representation of the
form factor matrix by adaptively subdividing patches into
su bpatches according to a user-supplied error bound. The
algorithm guarantees that all form factors are calculated to
the same precision, removing many common image artifacts
due to inaccurate form factors. More importantly, the al o-

?rithm decomposes the form factor matrix into at most O n)
blocks (where n is the number of elements). Previous radios-
ity algorithms represented the element-to-element transport
interactions with n2 form factors. Visibility algorithms are
given that work well with this approach. Standard tech-
niques for shooting and gathering can be used with the hi-
erarchical representation to solve for equilibrium radiosities,
but we also discuss using a brightness-weighted error crite-
ria, in conjunction with multigrldding, to even more rapidly
progressively refine the image.
CR Categories and Subject Descriptors: 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.
Key Words: radiosity, ray-tracing, globaf illumination, n-
body problem.

1 Introduction

Developing a correct treatment of the physics of bidirec-
tional reflectance and of light transport is an important fo-
cus of modern research in image synthesis. Although effi-
cient solutions to the fully general CSAWare not known, these
physically-baaed models have produced some of the most
realistic computer-generated images to date. The most suc-
cessful approach has been mdiosity, which, by making the
si mplifyi n assumption that all the surfaces are diffuse re-

?flectors, al ows for straightforward computation of the equi-
librium distribution of light for complex scene geometries.

This paper presents efficient computational techniques for
solving the transport equations that arise for radiosity in
complex scenes. Our al~orithm draws from recent insights
into fast numerical algorithms for solving the N-body prob
lem (Appel 1985; Barnes and Hut 1986; Greengard 1988),
Computational efficiency is achieved by carefully analyzing
the error in performing form factor integrals. Without care-
ful error analysis, pictures may contain artifacts where the
form factors have large error. More importantly, many form
factor computations are done at much higher precision than
is necessary. Careful error anrdysis, in combhation with a
multi-resolution representation, can be used to reduce sig-
nificantly the number of interactions that are considered.

Pcrmis$i{m I(I copy withtmt I& Ill (M part ot th]s matcmd is gmnttxi

provided [hit the cnpim arc not mak nr dismibutcd Ibr direct

cmnmcrmid akmtage, the ACM cnpyright nnt icc d the title nf the

puhtica(ion and ih Ate appeur. and nn(icc IS given tha[copying i, by

pcrmissinn 01 the Aw{wititmn for Cnmpu[ing Mfichlnery. T<) copy

tlthcrwiw, ,Jr to rcpubl]sh, requirc~ a fm dnd){)r specific pem~]ssi{)n.

Previously we analyzed the form factor calculation be-
tween two unoccluded poly onal patches, discretized into

%n finer polygonaf elements (anrahan and %lzman, 1990).
We showed that the form factor matrix can +ways be ap
proximate to within some preset numerical tolerance with
at most O(n) terms, and often many fewer. This paper
extends our previous radiosity algorithm to handle scenes
wit h many polygons, where occlusion plays an important
role. Occlusion, although costly to detect, reduces the num-
ber of interactions even further. The form factor matrix is
therefore sparser, allowing faster solution for equilibrium ra-
diosities. The technique used for determining visibility is
based on ray tracing, but two important optimizing heuris-
tics are introduced. One takes advantage of visibility coher-
ence between different levels of detail; the other is based on
the observation that most interactions between patches are
either totally visible or totally invisible with respect to each
other. Finally, we show how to use multigridding in combi-
nation with a brightness-weighted error estimate. This leads
to a faster progressive radiosity algorithm.

2 Review of Previous Work

2.1 Radiosit y

Radiosity algorithms assume the environment has been dis-
cretized into small elements which have constant brightness.
In this paper, we use the term “element” to describe the
smaJlest piece of a surface subdivision, and the term “patchn
for any larger pieces, including the original polygon, formed
by combining elements or other patches, Enforcing an en-
ergy balance at every element yields a system of equations
of the form:

n

B,= E,+ P,~F,l B]

3
where B, is the radiosity, E’i is the emissivity, p, is the diffuse
reflectance, F,J is the form factor (the percentage of light
leaving element i that arrives at element j), and n is the
number of elements in the scene. Similar equations exist for
all elements, yielding a linear system of equations.

(
1

1 “: “2:’”)(:)=(:)

–pl F],2 . . . –/JIFl,n
–p2F2,1

–p~F.,l -p~Fn,2 . . .

This system of equations can be efficiently solved using itera-
tive algorithms such as the GausrAeidel method. Physically,
the Gauss-Seidel method is equivalent to successively gather-
ing incoming light. An alternative iteration scheme is to re-
verse this process by successively shooting light from patches
in order of their brightness (Cohen et al. 1988). This has
the advantage that the solution converges more quickly, and
if the scene is drawn during the iteration, successive images

i’ 19YI A(’M-()-x97Yl-436-x/91/(K171()197 $(Ki.7S I97

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127719.122740&domain=pdf&date_stamp=1991-07-01

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

gradually improve aa the computation proceeds (Bergman
et al. 1986).

The most expensive part of the calculation is computing
the form factors. Assuming two infinitesimal elements, the
differential form factor between them is given by

The angle Oi (or e~) relates the normal vectir of element i (or
j) to the vector joining the two elements. The form factor
from an infinitesimal area to a finite area is the integral

Fij =
J

COS89 COS@j
dAj,

Aj rrr~,

and the form factor between two finite areas is the double
integraf

These form factor formulae do not take into account occlu-
sion. To do th]s requires that differential form factors be
accumulated only if the two infinitesimal elements are mu-
t ually visible. The first practicaf approach to integrating
visibility into form factor computations was the hemi-cube

$%!;?~?;~a~d?~~~ ~~5keT~e!%~%#g
current workstation graphics hardware. Al orithms based

fon ray tracin afso have been proposed for orm factor cal-
fculation (Mal ey 1988; Ward et al. 1988; Wallace et al. 1989;

Sillion and Puech, 1989)
There are two major sources of error when computing

form factor integrals. F]rst, the integral is evaluated by sam-
pling the patches in some way; since the results of uniform
sampling process are subject to alhsing, early methods had
noticeable aliasing errors. However, more recent methods
(Wallace et al 1989) have overcome sampling errors by incor-
porating stochastic sampling into a ray tracer (Cook, 1986).
Secondj the form factor between two surface samples can be
approximated by the differential form factor only if the dis-
tance separatin the two samples is large compared to their

f“ “size. This con]tlon frequently occurs along edges and in
corners where polygons meet. To avoid this problem, Baum
et al. (1989) switch to an analytically calculated form factor
in these situations. Another approach, used by Wallace et
af. (1989), is to supersample adaptively the integral.

The form factor matrix is n by n, where n is the number of
elements. This n2 growth causes time and memory problems
for complex scenes, The firat method to reduce the computa-
tional costs was motivated by the method of substructuring
used in finite element calculations. The polygons comprising
the scene are discretized at two levels Cohen et al. 1986).

\One level contains the patches into whit input polygons are
broken, and the other level contains the elements into which
each patch is broken. Normally, the number of patches and
elements are determined a-pn”ori, but the number of ele-
ments can also be determined by recursive subdivision baaed
on radiosity gradienta Cohen et rd.(1986). Other attempts
to utilize adaptive subdivision are described in Campbell &
Fuasel (1990) and Heckbert (1990).

2.2 N-Body Problem
The hierarchical subdivision algorithm proposed in this pw

R-body problem. In the N-body problem, each of the n par-
er is inspired by methods recently developed for solving the

ticks exerts a force on all the other n - 1 particles, implying
n(n - 1)/2 pairwiae interactions. The fast algorithms com-
pute all the forces on a particle in leas than quadratic time,
building on two key ideas:

198

1!1 Numencaf calculations are sub~ct to error, and therefore,
t e force acting on a particle need only be calculated to
within the given precision.

2) The force due to a cluster of particles at some distant
point can be approximated, within the given precision, with
a single term-cutting down on the total number of interac-
tions.

Appel was the first to develop a hierarchical algorithm for
solving the N-body problem, by approximating the forces be-
tween particles in two clusters with a single force, when the
separation between the clusters significantly exceeded their
sizea. A topdown traversal of a h~erarch~cal k-d tree rep
resentin the clusters yielded an O(n 10 n) algorithm (Ap

1pel 1985. a’!More recently, Esselink an yzed Appel’s algo-
rithm and showed that time needed to calculate the forces
takes only O(n) time (Esselink 1989), and that the observed
O(n log n) running time is a consequence of the preprocess-
ing time required to build the hierarchical data structures.
Barnes & Hut developed a similar algorithm baaed on oc-
trees (Barnes & Hut 1986). Greengard and Rokhlin devised
the first O(n) af orithm, using a p-term multipole expansion
for the potenti~ due to any cluster: along with algorithms
for splitting, mer ing, and translating the resulting multi-

8pole expansions (reengard 1988). The algorithm proposed
in this paper ia moat closely related to Appel’s and Barnes
& Hut’s algorithms; it should be mentioned that these two
algorithms are very easy implement, and only take a few
hundred lines of code.

The radbaity problem sharea many similarities with the
N-body problem which suggest that these ideas can be used
to increase its efficiency. In both the N-body and the ra-
dioaity problem, there are n(n – 1 /2 pairs of interactions.

iMoreover, just as gravitational or e ectromagnetic forces fall
off aa l/r2, the magnitude of the form factor between two
patches also falls off as 1/r2. Finally, according to Newton’s
Third Law, gravitational forces are equaf and opposite, and,
according to the reciprocity principle, form factors between
two polygons are related.

One major difference between the two problems is the
manner in which the hierarchical data structures are formed.
The N-body algorithms begin with n particles and cluster
them into larger and larger groups. Our radioaity algo-
rithm, however, begins with a few large polygons and sub
divides them into smaller and smaller patches. Subdividing
baaed on the error of a potential interaction provides an au-
tomatic method for dlscretizing the scene within the given
error bounds. The specifics of our subdivision algorithm is
discussed in Section 3. The separate problem of building
clusters out of individual patches is not dealt with in this
paper.

Another difference is that the N-body algorithms take ad-
vantage of linear superposition; the principle of superposi-
tion states that the potentiaf due to a cluster of particles is
the sum of the potentials of the individual particles. ThB
principle does not afways apply to the radioaity problem, be-
cause of occlusion: intervening opaque surfaces can block the
transport of light between two other surfaces, which makes
the system non-linear. Occlusion thereby introduces an ad-
ditional cost to the radiosity problem. This is discussed in
Section 4.

Finally, the N-body problem is based on a differential
equation, whereas the radioait y problem is baaed on an inte-
graf equation. The integraf equation arising from the radios-
ity problem can, however, be solved efficient] y using iterative
matrix techniques. Fort unately, the hierarchy of interactions
produced by our subdivision is equivalent to a block struc-
tured matrix, and the iteration can be efficiently computed.
This is discussed in Section 5.

@ @ Computer Graphics, Volume 25, Number 4, July 1991

3 Form Factor Matrix Approximation

This section describes a recursive refinement procedure
which simultaneously decomposes a polygon into a hierarchy
of patches and elements, and builds a hierarchical represen-
tation of the form factor matrix by recording interactions at
different levels of detail. We begin by describing the proce-
dure and its results, and then proceed to analyze the error
in the resulting form factors, and the number of interactions
that need to be considered. This section is quite similar to
Hanrahan and Salzman (1990).

Consider the procedure Refine:

Refine (Patch *p, Patch ●q, float Feps, float Aeps)
{

float Fpq, Fqp;

Fpq = FomPactorEstimate(p, q);
FW = FoflactorEstimate(q, p);

if(Fpq < Feps U Fqp < Feps)
Link(p, q);

else {
if(Fpq>Fqp){

if(Subdiv(q, Aeps)) {
Refine(p, q->ne, Feps, Aeps);
Refine(p, q->nw, Feps, Aeps);
Refine(p, q->se, Feps, Aeps);
Refine(p, q->sv, Feps, Aeps);

}
else

Link(p, q);
}
else {

if(Subdiv(p, Aeps)) {
Refine(q, p->ne, Feps, Aeps);
Refine(q, p-%m, Feps, Aeps);
Refine(q, p->se, Feps, Aeps);
Refine(q, p->sv, Feps, Aeps);

}
else

Link(p, q);
3

}
}

Refine first estimates the form factor between two
patches, and then either subdivides the patches and refines
further, or terminates the recursion and records an inter-
action between the two patches. If the form factor esti-
mate is lees than Fc (Feps in the pro~ram), then the true
form factor (not taking into consideration occlusion) can be
approximated accuratel by the estimate (see below), and
the patches are rdlow~to interact at this level of detail.
(The procedure Link records the interaction between the two
patches.) However, if either of the form factor estimates is
larger than F., then the form factor estimate is not accurate,
and so the patch with the larger form factor is subdivided,
andRefineis called recursively with thesmalle rsubpatches.

Subdiv subdivides a patch into subpatches. In our im-
plementation, a patch is a planar quadrilateral, and it is
subdivided equally into four new quadrilaterals by splitting
it at its center. The subdivision hierarchy is stored in a
quadtree; the pointers tothe four children are stored in the
freldsnu, ne, SW, and se. (This data structure is similar to
adaptive radiosity textures propoeedin Heckbert 1990), al-

ithough information is stored at all levels of the ierarchy,
not just at the leaf nodes, and each level also stores a list
of its interactions.) Subdiv returns false if the patch can-
not be split; this condition occuraif the area of the patch is
smaller than some absolute predetermined area Ac, and is
uecessary to prevent infinite recursion in corners and along
edges. If subdivision is not possible, we force the two patches
to interact. Note that a patch may be refined against many
patches, and so the actual subdivision of a patch may have

Figure 1: The block form factor matrix for a particular bi-
nary tree example. Each Iabelled block corresponds to a la-
belled arc connecting nodes in the hierarchical subdivision.
Although the blocks are all square in this example, that is
not thecaae ingenerrd.

been performed previously. When this occurs Subdiv need
do no other work and simply returns true.

The procedure FornFactorEsttiate returns an upper
bound on the form factor from the first patch to the sec-
ond patch, assuming the first patch has infinitesimal size
and the second patch has finite size. The form factor can
be estimated by either calculating the solid angle subtended
by adiskwith crosesectionaf area equal tothe surface area
of the patch (Wallace et al. 1989), or by circumscribing a
sphere around the patch and estimating the solid angle sub
tended by the sphere.

An example of atree that might reproduced by Refine
and its associated form factor matrix is shown in Figure 1.
For simplicity, the figure illustrates the interactions between
two hypothetical ID patches; in this case the hierarchy can
be represented with a binary rather than quaternary tree.
The two binary trees representin the induced subdivision,

%and are drawn side by side along t eedgesof the form factor
matrix. Since in this example each binary tree represents a
polygon, no interactions are shown with itself. The leaves of
the tree are the elements in the discretization. The combhm
tion of all the leaf nodes completely cover the input patch.
Interactions between patches at different levels are repre-
sented by Iabelled blocks in the form factor matrix, and by
labelled arcs between nodes in the trees. Notice that the size
of the block in the form factor matrix depends on the level
in the tree the patches interact at. The higher the level, the
bigger the block.

The first point in the analysis is the relationship between
the termination criteria and the accuracy of the computed
form factors. Obviously, the termination criteria causes the
form factor corresponding to each interaction to have ap-
proximately the same m

T
nitude, because, if an estimated

form factor were larger, t e patches would be sub&vided,
otherwise, they are allowed to interact. More importantly,
the termination criteria also places an upper bound on the
error associated with the form factor integral between the
two interacting patches. This can be verified by examining

199

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

I I

Figure 2: Interactions of the node p with neighboring nodes in a one-dimensional subdivision.

Figure 3: Interactions between a pair of perpendicular poly-
gons.

the form factor from a point to a disk of radius r,

Fdi.k = ‘= (i)’(’-(i)’+K)’+””’)R2 + ~’

(11)
where R is the distance from the point to the center of’th~
disk. Thus, the error due to the finiteness of the geometry
is given by terms involving powers of (r/R). Because F

i
goes as r/R)2, when F is small (implying that the size of
the pate is small compared to the distance separating the
patches), the differential form factor is also a good estimate
of the true form factor. A more rigorous proof of this result
can be obtained by forming the Taylor expansion of the form
factor integral. In the N-body problem, this expansion is the
multi pole expansion. However, one need not ever calculate
the expansion explicitly to use this algorithm.

The second point in the analysis is that the resulting form

factor matrix has fewer than n2 blocks. To a certain extent
this is obvious, because every time an interaction occurs at
some higher level of detail, the number of interactions is re-
duce+ but we wish to count the interactions more precisely.
For simplicity, again consider the lD problem of n equslly
spaced patches along a line. Later we will consider what hap
pens if the patches are 2D and non-uniformly distributed.
Let us construct a binary tree above the patches by merg-
ing adjacent contiguous patches recursively. This is shown in
Figure 2. The error criterion says that two patches can inter-
act directly only if (r/R)2 < F,. In other words, two patches
of size r can interact only if the distance R between them is
greater than r/~. For concreteness, let us fix Fe so that
this criterion is equivalent to saying that two patches at the
same level in the b]nary tree can interact only if at least one
other patch at that level is between them: Otherwise, they
would subtend too large a solid angle and would subdivide,
pushing the interaction down a level in the tree. Now con-
sider the interactions of a patch p in the interior of the tree.
At any level in the tree, the rule forbids the patch p from
interacting with its immediate neighbors. These immediate
neighbor interactions, therefore, must be handled by p’s chil-
dren. In the same way, p is only responsible for handling the
interactions from its parent g’s immediate neighbors. There-
fore, p need only interact with the children of q’s immediate
neighbors. Figure 2 shows the node p and its parent q. The
above considerations imply that p need only make three con-
nections to nodes at its level. This argument applies to aU
levels of the tree (except the top and the bottom, but these
levels result in fewer interactions), and therefore each node
in the tree connects to a constant number of other nodes.
Thus, the total number of interactions is proportional to the

[E?
number of nodes in the tree, which is O n . A similar anal-
ysis has been derived independently by sselink 1989).

Figure 3 shows the quadtree subdivision and the inter-
actions at each level in the hierarchy computed by Itef ine
between a pair of perpendicular polygons. This figure shows
that each interior patch has a constant number of interac-
tions with other patches regardless of the level in the tree.

Figure 4 plots the actual number of interactions versus the
number of potential interactions at a fixed uniform level of
discretization. The number of interactions for perpendicular
polygons goes, surprisingly, as O(X). The subdivision in-
duced between two perpendicular polygons is comparable to
a bhmry tree turned on its side with its leaf nodes along the
common edge, and the total number of nodes in such a side-
ways binary tree will be 0(~. The worst case for Refine
is two parallel polygons whose size is much larger than the
distance separating them. In this case, there will be O(n)
interactions. As the polygons move further apart, or are
tilted relative to each other as in the case of perpendicular
polygons, the number of interactions is reduced. Finally, as
the two polygons move still farther apart, eventually only a

200

@ @ Computer Graphics, Volume 25, Number 4, July 1991

20001

I ●* ●

●

O ●

o &--
I I 1 I
o 50 100 150 203

S@(N)

Figure 4: Number of interactions vs. number of elements for
a pair of perpendicular polygons.

47

i

● Perpndiculsr Polygons
■ ■

30 ■ ParallelPolygon

‘:~
0.00 0.01 0.02 0.03 0.04 0.05

Reps

Figure 5: Measured relative percentage error vs. Fc.

single interaction is required.
To verify the accuracy of the form factors generated by our

method, we compared the computed form factors with the
analytical form factors which are available for the parallel

i
and perpendicular geometries see, for example, (Siegel and
Howell 1981)). To compute t e form factor between two
finite are=, Refine can be modified to return the sum of the
form factors of a patch’s children or, if the patch is a leaf, the
product of the patch’s area and the differential form factor
to the other patch. Figure 5 shows the measured relative
error between the computed and the analytical form factors
as a function of FC. As ex ected, the actual error in the form

[factor is proportional tot e F< given to Ref tie, as predicted
by the theory. Note that the plateaus in these figures are
due to the discrete nature oft he subdivision.

In summary, our hierarchical refinement method estimates
the form factor matrix between two unoccluded patches to
within a fixed error tolerance automatically . In the process it

(reorganizes the form factor matrix into O n) or fewer blocks;
the estimated form factor associated with each block has the
same value and error as other blocks.

4 Visibility

The pairwise method for computing form factors described
in the previous section is accurate as long as each patch is
com letely visible with respect to the other patch. U nfort u-

!nate y, occlusion exists in all realistic environments, and so
this idealization is not very useful in practice. In this section
we modify the algorithm to take into consideration visibility.

Figure 6: Jittered rays fired between two polygons to deter-
mine the percentage visibility.

Intervening occluding surfaces can only decre- light
transport between two patches, thus, the true form factor
in the presence of occlusion is never greater than the form
factor estimate described above. The effect of occlusion can
be modeled by multiplying the estimated form factor by a
visibility correction factor which estimates the percentage
each patch sees of the other.

F= VeF.

where Fe is the estimated form factor without considering
occlusion, and V= is the estimated visibility. If Vc = 1 then
the two patches are totally visible; if V’. = O then they are
completely occluded; and otherwise they are partially visi-
ble. Thus, assuming no visibility error, the level of detail
for the interaction between twa patches need never be finer
than that computed by the procedure Refine.

Recall that all the form factor estimates computed by
Refine have approximately the same error. This fact has
two important consequences. First, since the form factor
is not precise, the calculation of V, need only be estimated
to the same precision. Ideally, the visibility module should
take into account the precision required; in reality, current
visibility modules probably compute visibility much more
accurate] y than is necessary. Second, since all the visibil-
ity estimates should have approximately the same error, it
is reasonable to perform the same amount of work per esti-
mate. This means that the total number of visibility tests
required is proportional to the number of interactions. The
total amount of work performed is:

T(rI) = F(n)V(n)

k
where F n) is the number of computed form factors and
V(n is t e cost of performing the visibilit test for a given

L (num er of elements. As has been shown, F n) varies at most
linearly with n, so many fewer visibility tests need be done
than with conventional radiosity algorithms.

In our current implementation, we perform two types of
visibility tests. The first visibility test determines whether
two polygons face each other, face away from each other, or
if the support plane of one polygon splits the other. This test
considers only the two polygons and not the environment,
and therefore can be done in constant time. The second vis-
ibility test checks how much of each polygon is visible from
the other polygon given the global environment. The test
fires a fixed number of rays between the two patches, and
computes the percentage of rays not blocked by intervening
surfaces. The same number of rays are fired per interaction,
because all the visibility estimates should have the same er-
ror. Each patch is subdivided into a 2D grid (typically 4x4),
and the cells in the grid are assigned numbers from a magrc
square (Cook 1986). Each ray is really a line segment formed
by joining jittered points within corresponding cells with the
same number as shown in Figure 6. A naive ray intersection
test takes O(n) time. In order to accelerate the visibility
test, we use a modified version of the BSP-tree algorithm,

20 I

: SIGGRAPH ‘91 Las Vegas, 28 July-2 August 1991

Fi
P

ure 7: Hierarchical subdivision, interactions, and visibility. This sequence shows the hierarchical subdivision of each
po ygon, from the smallest elements in the upper left image, up the hierarchy to the largest subpatches shown in the image
at lower right. Line segments link interactin patches, shown at the hierarchical level of the smaller patch. Segment color
indicates vrsibility: whrte - completely visib e, green - partially visible! pink - cut by supporting plane, and dark blue -f
relatively invisible. Note that there are many more visible and invisible lmks than partial.

described in Thibault & Naylor (1987), which in principle
reduces the intersection cost to O(log n). This ray intersec-
tion module recalls shadow testing, because it returns only
whether the ray is blocked or not, and not the closest inter-
section along the ray direction.

Figure 7 shows a simple scene. Induced subdivision is indi-
cated for each polygon, and interactions between subpatches
are illustrated as links. The series shows all links, ordered
by increasing height, within the hierarchy, of the linked sub
patches. Note that large natches interact with other larne
patches that are far awiy,-whereas smaller patches inte&t
with similarlv sized natches at closer distances. This hierar-
chy is most dearly shown in the corners and along the edges
of the room.

A tentative list of interactions was computed by refining
patches relative to each other irrespective of visibility. Each
interaction was then tested for visibility and the form factor
adjusted. In the figure, links between interacting patches
that are completely visible relative to each other are colored
white. Green links interacting patches that are partially vis-
ible with resnect to each other. nink links those for which
one patch’s sipporting plane sp& the other, and dark blue
links those patches whose interactions are found to be com-
pletely occluded (invisible).

Table 1 shows some basic statistics for this scene. Note
that the total number of interactions is only 15526, com-
pared with over 10’. assuming all elements interacted di-
rectly. The total time to compute this picture was approxi-
mately one minute (all times quoted in this paper are on a
SiliconGraphics 210 GTX).

The interactions in scenes such as those shown in Fig-
ure 7 exhibit a great deal of visibility coherence. Fringes of
partial and splitting links tend to surround larger areas of
complete visibility or occlusion (see also Figure 8, below).
Partial visibility corresponds to penumbral areas generated

202

along the silhouettes of an object, which occur less often
than the interior or exterior of an object, although patho-
logical exceptions may be easil

3
constructed. In the scene

shown in Figure 7, (see Table 1 , we find that 52.6% of the
interactions are totally visible, 28.8% are totally invisible,
and only 18.5% are partially visible.

The recursive refinement nrocedure can exnloit visibilitv
coherence in a natural fashion to prune out &necessary re-
finement and visibilitv calculation. If. in the course of sub
division, two subpatches become totally invisible relative to
each other, then the refinement between them can be im-
mediately terminated, significantly reducing the number of
calls to Refine. If two patches become totally visible, there
is no need for further &ibility tests between them, although
further refinement mav still need to occur. Finallv. if two
patches are partially visible with respect to each oth’er, fur-
ther refinement would require additional visibility compu-
tation. However. as natchea are subdivided. their visibilitv
will tend to fall ‘into- the visible or invisible category, onl;
those on the fringes remaining partial. Employing these op
timizations on the scenes shown in Figure 7 cuts in half the
number of rays fired in visibility tests, reducing running time
by fifty percent as well.

The nature of visibility coherence, and the refinement pro
cedure’s use of this coherence, should be reflected in the vis-
ibility test. Total visibility or invisibility are the most com-
mon visibility interactions, and result in immediate pruning
of computation, thus the visibility test shonld quickly de-
tect these cases. Jim Blinn calls this principle triage (Blinn
1990). A partial visibility result simply indicates that fur-
ther visibility computation is necessary lower in the hier-
archy. An precise estimate of percentage visibility is not
required until refinement is terminated and the patches are
to be linked. Thus, for the purposes of refinement, the vis
ibility test need only detect partial visibility situations, not
completely analyze them. Furthermore, it is acceptable to

@ @ Computer Graphics, Volume 25, Number 4, July 1991

‘“’’Wential elements
98

44773
Potential interactions 1002288378

Without vlslbdltv coherence
Patches “ 7286
Elements 5489
Interactions 15526

Totally-invisible 4477 28.8%
Totally-visible 8171 52.6%
Partially-visible 2878 18.5%

1ests
Refinement tests 19117
Visibility tests 11123

Ray teats 177968

W 1th vm bdlt y coherence
Patches 7350
Elements 5537
Interactions 15598

Totally-invisible interactions 4495 28.8%
Totally-visible interactions 8249 52.9%
Partially-visible interactions 2854 18.3%

Tests
Refinement tests 19213

Totally-invisible refines 3600 18.7~o
Pre-Totally-invisible refines o 0.0%
Totally-visible refines 10487 54.6%
Pre-Totally-visible refines 9700 50.570
Partially-visible refines 5126 26.7%

Partial visibility tests 9513
Ray teats 20527

Visib~~tt~t; 4296
Y 68736

Table 1. Statistics for Figure 7.

return a Dartial visibility result if the visibility situation is
complex, ‘as additional subdivision will tend [O reduce the
complexity of the visibility calculation. This is very similar
to Warnock’s visible surface algorithm (Warnock 1969).

The methods used to detect visibility are likely to be more
accurate when patches are totally visible or totally invisible.
When two patches are partially visible, we assume there is
more likely to be an error in visibility and increase the error
in the form factor estimate. This causes increased subdivi-
sion in regions of partial visibility; the cost of this is minor
because they occur so infrequently, however, the benefits are
great because these often arise at shadow boundaries where
there are sharp intensity gradients.

5 Solution Techniques

Once the form factors have been determined, the next step is
to solve for the radiosities. The most efficient way to do this
is to invert the matrix iteratively. Each it erat ion involves
multiplying a matrix times a vector, which normally takes
0(n2) operations. However, because the form factor matrix
is represented with O(n) blocks, each matrix multiplication
can be done in linear time. In this section we give program
fragments that implement the technique of gathering and
briefly explain how to implement shooting. These techniques
are quite similar to the unoccluded case, and we refer the
reader to Hanrahan and %dzman (1990) for more details.

5.1 Shooting and Gathering

The classic Jacobi iteration (which differs from the Gauw
Seidel in that the brightneeeee are not updated in-place) can
be implemented using the following simple recursive proce-
dure.

Gather(Patch *p)
{

Patch *q;
float Fpq;

if(p){
p->llg = 0.0;
ForAlllIlements (q, p->interact ions) {

Fpq = Fox-mFactor(
p->Bg += Fpq ● p->&? ;~>B;

}
Gather(p->sw) ;
Gather(p->se) ;
Gather(p->nv) ;
Gather(p->ne) ;

}
}

The average brightness of each patch is stored in B and
its diffuse color is stored in Cd. The brightness gathered
is stored in Bg, and is computed by receiving energy from
all the patches q stored on the list of interactions of p
(p->interactions).

The total amount of energy received by an element is the
sum of the energy received by it directly, plus the sum of
all the energy received by its parent subpatchee. To update
the energies for the next iteration, all the energy gathered is
pushed down to the leaf nodes, and then pulled upward to-
wards the root polygon. During this upward pass, the radios-
ity of interior subpatches are set equal to the area weighted
average of its children’s radioeitiee. Both theae operations
can be done in a single depth-first traversal of the quadtree,
which takes time proportional to the number of nodes in the
hierarchy.

The r-dioaity equation can be solved by shooting instead
of gathering. All patches in the hierarchy are sorted into a
pri;rity qu~ue has-d on their brightness. -A patch at a time
is taken off the queue, and its energy shot to the patches
that interact with it. This version of shooting, however,
has a much smirdler granularity then the classic method of
shooting used in progressive refinement. This is because in
our algorithm each pat ch shoots light to a constant number
of other patches, whereas in the previous algorithms a patch
shoots light to the entire scene.

5.2 Multigridding and BF Refinement
An interesting variation of shooting or gathering refines the
hierarchy as the iteration proceeds. This is similar to the
idea of multigridding, where a finite difference equation is
solved first at a coarse resolution, and then at successively
finer resolutions. The advantage of multigridding is that the
coarse solution involves a low resolution iteration that can
be performed cheaply. This coarse solution provides a better
starting point for the costlier iterations at the finer resolu-
tions, resulting in fewer expensive iterations before conver-
gence. Multigriddin allows for an even more progressive ra-

%diosity algorithm: S ooting is performed in the early stages
at coarse resolutions to get a rough idea of the image, and
then at successively finer and finer resolutions as the calcu-
lation proceeds.

Multigridding is easily incorporated into the algorithm by
successively refining the mesh with smaller and smaller F{ ‘s.
The procedure Refine is extended to delete the link indicat-
ing a previous interaction at a given level of detail, if subdi-
vision is required. Refine is then called between iterations
to increase the resolution of the grid.

A final improvement to the afgorithm bases the refinement
of two patches on BF; thatis, on the total amount of energy
potentially transported between the patches. The procedure
Refine is extended to use this test for subdivision rather
than F alone. This causes refinement of the mesh to be
put off until energy is actuafly available to be transported,

203

z SIGGRAPH ‘91 Las Vegas, 28 July-2 August 1991

Figure 8: BF refinement. Refinement is based on total energy transport between patches. Thus there are many interactions
with the light sources, and a reduced number of interactions in areas exhibiting less energy transport, such as corners.
White - total visibility, green - partial visibility, pink - cut by supporting plane, and dark blue - total occlusion.

thus saving even more work on early iterations. This works
particularly well in corners which normally contain a large
number of interactions because of their proximity, but tend
to be dark because light must reflect off several surfaces to
reach the inner recesses.

With BF refinement and multigridding, shooting has no
advantage over gathering. Since all interactions carry ap
proximately the same amount of energy, there is no advan-
tage to sorting them based on brightness.

Figure 8 shows the subdivision and interactions based on
a BF error criteria for the same scene as shown in Figure 7.
As in the previous figure, the series shows all links, ordered
by increasing height in the hierarchy. To accentuate the
effect, we have made the two lamps small and very bright.
Note that this causes many more interactions with the lights
than between other parts of the room; all the interactions at
the finest level of detail in the corners are eliminated because
they are inconsequential compared to the light interactions.

Another effect clearly shown in this fi ure is the increased
subdivision along shadow boundaries. Fhis is exhibited in
the first image of the series in the subdivision of the right
wall behind the biplane, and on the floor in the neighbor-
hood of the desk. The second and third images in the series
illustrate the corresponding links; note the spray of inter-
actions rangin
dark blue (occ uded).P

in from white (visible) to green (partial) to

Table 2 gives basic statistics for the scene in Figure 8.
The number of interactions is approximately 10,000, which
is less than the number in Figure 7, even though the number
of potential interactions in this scene is sixteen times greater.

Figure 9 shows a series of iterations using multigriddin
coupled with BF refinement. At the bottom are the induce f
subdivisions, and above the resulting images. The first im-
age shows the initial mesh, the next two images show the
mesh after iterations in which the error has been decreased,
and the final iteration improves the final image, but does not

204

involve decreasing the error in the mesh. Note the gradual
refinement of the ceiling and right wall, as they are illumi-
nated by the lamps and light reflected from the desktop. In
the last im
neighborhoo

e, enough light has been transported into the
3 of the near end of the desk to induce its sub

division. Table 3 gives the error bound for each iteration,
as well as the number of patches, elements and interactions.
Note that the last iteration in which error bound was not
changed does not involve refining, and hence takes much
less time than the other iterations.

@Q Comwter GraDhics. Volume 25. Number 4, Julv 1991

Figure 9: Multigridding and BF refinement.

Table 3. Statistics for Figure 9.

6 Results

Figure 10 shows an example image created by the algorithm.
Al the maximum level of detail, it contains potentially 52841
elements, of which 12635 patches are actually created by re-
finement. Using classical radiosity, this would require 1.4 bil-
lion interactions, whereas the algorithm requires only 20150.
This image was produced in three minutes and fifty-seven
seconds.

7 Summary and Discussion

The radiosity algorithm proposed in this paper drastically
reduces the number of interactions that need to be consid-
ered while maintaining the precision of the form factors that
are calculated. This reduction in the number of form factors
allows much higher-quality imagery to be generated within
a given amount of time or memory. Successively refining
the environment using a brightness-weighted error criteria
leads to a algorithm where the granularity of each step in
the progression is much smaller than in the standard pro-
gressive refinement algorithm. This allows for more control
and faster updates in interactive situations.

The algorithm proposed works best for environments with
relatively few large polygons with high brightness gradi-
ents that require the polygon to be broken into many el-
ements. This is very common in architectural environments,
but there are situations where this assumption is not valid.
The general principles outlined in this paper are still valid in
these situations, but the methods for producing the hierar-
chy and estimating visibility would be quite different. Useful

Figure 10:

205

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

applications fqr such ~gorithms are for rendering volumes
and partlclpatmg media.

One of the emerging themes of realistic image synthesis
is that the geometric aspects of the roblem are becoming
subservient to the optical aspects. fhe optical portion in-
volves numerically solving an integral equation; the geomet-
ric portion involves primarily determining visibility between
the finite elementi used to discretize the equation. Unfor-
tunately, most visibility algorithms developed in computer
graphics were not developed with these numerical calcula-
tions in mind. What are needed are fast algorithms that
compute visibility to within a given precision. Ideally, the
less the precision, the faster the algorithm. Visibility al-
gorithms also need to be developed that consider patch-t-
patch interactions and not just point-t-patch interactions,
as are almost exclusively the case. Fhmlly, what are needed
to take advanta e of the coherence found m typical environ-

3ments are fast gorithms for detecting whether patches are
totsJly visible or totally invisible with respect to each other.

8 Acknowledgements

The authors wish to thank Andrew Appel, Dan Baum, David
Laur, Toby Orloff, Jeffrey Posdarner, and James Winget for
helpful comments. Brian Danella and S.V. Krishnan pro-
vided assistance with modeling and rendering.

9 References

Appel, A.A. 1985) An efficient program for many-body sim-
ulation. SIA h J. SC;. StaL Computing 6(l), 85-103.

Barnes, J., Hut, P. (1986) A hierarchical O(IVlogiV) force-
calculation algorithm. Nature 324, 446-449.

Baum, D. R., Rushmeier, H. E., Winget, J.M. 1989) Improv-
Jing radiosity solutions through the use of an ytically deter-

mined form factors. Computer Gmphics 23(3), 325-334.

Bergman, L., Fuchs, H., Grant, E., Spach, S. (1986) Image
rendering by adaptive refinement. Computer Gmphics 20(4),
29-38.

Blinn, J. (1990) Triage Tables. IEEE Computer Gmphics
and Application, 10(1) 70-75.

Campbell, A.T., Fussel, D.S. (1990) Adaptive mesh gener-
ation for global diffuse illumination. Computer Gmphics
24(4), 155-164.

Cohen, M. F., Greenberg, D.P. (1985) The hemi-cube: A
radioslty ap roach for complex environments.

r
Computer

Graphics 19 3), 3]-40.

Cohen, M. F., Greenber~, D. P., Immel, D. S., Brock, P.J.
(1986) An efficient radioslty approach for realistic image syn-
thesis. IEEE Computer Gmphics and Applications 6(2), 26-
30.

Cohen, M. F., Chen, S. E., Wallace, J. R., Greenberg, D.P.
(1988) A progressive refinement approach to fast radiosity
image generation. Computer Gmphics 22(4), 75-84.

Cook, R. L. (1986) Stochastic sampling in computer graphics.
ACM Tmnsactkms on Gmphics 5(l), 51-72.

Esselinkt E. (1989) About the order of Appel’s algorithm.
Computmg Science Note KE5-1, Department of Computer
Science, University of Groningen.

Greengard, L. (1988) The mpid evaluation ofpotentialfields
in particle systems. MIT Press, Cambridge, MA.

Hanrahan, P., Salzman, D.B. (1990) A rapid hierarchical
radiosity sJgorithm for unoccluded environments. Published
in K. Bouatouch, Photosimulation, Realism and Physics in
Computer Graphics. Springer-Verlag (1991), Reprinted as
Princeton University CS-TR-281-90.

Heckbert, P.S. (1990) Adaptive radiosity textures for bidi-
rectional ray tracing. Computer Gmphics 24(4), 145-154.

206

Malley, T. J.V. 1988) A shathg method for computer gen-
erated images. L aster’s Thesis, The University of Utah

Siegel, R., Howell, J.R. (1981 Thermal mdiation heat tmns-
Lfer. Hemisphere Publishing o., Washington, DC

Sillion, F., Puech, C. (1989 A general tw~pass method for
dintegrating specular and di use reflection. Computer Gmph-

acs 23(3), 335-344.

Thibault, W., Naylor, B. (1987) Set operations on polyhedra
usin binary space partitioning trees. Computer Gmphics
21(4?, 153-162.

Wallace, J. R., Elmquist, K. A., Haines, E.A. 1989 A
ray tracing algorithm for progressive radiosit y.

$)
omputer

Gmphics 23(3), 315-324.

Ward, G. J., Rubhstein, F. M., Clear, R.D. (1988) A ray trac-
ing solution for diffuse environments. Computer Gmphics
22(3), 85-92.

Warnock, J. (1969
1?

A hidden-surface algorithm for
computer-generated alf-tone pictures. Technical Report
TR 4-15, NTIS AD-753 671, Computer Science Department,
University of Utah.

