
STATIC EVALUATION OF FUNCTIONAL PROGRAMS

Gary Lindstrom
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112

U.S.A.

ABSTRACT

Static evaluation underlies essentially all techniques for
a priori semantic program manipulation, i.e. those that
stop short of fully general execution. Included are such

activities as type checking, partial evaluation, and,

ultimately, optimized compilation.

This paper describes a novel approach to static

evaluation of programs in functional languages involving
infinite data objects, i.e. those using normal order or “lazy”
evaluation. Its principal features are abstract interpretation
on a domain of demand patterns, and a notion of function

“reversal”. The latter associates with each function f a
derived function ft mapping demand patterns on f to

demand patterns on its formal parameter. This is used for
a comprehensive form of strictness analysis, aiding in
efficient compilation.

This analysis leads to a revised notion of basic block,
appropriate as an intermediate representation for a normal
order functional language. An implementation of the

analysis technique in Prolog is sketched, as well as an
effort currently underway to apply the technique to
generation of optimized G-machine code.

This material is based upon work supported by the

National Science Foundation under Grant No.

DCR-8506000. Initial results were obtained while the

author was a visiting scientist at INRIA, Sophia-Antipolis,
France.

the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1986 ACM 0-89791-197-O/86/0600-0196 75~

1. Static Analysis and Functional Programming
Many modern “software engineered” languages (e.g.

Ada) reflect a trend toward stronger static program
structure in the interest of enhanced comprehensibility,
run-time security, and execution efficiency. However, an
alternative approach to better engineered languages lies in
functional (and logic) programming languages, where such
features as infinite data types (e.g. streams) and higher-
order functions are central concepts. These features seem
to rely in a fundamental sense on more dynamic concepts
of program organization.

Advocates of functional programming point out that
such advanced features greatly aid program modularity,
reusability, conciseness, and suitability for formal
reasoning, as well as facilitating general purpose parallel
computing. However, these advantages will be unrealized
in practice until efficient implementations of such

languages become available, first on today’s sequential
machines, and later on tomorrow’s parallel architectures.

Efficient implementation of conventional (i.e.
imperative) languages is based largely on extensive static

analysis of programs. Until recently, the dynamic nature
of modern functional languages has impeded effective
static analysis upon them, with a resulting cost in target
code quality. For example, a technological gap has existed

between optimizing Lisp compilers and the best
implementations of normal order functional languages.

Static analysis can be applied to functional programs

to realize benefits similar in many respects to those for
imperative programs, including:

a. Code rearrangement: Predictably constant common

subexpressions &SE’s) can be located, and moved
forward in evaluation order. The motivation for such

“code hoisting” in imperative languages is
suppression of repeated evaluation. The absence of

side effects (i.e., “referential transparency”) makes
this point moot in functional languages. However,
code rearrangement is important nevertheless in the
optimization of evaluation order (see section 2.2).

b. Pre-evaluation: The advantages of static data type
analysis and partial evaluation (e.g. “constant folding”
at compile time) are clearly evident in both language
paradigms.

196

http://crossmark.crossref.org/dialog/?doi=10.1145%2F13310.13331&domain=pdf&date_stamp=1986-07-01

c. Intermediate representation: Functional program-
ming languages have greatly liberalized notions of
evaluation sequencing. Nevertheless, any technique
for their efficient compilation must be based on

some notion akin to that of basic blocks in
imperative languages, i.e. groups of expressions
which can unconditionally be evaluated together.

However, from the perspective of conventional static
analysis on imperative programs, functional programs
present several special characteristics.

a. Control flow through a functional program is very
loosely constrained. Hence its prediction, a relatively

simple matter for imperative languages, becomes a
major goal of static analysis.

b. Given the dominant program structuring role played

by functions, static analysis across functian calls is a
crucial matter, rather than an esoteric specialty, as is
generally the case in imperative languages.

c. While referential transparency makes detection of
constant CSE’s easy, thorough analysis of their

usage patterns under various evaluation orders
becomes a central issue, because:

i. almost all formal parameters are CSE’s, so
inter-functional analysis depends on CSE

analysis, and

ii. the dominant program structuring role played
by conditional expressions means CSE’s shared
across sibling conditional arms must be
carefully considered.

d. Finally, although we are doing static analysis,
functional programming leads us to take a dynamic
or “liberal” attitude toward potential run time errors.
That is, if the value (e.g. data type) of a CSE appears
to be erroneous in one usage, that should not
compromise the legitimacy of other, possibly valid
usages of the same CSE. This is at variance to more
static treatments of errors in imperative languages
(e.g. data type “balancing” across conditional arms).

2. Strictness Analysis
The primary technique for predicting control flow in a

functional language is strictness analysis. That notion is
now receiving considerable attention in the functional
programming community.

2.1. What Is Strictness Analysis?

Strictness analysis involves determining at compile
time sets of expressions which can always evaluated
together. In Mycroft’s seminal paper [Mycroft 801,
attention was focused on detecting “safe” situations in
which call-by-need parameters could be compiled under
call-by-value. Thus a function f(x,, . . . , xt) = . . . is
judged to be strict on formal parameter xi if whenever xi
is undefined (i.e. equals I), then the value of f is
undefined.

This definition involves some subtlety. Notice that we

are not saying that f “always evaluates xi”, simply that
“pre-evaluating xi is safe in the sense that at worst it can
cause an application of f to diverge because xi diverged,
rather than for some other, inescapable reason.”

2.2. Benefits
Strictness analysis can facilitate generation of

functional language object code that is optimized in

several respects.

* On parallel architectures, strictness information can

be used for more aggressive compile-time operator
scheduling resulting in accelerated development of
concurrency at run time [Clark, Peyton-Jones 85,
Tanaka 841.

* On sequential machines such as the G-

machine [Johnsson 841, strictness analysis can lead
to larger basic blocks, thereby permitting better
optimized linear code, e.g. with respect to stack
management and register allocation.

* On any variety of machine, actual parameter pre-

evaluation, whenever semantically sound, can

attenuate the need for run-time context switching
and reduce environment retention requirements.
This can lead to important effects such as in situ
activation record recycling for tail recursion.

2.3. Non-Flat Domains
Experience with modern functional languages has

demonstrated that the notion of infinite data objects is
vital to effective general purpose programming. For

example:

* a functional treatment of I/O can thereby be

achieved, through the representation of channels as
infinite streams;

* parallelism can be enhanced, through the overlapped
production and consumption of data, and

* mutual recurrences, represented as cyclic networks
of functions (e.g. feedback systems [Keller,

Lindstrom 811) can be directly executed.

A number of labels have been applied to

implementation techniques dealing with infinite data
objects, including “lazy”, “normal order”, and “demand-
driven” evaluation, and “suspension”, “early completion”,
“lenient”, and “future” data structures. From a denotational
semantics standpoint, the crucial notion is that the domain
of computation is non-f/at, i.e. involves values that are not
produced full-formed by discrete computational events.

Strictness analysis becomes both more complex and
more valuable when applied to languages computing over
non-flat domains. It is:

* more complex because:

- The analysis must tell us not only “when do
we evaluate?“, but also “how far and in what
directions do we evaluate?“.

197

- Moreover, non-flat domains make functions

polystrict in the sense that their degree of
parameter strictness depends in part how their
results are to be used, i.e. the “pattern of

demand” imposed on each application.

* more valuable because:

- Accelerating the evaluation of data structure
components can dramatically lessen storage
requirements, since environment retention

effects are decreased.

- Access of components can be simplified by
avoiding tests of their evaluation status (at

least), and avoiding a costly context switch to
evaluate the components (at best).

3. Outline of the Approach
We present here an approach to strictness analysis

based on a demand sensitive notion of abstract
interpretation [Cousot, Cousot 77, Mishra, Keller 841.

a. The starting point lies in [Lindstrom 851, which

presents a demand sensitive denotational semantics

for a graph reduction language. The semantic
domain D employed here includes two demand

indicators (simple and exhaustive), as well as generic
atom and error indicators, and recursively formed
pairs of values from D.

b. Using this model, we define a form of static
evaluation, in the following sense. Associated with
each source program function f we define a
“reversed” function f * computing on D. The
collection of such reversed functions derived from a
program can be statically analyzed to determine
lower bounds on demand propagation effects
throughout the program at run time.

c. Special techniques to strengthen the analysis of
these reversed functions include:

i. demand pattern pooling using:

1. least w-w-r bounds in D for
unconditionally shared CSE’s, and

2. the greatest lower bounds in D at CSE’s
shared across sibling arms of
conditionals;

ii. determination of appropriate fixpoint solutions
of recursive equations arising from function
reversal (the least solution is not always the
preferred one!).

d. We show how to exploit coherence within conditional
expressions (i.e. observing that in cond(p, t, e),
we know p holds within L, and -p within e) to
produce stronger strictness results.

e. An implementation in Prolog is outlined for our

strictness analysis method. Logical variables play a
central role in this method. That is, the
accumulation of demand propagation constraints on
a value in D is modeled by successive unifications
on a Prolog term representing approximations to that
value.

f. We demonstrate how this analysis leads to a new
intermediate representation for functional programs,
derived from an applicative version of basic blocks.
Finally, we estimate how this representation can be

used to produce optimized code for the G-machine

implementation of Lazy ML.

Our technique is applied to the class of function
graphs defined in [Keller 801, except that explicit fork
operators are used to indicate CSE’s. Hence each node

has one outgoing (result) arc, except for fork, which has
two. Functions take single arguments, and use tuples to
“bundle” multiple parameters. The details of our sample
language will become clear through examples.

4. The Semantic Domain
We define our domain D in fig. 4-l. A pictorial

rendering of the ordering relationships in a subset of D is

given in fig. 4-2.

The scalar elements of D may be interpreted as

follows.

* I denotes a total lack compile-time information

*

about the value denoted bv an expression.

d represents a compile-time hypothesis or inference
that an expression will be subjected to at /east one

level of evaluation. In other words, an attempt will
be made at run-time to determine if the expression

denotes an atom or a (possibly suspended) tuple.
No expectation is indicated as to which of those two
results will arise (if, indeed, either does --
divergence may occur). Thus d denotes simple,
indiscriminate demand.

* de conveys the information that an expression will
be subjected to an exhaustive evaluation attempt, i.e.
to an atom, or a finite or infinite composition of
tuples of atoms or errors (but with no a priori
expectation of which case, if any, will result). Thus
“call-by-value”, “applicative order”, or “fully eager”

evaluation is indicated; this arises from fully eager
pseudo-operators such as print, and call-by-value
pragmas.

Domain:

D = {I, d, de, a, T] u D X D

Auxiliary domain:

De = {de, a, T] u De X De

Ordering:

I<d
d c de
d < [a,Bl, V a, B 6 D
de I Q, V (1 6 De

[a,f31 I Eu’,f?‘] iff (I I a’ fi p 6 f3r

a I T, VcrrD

Figure 4-l: The domain D.

LT.\
\-*a / *-a /

[[de,del,al [a,al [a, [de,dell
\ /\ /

[@,a] [a,d’l

\... / \I../

[de,del [[l-,-L] ,del 5. Abstract Interpretation on D

I
d /

J-

Figure 4-2: Pictorial rendering of D

* a generically designates all atomic values, including

functions. However, since d < a, it can also be
interpreted as “demand with atomic result
anticipated”.

* T indicates conflicting information on the value of an
expression, i.e. values which are constrained
simultaneously to be atomic and a tuple. This
indicates a rudimentary type error.

D is reflexively closed with pairs, i.e. if (I 6 D and B 6 D,

then [u, a] 6 D. Such pairs model tuple values in D, which
for simplicity we limit here to length two. If d = [Q, 81,
then we refer to (I as the car of 6 and 6 as the odr of 6.

The interpretation of pairs in D is as follows. [I, 11

can be construed as “demand with pair result anticipated”,

Id, 11 as “(same) plus simple demand on the car of the
pair”, etc. In short, values in D may be paraphrased as
being “undefined, demanded (simply or exhaustively),
demanded and anticipated to be atomic, demanded and
determined to be erroneous, and demanded and
anticipated to be recursively defined pairs thereof”.

Note that if (I s De, then (r cannot include any
occurrences of I or d. This reflects our desired
interpretation of de as exhaustive demand, since the
presence of I and d would indicate a weakening of that
commitment to relentless evaluation.

D is similar to the domain used in [Lindstrom 851, but:

a. the two “strengths” of demand included are d and de,

b.

rather than the “assertive” and “non-assertive”

demand required to represent a “narrowing” style of
evaluation, and

T can occur within pairs. This is the customary

treatment of T in non-flat domains; its previous
limitation to being the top element of the domain
was a special requirement for properly handling
unification failures in [Lindstrom 851.

We now explain how D can be used for the static
evaluation of functional programs.

5.1. Function Reversal
Since we are primarily concerned with strictness

predictions, our technique will focus on demand
propagation effects, i.e. control flow from function outputs
to inputs. These demand propagation effects will be

modeled by constraints expressing the abstract behavior
of individually “reversed” operations.

5.2. Simple Function Graphs
Initially, we consider programs using only

unconditional, acyclic, and non-recursive functions. Let F
be such a program, with p(F) its result arc. If Y is an arc in

the graph of F, denote by X(V) the value associated with Y
by our method. Given a hypothesized demand constraint E

I x(p(F)), we can directly compute F’(t) by the rules given
in figs. 5-l and 5-2 for propagating constraints through
the graph of F in the anti-dataflow (demand) direction.

The rule for fork reflects the observation in [Lindstrom
851 that the annotation associated with a CSE generally
must observe the intersected constraints of both usages,
i.e. their least upper bound, or sup in D. Henceforth, we
will denote sup(x ,y) as Ll{x,y). A simple algorithm

exists for computing U{x,y} in all cases; see fig. 5-3.
Examples of the effect of using Ll on CSE’s are given in
fig. 5-4, and the overall analysis result on the simple
example in fig. 5-5 is given in fig. 5-6.

6. Conditional WE’s
When a CSE serves as an operand to a pair of paths

emanating from alternative arms of a given conditional,
the statically determined constraint on the shared operand
should be the maximum common constraint the two
usages present. Moreover, the maximum common
constraint can be inferred to be independent of that
conditional. To capture this, we must generalize our

analysis to account for alternative demand propagation
paths through program subgraphs, splitting at cond nodes
and rejoining at fork nodes.

6.1. Path Contexts
Toward this end, we introduce the notion of a path

context. An arc annotation is now a pair cc, n>, where E
is a value in domain D, as before, and n is a path context
equal to a list of conditional branch records f3,^&-, n ,.. A
8,. A conditional branch record is a pair (P, b), where (I is
a reference to a conditional node in the graph, and b is

199

Y = c:

Precondition:

d s x(v)
Postcondition:

a 5 X(V)

(atomic constant)

“0 = plush, (v*): (representative strict operator)

Precondition:

d s xbo)
Postcondition:

a I x(Y,) A a s x(v,) e a 5 x(Y*)

Y = f(p): (f invoked by name)

Precondition:

d g x(v)
Postcondition:

f’(xb)) s x(p)

Y = applytf, p):

Precondition:

d s x(y)
Postcondition:

a 5 x(f)

bo, “1) = fork(v,):

Precondition:

(none/

Postcondition:

ufxb,), xb,

(f computed)

"0 = cons(vl, ~~1:

Precondition 1:

d d x(vo)
Postcondition 1:

[I, 11 s xb,)

Precondition 2:

de s xbo)
Postcondition 2:

de i x(y) ,. de s xbz)

Precondition 3:

Lx, yl 52 xbo)
Postcondition 3:

x I x(y) A y 52 XbJ

"0 = cat-b,):

Precondition:

d I xbo)
Postcondition:

fxb,), J-1 (- x(q)

(laziness)

(eagerness)

(no strictness on p)

yO = cdr(v,):

Precondition:

d 5 xbo)
Postcondition:

r-L, xbo)l s Xbj)

Figure 5-2: Strictness propagation: pair operators.

Figure 5-l: Strictness propagation: non-pair operators.

Ll II d de a T [a,vl
______------_--------------------------------------
-L II d de a T [a,vl
d I d de a T [a,rl
de 1 de a T [Ufd”,6),Ufd”,rll
a I a T T
T I T T

[u,sl I fuf~,~3,ufe,vl3

d [1,11
fd,Ll CL,al
a r-L,11
f [d,al ,I] [[a,kL,lll,dl
de [I,dl
[a,d”l [[a,ll,[d,dll

Lb11
[d,al
T

ffa,Tl,dl
[de,del
fT,[de,dell

Figure 5-3: sup algorithm.

200

Figure 5-4: Examples of Ll usage.

0 f 3

G twist *

b

twist

43

Figure 5-5: Simple program

either t or e, denoting then arm or else arm. A
conditional branch list can of course be empty (denoted +),
as will always be the case for hypothesized annotations.

D extends in a natural way to deal with these pairs.
The new ordering is <fc, n,,> < <[,, n,> iff r& I [, and

TO = n,. Most of the operators defined in the previous
section retain their definitions, modified to preserve path
contexts in pairs. However, fork, cond and function
invocation have revised definitions, as shown in fig. 6-1.

The net effect is that demand patterns are propagated
through both the then and the else arms of cond nodes.
If they rejoin, they combine to produce their greatest
lower bound or inf in D, i.e. the most general constraint
dominated by both. This reflects the “liberal” attitude

Under to = [[d,ll,dj: Under Ee = de:

E, = [d,eI..l
E2 =a

E3 = [[d,ll,ll

E4 = a
Es = a
fs = El,al
E, = [Cd,Il,al
C, = [a,[d,Lll
E, = [d,ll
E
f:y 1 Ya,ll
C,2 = [I,[d,LII

t1
= de

f2 =a

f3 = [de,11

t4 =a

ES =a

Es = Cl,a1
C, = [d”,al
E* = [a,del

E9
= de

h0 =a

E - [a,11 11 -

E,* = [I,@]

Figure 5-6: Simple example of analysis.

"0 = condtv,, v2, ~1, where

xb,) = <fO,noX

Precondition:

d s E,
Postcondition:

<a, no> 5 x(v,)

<IO, b,thro> 2s xb,)
<to, (a,e)^no> I xb,)
where o refers to this conditional node.

(YO’ y1) = fork(v*), where

xbo) = <Eo, no> ,, xb,) = <E,, nt>:

Precondition 1:

VII = n,

Postcondition 1:

<UiEo, f,), no’ 52 xb,)

Precondition 2:

n0 = (a,t)-n A nl = (a,eh
(or symmetrically)

Postcondition 2:

<nlEo, E,), n’ 5 xb,)

“0 = f(v,), where

v. = <EO,nO>:

Precondition:

d s= f. s. f’ (<Co,+‘) = <E, ,W
Postcondition:

<E,,no’ SC x(q)

Figure 6-l : Conditional constraint propagation.

201

toward data type errors, mentioned in section 1. We
henceforth denote inf(x,y) as ll{x ,y}. Examples of the
effect of using fl on values in D are given in fig. 6-3.

n 11 d de a T b,rl
___--____--
^L III I I I I
d 1 ddddd

de 1 de de de note 1

a I a a note 2

T

rot81 I
T [a,73

rnla,al,nf8,YIl

note I: ntde,[s,rll =
if [a,~1 c De then de else d.

note 2: nia,b,rll =
if [a,71 6 De then de else a.

Figure 6-2: inf algorithm.

a B n~a,sl

[I,dI [a&l CL,11
[1,-l-l a d
a [a,al de

[a,del l[de,del ,a] [de,del

[T,Tl [[d,ll,Tl [[d,ll,Tl

[d,[@,dll [[I,Tl,[d,dell [d,[d,dll

Figure 6-3: Examples of l-l usage.

6.2. Arc Value Sets
There is, however, a slight oversimplification in this

approach, in that it requires cond and fork nodes to

“bracket” each other syntactically. This is an unreasonable
requirement in a functional language where CSE

recognition is aggressively performed, as is almost always

the case. To eliminate this difficulty, we once again
elevate our value denotations, this time to a set level.

Static values associated with arcs are now sets of
designations of the previous form <t,n>. The ordering
induced is:

Our operators (except for fork) are defined as before,
but now apply element-wise. Thus, for example, if ~c =

car+,), and X(Q) = S, then x(Y,) = {c[to,ll, n> (cEg,n> E
S]. fork is simplified to set union, but with a closure
operator applied to its result set S, as shown in fig. 6-4.

Figure 6-4: Closure condition on static value sets.

7. Coherence
It is relatively simple to extend our method to exploit

the coherence information arising from predicate tests in
conditionals, as long as that test has an abstract

interpretation over D. For example, the familiar pattern

cond(atom(v,),Y2,Y3), where y2 and y3 depend on Y, can
readily exploit coherence, since we can add to the

denotation set for Y, the constraints <a,(cr, t)^. . .>, and

CL,.Ll, (a,e)* . . .>. The static analysis on y2 and y3 is

thereby strengthened through the added strictness

information obtained by their CSE sharing of Y,. Fig. 7-l

states the rule in general terms.

“,, = cond(atom(v,) ,v*,Y~)>, where

<EO,ng> s x&)):

Precondition:

d g E.
Postconditions:

Ecd,nc>, <a,(a,t)^r,,>,
~[l,ll,(a,e)Arro>I 5 xb,>

E<t,,(a,t)A~,>l 5 xb,)
E<EO,(~,e)Ano>l’~ x(v,)

Figure 7-1: Coherence in conditionals.

8. Direct Execution on D
For many recursive functional programs, the direct

execution method described above terminates without
further ado because of the demand dissipation effect of
propagation through the non-strictness of cons. This can
be illustrated by the direct static evaluation of the

standard append function (fig. 8-l), under the hypothesized
demand [d,dl (fig. 8-2).

9. Fixpoint Solutions
However, in other cases there is no escape from doing

a fixpoint solution of the reversed function equations,

9.1. Least Fixpoints
Since all our operators are monotonic and continuous

over D, the least fixpoints of these equations are unique
and algorithmically determinable to any desired degree of
accuracy. An example of a least fixpoint solution to the
append example under hypothesized demand de is given in
fig. 9-l.

202

6 append +

Figure 8-l: append example.

9.2. Greater Fixpoints
Taking least fixpoints during static evaluation has the

advantage that all approximations are conservative, in the
sense that all predicted evaluations are sure to transpire
at run time. Thus it is safe use any information gathered
even if the static evaluation must be aborted due to
compile time overruns (which can occur, since D is
infinite).

There are situations, however, in which the least

fixpoint solution is not the optimal solution. An alternative
solution strategy, more “optimistic” in viewpoint, lies in
assuming all functions are fully strict, and collecting
evidence to the contrary. Mechanically, this is done by

assuming de rather than L as the base of our solution
chains.

Given x(Y,) = {<[d,dl,@):

xb2) = {<a,+>3
xb3) = ~<[d,dl,(=,t)>l
x(v,> = I<[d,dl,(a,e)>l

x(Y~) = i<d,P, <a,(=,t)>, <[L.,Ll,(o,e)>l
xb6) = icd,(a,e)>l
xb,) = {cd, (a,e)>l
x(Y~) = ~<[d,-Ll,(=,e)>l
x(v,> = ic[d,ll ,(a,e)>l
x(v,,,) = f<d,(u,e)>l
xb,,) q II

x(q2) = c<[-L,dl,(a,e)>l
x(v,~) = {c[d,dl,(o,e)>I
x(v,~) = {cd,+>, ca,(u,t)>, c[d,dl,(=,e)>)

x&J = i<[d,dl,b,t)s)

x(qfj) = l<[d,ll,b>, <[a,J-l,(a,t)>,
<[[d,dl,ll,(a,e)>}

x(q7) = ~<[l,[d,dll,(~,tbl
x(v,~) = i<[d,ll,$>, <[a,[d,dll,(a,t)>,

<E[d,dl,ll,(u,e)>l

Figure 8-2: Direct static evaluation of append.

Given x(Y,) q {cd’?,+>):

x(vz) = t<a,+>l

x($ = i<de,b,t)>l

xb,) q I@, (a,e)>l

x(Y,) = {cd,@, <a,(o,t)>, <[1,1l,(a,e)>j

x(va) = {<de, (m,e>>l

x(v7) = i<@,(a,e)>l

xbg) = i-dd”,Ll,(~,e)>l
xbg) = I<[d,1l,(a,e>>l

x(v,,,) = i<d,(u,e)>l

xb,,) = {I

x(v,~) = (<[l,dI, (a,e)>l

x(v,~) = {<[@,dl,(u,e)>l

x(v,~) = i<d,b>, <a,(=,t)>, <[de,dl,(u,e)>I
x(q5) = i@,b,t)>l
x(v,~) = i<[d,lf,+>, <[a,-Ll,(=,t)>,

<[[de,dl ,11, (m,e)>I
xb,,) = i<[.J-,del,(a,tb~
x(v,~) = i<[d,ll,P, <[a,d”l,(=,t)>,

<[[de,dl 41 ,(=,e)>I

Figure 9-1: Least fixpoint static evaluation of append.

The advantage of this approach is evident when
append under eager demand is reconsidered. As fig. 9-2
shows, this method concludes that append under eager
evaluation demands a pair of fully eagerly evaluated
arguments. In other words, it can be compiled in this
case using standard Lisp call-by-value methods.

203

Given x(Y,) = {<de,+>]:

x(y2) = E<a,vl
x(Q = I<@,(a,t)>l
X(V,) = E@,(a,e)>l
x(u,) = Ed,+>, <a, (u,t)>, <b-,11 ,(m,e)>l
x(v,) = {<de, (a,e)>l
x(v,) = {<de, (a,e)>l
X(Q) = I<[de,ll, (a,e)>l
x(bJ = tC[de,del ,(a,e)>l

i<d”,(a,e)>l
I<d’,(a,e)>l
I<[l,d”l,(u,e)>l
i<[de,del,(a,e)>l
{<de ,P, <a,(a,t)>, <[de,del,(a,e)>l
{‘de,+>1
{<[de,11 ,O>, <[a,ll,(a,t)>,

<[[de,del,ll,(m,e)>)
IcLL,del,+>~
i4de,del,v, <[a,il,(a,t)>,

<[[de,del,ll,(a,e)>)

Figure 9-2: Greater fixpoint static evaluation of append.

9.3. Termination

Unfortunately, using this stronger form of fixpoint
analysis does not guarantee termination, either. Moreover,
taking de as the first approximation to the strictness result
of all functions means that the method is no longer safe,
either. Given the recent result in [Kieburtz 861, it appears
this dilemma is theoretically inescapable. From a practical
standpoint, it appears that least fixpoints must be used,
along with programmer pragmas to strengthen the
analysis where appropriate.

10. Implementation in Prolog
Static analysis is very often represented via attribute

grammars, by which compile time “semantic” aspects of
program expressions are associated with their syntactic
subtrees. Evaluation is then accomplished by traversal of
the “decorated” parse tree in a manner guaranteeing
complete execution of all attribute functions.

While attribute grammars could be used to express and
implement the method reported here, we have chosen to
use Prolog instead. Our technique involves associating a
I ogical variable with each syntactic subtree, and
constraining that variable to assume monotonically
increasing values in D, largely by simple unification. As
each value becomes stronger, we propagate its effect on
neighboring nodes through their shared constraints, in a
relaxation manner.

Underlying this method is a representation for values
in D using Prolog terms. That is, values in D can be
represented in schematic form, with unbound logical
variables representing value attributes as vet
unconstrained. Of particular interest is the effect whereby
unifying two terms transforms them both to equal their
sup. If the unification fails, they have T as their sup. Fig.
10-l summarizes the representation.

constraint on x replxl

15X x (logical variable)

d<X d(X,Y)
de S x d(X,de(Y))
alx d(X,de(a))
[y,zl 5 x d(X,de(pair(replyl,repfz/)))
T%x d(toP,-)

Figure 10-l: Encoding of D as Prolog terms.

11. Applications to Optimized Compilation
The utility of our method in optimized compilation of

functional languages is now considered.

11.1. Group Compilation of Functions
The method as described is based on consideration of

individual functions. More realistically, groups of functions

will be compiled together, presenting greater opportunities
for optimization. The following steps could be observed:

All functions are individually compiled under the
hypothesis of simple demand.

All possible invocations of each function f are then
collected in order to determine the inf of all
possible demands that have been predicted to be
applied to f at run time. Thus, for example, if every

invocation of f is surrounded by a car, then we can
compile f under the assumption that its minimal
demand is [d, ~1, and perhaps obtain stronger
strictness results on actual parameters at all places
of call on f.

After f is recompiled under this more aggressive
strictness assumption, the stronger strictness results
emerging on its actual parameters are then
incorporated into its places of call. This process is
iterated until ’ convergence occurs or diminishing
returns ensue.

11.2. Basic Blocks in Functional Languages
The focus of this paper on strictness of user-defined

functions is important, but is not sufficient for thorough

exploitation in a real compiler. Put more concretely, what
are we to do during compilation with operators that have
a static denotation of I? Two options appear:

a. Compile these operators under a simple demand
assumption, reasoning that if they ever get executed
at all, they will do so under at least simple demand.
(This, after all, is what current functional language
compilers do!)

b. Reassert demand whenever it dissipates in the
program graph. This establishes new strict operator
groupings, logically separated from those relating to
function entry demand, but equally important from a
code generation standpoint.

204

The latter approach is clearly more sensible, and we

are currently developing it formally. Its essential

characteristics are as follows:

* Instead of initializing the static denotation of each
program arc to I, we initialize it to di, where i is a
distinct integer tag appended to the simple demand
indicator d.

* The strictness constraints expressed previously are
adapted to construct equivalence classes among the
integer tags appended to levels of evaluation in D.
For example, given ~a = cons(v,, Ye), initially all three
of ye, Y,, and v2 would be assigned distinct demand
“origins” do, d,, and d,. However, if y. were to be

constrained by a demand pattern [d3’d413’ then the
strictness equivalence classes (0, 1, 3) and (2, 4)
would result.

* After the overall analysis is complete, operators

tagged with evaluation levels in the same

equivalence class would be combined into a basic
block, and compiled together unconditionally.

* Obvious dominance relationships would be exploited
to generate code reliably assuming pre-evaluation of
operands shared with other basic blocks. Such

relationships include:

a. the basic block in which a tuple is constructed
dominates any basic block in which a

component of that tuple is evaluated:

b. the basic block of a conditional (and its
predicate) dominates the basic blocks of its
then and else subexpressions;

c. the basic block of a function call dominates
the basic block of its an actual parameter, and
so on.

11.3. A Case Study: the G-machine
These ideas are being applied to the construction of

and optimizing compiler for the G-machine. We anticipate
the principal benefit will lie in the suppression of eval
opcodes on expressions determined to be previously
evaluated, by the basic block technique just described.

Also, the prospect of fully evaluating tuple components
whenever possible should greatly economize on stack
manipulations and storage consumption (e.g. saving and
restoring evaluation contexts on the “dump”).

12. Extensions and Future Work
Clearly, much further work remains to be done before

the practicality of this method is established. Specific

areas needing attention include the following:

a. Cyclic function graphs can be both sensible and
highly useful [Keller, Lindstrom 81). We thus desire
to accommodate them in our static analysis method.
The method described does handle them correctly,
but their presence complicates (further) termination
in some cases.

b. More realistic data structures must be considered,
including tuples of length greater than two, and
vectors with run-time indexing.

205

c. Other sustained patterns of demand should be
considered, including perhaps stream demand, which
is lazy on cdr’s, but eagerly evaluates car’s
whenever a pair is constructed.

Application of strictness to logic programming is
very appealing, particularly given the closeness of
this abstract model to that in [Lindstrom 85). One
hoped-for result would be a scientific basis for
deciding how much open coding of unification
should be done in the compilation of, say, each

clause in a Prolog program.

Extension of the domain to represent more detailed

data type information is certainly possible and
desirable. The constraint basis employed here
seems quite compatible with that used in
polymorphic type checking [Milner 78). Indeed,
recent work [Mishra, Stark 851 indicates that the
integration of strong typing and strictness analysis
may be the best way to statically analyze programs
with functional data objects and higher order
functions.

13. Related Work
Strictness analysis of functional programs over non-

flat domains such as this is a very active area. Recent
work has included [Wadler 851, in which a very skillfully
designed finite domain is used; [Hughes 851, which is most
similar to the work reported here, and [Keiburtz, Napierala
851, a formulation in the untyped lambda calculus.

Companion efforts to bring strictness analysis methods
to bear on higher order functions include [Burn, Hankin,
Abramsky 85, Hudak, Young 85, Wray 85).

Acknowledgements
The author is indebted to Gilles Kahn for providing a

productive environment in which to do this work. The
critical comments of John Hughes, Richard Kieburtz, and
Robin Milner are also greatly appreciated. Lal George and

Dowming Yeh have provided valuable commentary and
implementation support.

References

[Burn, Hankin, Abramsky 851
Burn, G. L., C. L. Hankin, and S. Abramsky.
Theory and practice of strictness analysis

for higher order functions.
April 1985.
Dept. of Computing, Imperial College of

Science and Technology.

[Clark, Peyton-Jones 851
Clark, C., and S. L. Peyton-Jones.
Generating parallelism from strictness

analysis.
In Prof. Conf. on Func. Prog. Lang. and

Comp. Arch.. IFIP, Nancy, France,
September, 1985.

:

[Cousot, Cousot 771
Cousot, P., and R. Cousot.
Abstract interpretation: a unified lattice

model for static analysis of programs
by construction or approximation of
fixpoints.

In Symposium on Principles of
Programming languages. ACM, LOS

Angeles, 1977.

[Hudak, Young 851
Hudak, P., and J. Young.
A set-theoretic characterization of

function strictness in the lambda
calculus.

In Proc. Workshop on Implementations of

Functional Languages. Chalmers Univ.,
Aspenas, Sweden, February, 1985.

[Hughes 851 Hughes, J.
Strictness detection in non-flat domains.

Programming Research Group, Oxford.

[Johnsson 841 Johnsson, T.
Efficient compilation of lazy evaluation.
In Proc. Symp. on Compiler Const. ACM

SIGPLAN, Montreal, 1984.

[Keiburtz, Napierala 851
Kieburtt, R. B., and M. Napierala.
A studied laziness -- strictness analysis

with structured data types.
1985.
Extended abstract, Oregon Graduate

Center.

[Keller 801 Keller, R.M.
Semantics and applications of function

graphs.
Technical Report UUCS-80-112, Univ. of

Utah, 1980.

[Keller, Lindstrom 811
Keller, R.M., and G. Lindstrom.
Applications of feedback in functional

programming.
In Conf. on Func. Lang. and Comp. Arch.,

pages 123-130. ACM, Portsmouth,
NH, October, 1981.

[Kieburtz 861 Kieburtz, R. B.
Abstract interpretations over infinite

domains cannot terminate uniformly.
February 17, 1986.
Unpublished note, Dept. of Computer

Science, Oregon Graduate Center.

[Lindstrom 851 Lindstrom, G.
Functional programming and the logical

variable.
In Proc. Symp. on Print. of Pgmming.

Lang., pages 266-280. ACM, New
Orleans, January, 1985.

[Milner 781 Milner, R.

A theory of type polymorphism.
J. of Comp. and Sys. Sci. 17(3):348-375,

1978.

[Mishra, Keller 841
Mishra, P., and R.M. Keller.
Static inference of properties of

functional programs.
In Proc. Symp. on Print. of Pgmming.

Lang., pages 7-21. ACM, January,

1984.

[Mishra. Stark 85IMishra. Prateek, and Eugene W. Stark,

[Mycroft 80) Mycroft, A.

The theory and practice of transforming
call-by-need into call-by-value.

In lnt. Symp. on Prgmming. Springer,
April, 1980.

Lecture Notes in C. S., vol. 83.

[Tanaka 841 Tanaka, J.
Optimized execution of an applicative

language.
PhD thesis, Univ. of Utah, 1984.

[Wadler 851 Wadfer, Phil.
Strictness analysis on non-flat domains

(by abstract interpretation over finite
domains).

November 10, 1985.
Unpublished note, Programming Research

Group, Oxford Univ.

[Wray 851 Wray, S. C.

Strictness and polymorphic type
inference.

September 18, 1985.
Unpublished note, Dept. of Computer

Science, SUNY Stony Brook.

A new strictness detection algorithm.
In Proc. Workshop on Implementations of

Functional Languages. Chalmers Univ.,

Aspenas, Sweden, February, 1985.

206

