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ABSTRACT 

Static evaluation underlies essentially all techniques for 
a priori semantic program manipulation, i.e. those that 
stop short of fully general execution. Included are such 

activities as type checking, partial evaluation, and, 

ultimately, optimized compilation. 

This paper describes a novel approach to static 

evaluation of programs in functional languages involving 
infinite data objects, i.e. those using normal order or “lazy” 
evaluation. Its principal features are abstract interpretation 
on a domain of demand patterns, and a notion of function 

“reversal”. The latter associates with each function f a 
derived function ft mapping demand patterns on f to 

demand patterns on its formal parameter. This is used for 
a comprehensive form of strictness analysis, aiding in 
efficient compilation. 

This analysis leads to a revised notion of basic block, 
appropriate as an intermediate representation for a normal 
order functional language. An implementation of the 

analysis technique in Prolog is sketched, as well as an 
effort currently underway to apply the technique to 
generation of optimized G-machine code. 
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1. Static Analysis and Functional Programming 
Many modern “software engineered” languages (e.g. 

Ada) reflect a trend toward stronger static program 
structure in the interest of enhanced comprehensibility, 
run-time security, and execution efficiency. However, an 
alternative approach to better engineered languages lies in 
functional (and logic) programming languages, where such 
features as infinite data types (e.g. streams) and higher- 
order functions are central concepts. These features seem 
to rely in a fundamental sense on more dynamic concepts 
of program organization. 

Advocates of functional programming point out that 
such advanced features greatly aid program modularity, 
reusability, conciseness, and suitability for formal 
reasoning, as well as facilitating general purpose parallel 
computing. However, these advantages will be unrealized 
in practice until efficient implementations of such 

languages become available, first on today’s sequential 
machines, and later on tomorrow’s parallel architectures. 

Efficient implementation of conventional (i.e. 
imperative) languages is based largely on extensive static 

analysis of programs. Until recently, the dynamic nature 
of modern functional languages has impeded effective 
static analysis upon them, with a resulting cost in target 
code quality. For example, a technological gap has existed 

between optimizing Lisp compilers and the best 
implementations of normal order functional languages. 

Static analysis can be applied to functional programs 

to realize benefits similar in many respects to those for 
imperative programs, including: 

a. Code rearrangement: Predictably constant common 

subexpressions &SE’s) can be located, and moved 
forward in evaluation order. The motivation for such 

“code hoisting” in imperative languages is 
suppression of repeated evaluation. The absence of 

side effects (i.e., “referential transparency”) makes 
this point moot in functional languages. However, 
code rearrangement is important nevertheless in the 
optimization of evaluation order (see section 2.2). 

b. Pre-evaluation: The advantages of static data type 
analysis and partial evaluation (e.g. “constant folding” 
at compile time) are clearly evident in both language 
paradigms. 
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c. Intermediate representation: Functional program- 
ming languages have greatly liberalized notions of 
evaluation sequencing. Nevertheless, any technique 
for their efficient compilation must be based on 

some notion akin to that of basic blocks in 
imperative languages, i.e. groups of expressions 
which can unconditionally be evaluated together. 

However, from the perspective of conventional static 
analysis on imperative programs, functional programs 
present several special characteristics. 

a. Control flow through a functional program is very 
loosely constrained. Hence its prediction, a relatively 

simple matter for imperative languages, becomes a 
major goal of static analysis. 

b. Given the dominant program structuring role played 

by functions, static analysis across functian calls is a 
crucial matter, rather than an esoteric specialty, as is 
generally the case in imperative languages. 

c. While referential transparency makes detection of 
constant CSE’s easy, thorough analysis of their 

usage patterns under various evaluation orders 
becomes a central issue, because: 

i. almost all formal parameters are CSE’s, so 
inter-functional analysis depends on CSE 

analysis, and 

ii. the dominant program structuring role played 
by conditional expressions means CSE’s shared 
across sibling conditional arms must be 
carefully considered. 

d. Finally, although we are doing static analysis, 
functional programming leads us to take a dynamic 
or “liberal” attitude toward potential run time errors. 
That is, if the value (e.g. data type) of a CSE appears 
to be erroneous in one usage, that should not 
compromise the legitimacy of other, possibly valid 
usages of the same CSE. This is at variance to more 
static treatments of errors in imperative languages 
(e.g. data type “balancing” across conditional arms). 

2. Strictness Analysis 
The primary technique for predicting control flow in a 

functional language is strictness analysis. That notion is 
now receiving considerable attention in the functional 
programming community. 

2.1. What Is Strictness Analysis? 

Strictness analysis involves determining at compile 
time sets of expressions which can always evaluated 
together. In Mycroft’s seminal paper [Mycroft 801, 
attention was focused on detecting “safe” situations in 
which call-by-need parameters could be compiled under 
call-by-value. Thus a function f(x,, . . . , xt) = . . . is 
judged to be strict on formal parameter xi if whenever xi 
is undefined (i.e. equals I), then the value of f is 
undefined. 

This definition involves some subtlety. Notice that we 

are not saying that f “always evaluates xi”, simply that 
“pre-evaluating xi is safe in the sense that at worst it can 
cause an application of f to diverge because xi diverged, 
rather than for some other, inescapable reason.” 

2.2. Benefits 
Strictness analysis can facilitate generation of 

functional language object code that is optimized in 

several respects. 

* On parallel architectures, strictness information can 

be used for more aggressive compile-time operator 
scheduling resulting in accelerated development of 
concurrency at run time [Clark, Peyton-Jones 85, 
Tanaka 841. 

* On sequential machines such as the G- 

machine [Johnsson 841, strictness analysis can lead 
to larger basic blocks, thereby permitting better 
optimized linear code, e.g. with respect to stack 
management and register allocation. 

* On any variety of machine, actual parameter pre- 

evaluation, whenever semantically sound, can 

attenuate the need for run-time context switching 
and reduce environment retention requirements. 
This can lead to important effects such as in situ 
activation record recycling for tail recursion. 

2.3. Non-Flat Domains 
Experience with modern functional languages has 

demonstrated that the notion of infinite data objects is 
vital to effective general purpose programming. For 

example: 

* a functional treatment of I/O can thereby be 

achieved, through the representation of channels as 
infinite streams; 

* parallelism can be enhanced, through the overlapped 
production and consumption of data, and 

* mutual recurrences, represented as cyclic networks 
of functions (e.g. feedback systems [Keller, 

Lindstrom 811) can be directly executed. 

A number of labels have been applied to 

implementation techniques dealing with infinite data 
objects, including “lazy”, “normal order”, and “demand- 
driven” evaluation, and “suspension”, “early completion”, 
“lenient”, and “future” data structures. From a denotational 
semantics standpoint, the crucial notion is that the domain 
of computation is non-f/at, i.e. involves values that are not 
produced full-formed by discrete computational events. 

Strictness analysis becomes both more complex and 
more valuable when applied to languages computing over 
non-flat domains. It is: 

* more complex because: 

- The analysis must tell us not only “when do 
we evaluate?“, but also “how far and in what 
directions do we evaluate?“. 
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- Moreover, non-flat domains make functions 

polystrict in the sense that their degree of 
parameter strictness depends in part how their 
results are to be used, i.e. the “pattern of 

demand” imposed on each application. 

* more valuable because: 

- Accelerating the evaluation of data structure 
components can dramatically lessen storage 
requirements, since environment retention 

effects are decreased. 

- Access of components can be simplified by 
avoiding tests of their evaluation status (at 

least), and avoiding a costly context switch to 
evaluate the components (at best). 

3. Outline of the Approach 
We present here an approach to strictness analysis 

based on a demand sensitive notion of abstract 
interpretation [Cousot, Cousot 77, Mishra, Keller 841. 

a. The starting point lies in [Lindstrom 851, which 

presents a demand sensitive denotational semantics 

for a graph reduction language. The semantic 
domain D employed here includes two demand 

indicators (simple and exhaustive), as well as generic 
atom and error indicators, and recursively formed 
pairs of values from D. 

b. Using this model, we define a form of static 
evaluation, in the following sense. Associated with 
each source program function f we define a 
“reversed” function f * computing on D. The 
collection of such reversed functions derived from a 
program can be statically analyzed to determine 
lower bounds on demand propagation effects 
throughout the program at run time. 

c. Special techniques to strengthen the analysis of 
these reversed functions include: 

i. demand pattern pooling using: 

1. least w-w-r bounds in D for 
unconditionally shared CSE’s, and 

2. the greatest lower bounds in D at CSE’s 
shared across sibling arms of 
conditionals; 

ii. determination of appropriate fixpoint solutions 
of recursive equations arising from function 
reversal (the least solution is not always the 
preferred one!). 

d. We show how to exploit coherence within conditional 
expressions (i.e. observing that in cond(p, t, e), 
we know p holds within L, and -p within e) to 
produce stronger strictness results. 

e. An implementation in Prolog is outlined for our 

strictness analysis method. Logical variables play a 
central role in this method. That is, the 
accumulation of demand propagation constraints on 
a value in D is modeled by successive unifications 
on a Prolog term representing approximations to that 
value. 

f. We demonstrate how this analysis leads to a new 
intermediate representation for functional programs, 
derived from an applicative version of basic blocks. 
Finally, we estimate how this representation can be 

used to produce optimized code for the G-machine 

implementation of Lazy ML. 

Our technique is applied to the class of function 
graphs defined in [Keller 801, except that explicit fork 
operators are used to indicate CSE’s. Hence each node 

has one outgoing (result) arc, except for fork, which has 
two. Functions take single arguments, and use tuples to 
“bundle” multiple parameters. The details of our sample 
language will become clear through examples. 

4. The Semantic Domain 
We define our domain D in fig. 4-l. A pictorial 

rendering of the ordering relationships in a subset of D is 

given in fig. 4-2. 

The scalar elements of D may be interpreted as 

follows. 

* I denotes a total lack compile-time information 

* 

about the value denoted bv an expression. 

d represents a compile-time hypothesis or inference 
that an expression will be subjected to at /east one 

level of evaluation. In other words, an attempt will 
be made at run-time to determine if the expression 

denotes an atom or a (possibly suspended) tuple. 
No expectation is indicated as to which of those two 
results will arise (if, indeed, either does -- 
divergence may occur). Thus d denotes simple, 
indiscriminate demand. 

* de conveys the information that an expression will 
be subjected to an exhaustive evaluation attempt, i.e. 
to an atom, or a finite or infinite composition of 
tuples of atoms or errors (but with no a priori 
expectation of which case, if any, will result). Thus 
“call-by-value”, “applicative order”, or “fully eager” 

evaluation is indicated; this arises from fully eager 
pseudo-operators such as print, and call-by-value 
pragmas. 

Domain: 

D = {I, d, de, a, T] u D X D 

Auxiliary domain: 

De = {de, a, T] u De X De 

Ordering: 

I<d 
d c de 
d < [a,Bl, V a, B 6 D 
de I Q, V (1 6 De 

[a,f31 I Eu’,f?‘] iff (I I a’ fi p 6 f3r 

a I T, VcrrD 

Figure 4-l: The domain D. 
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Figure 4-2: Pictorial rendering of D 

* a generically designates all atomic values, including 

functions. However, since d < a, it can also be 
interpreted as “demand with atomic result 
anticipated”. 

* T indicates conflicting information on the value of an 
expression, i.e. values which are constrained 
simultaneously to be atomic and a tuple. This 
indicates a rudimentary type error. 

D is reflexively closed with pairs, i.e. if (I 6 D and B 6 D, 

then [u, a] 6 D. Such pairs model tuple values in D, which 
for simplicity we limit here to length two. If d = [Q, 81, 
then we refer to (I as the car of 6 and 6 as the odr of 6. 

The interpretation of pairs in D is as follows. [I, 11 

can be construed as “demand with pair result anticipated”, 

Id, 11 as “(same) plus simple demand on the car of the 
pair”, etc. In short, values in D may be paraphrased as 
being “undefined, demanded (simply or exhaustively), 
demanded and anticipated to be atomic, demanded and 
determined to be erroneous, and demanded and 
anticipated to be recursively defined pairs thereof”. 

Note that if (I s De, then (r cannot include any 
occurrences of I or d. This reflects our desired 
interpretation of de as exhaustive demand, since the 
presence of I and d would indicate a weakening of that 
commitment to relentless evaluation. 

D is similar to the domain used in [Lindstrom 851, but: 

a. the two “strengths” of demand included are d and de, 

b. 

rather than the “assertive” and “non-assertive” 

demand required to represent a “narrowing” style of 
evaluation, and 

T can occur within pairs. This is the customary 

treatment of T in non-flat domains; its previous 
limitation to being the top element of the domain 
was a special requirement for properly handling 
unification failures in [Lindstrom 851. 

We now explain how D can be used for the static 
evaluation of functional programs. 

5.1. Function Reversal 
Since we are primarily concerned with strictness 

predictions, our technique will focus on demand 
propagation effects, i.e. control flow from function outputs 
to inputs. These demand propagation effects will be 

modeled by constraints expressing the abstract behavior 
of individually “reversed” operations. 

5.2. Simple Function Graphs 
Initially, we consider programs using only 

unconditional, acyclic, and non-recursive functions. Let F 
be such a program, with p(F) its result arc. If Y is an arc in 

the graph of F, denote by X(V) the value associated with Y 
by our method. Given a hypothesized demand constraint E 

I x(p(F)), we can directly compute F’(t) by the rules given 
in figs. 5-l and 5-2 for propagating constraints through 
the graph of F in the anti-dataflow (demand) direction. 

The rule for fork reflects the observation in [Lindstrom 
851 that the annotation associated with a CSE generally 
must observe the intersected constraints of both usages, 
i.e. their least upper bound, or sup in D. Henceforth, we 
will denote sup(x ,y) as Ll{x,y). A simple algorithm 

exists for computing U{x,y} in all cases; see fig. 5-3. 
Examples of the effect of using Ll on CSE’s are given in 
fig. 5-4, and the overall analysis result on the simple 
example in fig. 5-5 is given in fig. 5-6. 

6. Conditional WE’s 
When a CSE serves as an operand to a pair of paths 

emanating from alternative arms of a given conditional, 
the statically determined constraint on the shared operand 
should be the maximum common constraint the two 
usages present. Moreover, the maximum common 
constraint can be inferred to be independent of that 
conditional. To capture this, we must generalize our 

analysis to account for alternative demand propagation 
paths through program subgraphs, splitting at cond nodes 
and rejoining at fork nodes. 

6.1. Path Contexts 
Toward this end, we introduce the notion of a path 

context. An arc annotation is now a pair cc, n>, where E 
is a value in domain D, as before, and n is a path context 
equal to a list of conditional branch records f3,^&-, n ,.. A 
8,. A conditional branch record is a pair (P, b), where (I is 
a reference to a conditional node in the graph, and b is 

199 



Y = c: 

Precondition: 

d s x(v) 
Postcondition: 

a 5 X(V) 

(atomic constant ) 

“0 = plush, ( v*): (representative strict operator) 

Precondition: 

d s xbo) 
Postcondition: 

a I x(Y,) A a s x(v,) e a 5 x(Y*) 

Y = f(p): (f invoked by name) 

Precondition: 

d g x(v) 
Postcondition: 

f’(xb)) s x(p) 

Y = applytf, p): 

Precondition: 

d s x(y) 
Postcondition: 

a 5 x(f) 

bo, “1 ) = fork(v,): 

Precondition: 

(none/ 

Postcondition: 

ufxb,), xb, 

( f computed) 

"0 = cons(vl, ~~1: 

Precondition 1: 

d d x(vo) 
Postcondition 1: 

[I, 11 s xb,) 

Precondition 2: 

de s xbo) 
Postcondition 2: 

de i x(y) ,. de s xbz) 

Precondition 3: 

Lx, yl 52 xbo) 
Postcondition 3: 

x I x(y) A y 52 XbJ 

"0 = cat-b,): 

Precondition: 

d I xbo) 
Postcondition: 

fxb,), J-1 (- x(q) 

(laziness) 

(eagerness) 

(no strictness on p) 

yO = cdr(v,): 

Precondition: 

d 5 xbo) 
Postcondition: 

r-L, xbo)l s Xbj) 

Figure 5-2: Strictness propagation: pair operators. 

Figure 5-l: Strictness propagation: non-pair operators. 

Ll II d de a T [a,vl 
______------_-------------------------------------- 
-L II d de a T [a,vl 
d I d de a T [a,rl 
de 1 de a T [Ufd”,6),Ufd”,rll 
a I a T T 
T I T T 

[u,sl I fuf~,~3,ufe,vl3 

d [1,11 
fd,Ll CL,al 
a r-L,11 
f [d,al ,I] [[a,kL,lll,dl 
de [I,dl 
[a,d”l [[a,ll,[d,dll 

Lb11 
[d,al 
T 

ffa,Tl,dl 
[de,del 
fT,[de,dell 

Figure 5-3: sup algorithm. 
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0 f 3 

G twist * 

b 

twist 

43 

Figure 5-5: Simple program 

either t or e, denoting then arm or else arm. A 
conditional branch list can of course be empty (denoted +), 
as will always be the case for hypothesized annotations. 

D extends in a natural way to deal with these pairs. 
The new ordering is <fc, n,,> < <[,, n,> iff r& I [, and 

TO = n,. Most of the operators defined in the previous 
section retain their definitions, modified to preserve path 
contexts in pairs. However, fork, cond and function 
invocation have revised definitions, as shown in fig. 6-1. 

The net effect is that demand patterns are propagated 
through both the then and the else arms of cond nodes. 
If they rejoin, they combine to produce their greatest 
lower bound or inf in D, i.e. the most general constraint 
dominated by both. This reflects the “liberal” attitude 

Under to = [[d,ll,dj: Under Ee = de: 

E, = [d,eI..l 
E2 =a 

E3 = [[d,ll,ll 

E4 = a 
Es = a 
fs = El,al 
E, = [Cd,Il,al 
C, = [a,[d,Lll 
E, = [d,ll 
E 
f:y 1 Ya,ll 
C,2 = [I,[d,LII 

t1 
= de 

f2 =a 

f3 = [de,11 

t4 =a 

ES =a 

Es = Cl,a1 
C, = [d”,al 
E* = [a,del 

E9 
= de 

h0 =a 

E - [a,11 11 - 

E,* = [I,@] 

Figure 5-6: Simple example of analysis. 

"0 = condtv,, v2, ~1, where 

xb,) = <fO,noX 

Precondition: 

d s E, 
Postcondition: 

<a, no> 5 x(v,) 

<IO, b,thro> 2s xb,) 
<to, (a,e)^no> I xb,) 
where o refers to this conditional node. 

(YO’ y1 ) = fork(v*), where 

xbo) = <Eo, no> ,, xb,) = <E,, nt>: 

Precondition 1: 

VII = n, 

Postcondition 1: 

<UiEo, f,), no’ 52 xb,) 

Precondition 2: 

n0 = (a,t)-n A nl = (a,eh 
(or symmetrically) 

Postcondition 2: 

<nlEo, E,), n’ 5 xb,) 

“0 = f(v,), where 

v. = <EO,nO>: 

Precondition: 

d s= f. s. f’ (<Co,+‘) = <E, ,W 
Postcondition: 

<E,,no’ SC x(q) 

Figure 6-l : Conditional constraint propagation. 
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toward data type errors, mentioned in section 1. We 
henceforth denote inf(x,y) as ll{x ,y}. Examples of the 
effect of using fl on values in D are given in fig. 6-3. 

n 11 d de a T b,rl 
___--____------------------------------------------ 
^L III I I I I 
d 1 ddddd 

de 1 de de de note 1 

a I a a note 2 

T 

rot81 I 
T [a,73 

rnla,al,nf8,YIl 

note I: ntde,[s,rll = 
if [a,~1 c De then de else d. 

note 2: nia,b,rll = 
if [a,71 6 De then de else a. 

Figure 6-2: inf algorithm. 

a B n~a,sl 
--------------------------------------------- 

[I,dI [a&l CL,11 
[1,-l-l a d 
a [a,al de 

[a,del l[de,del ,a] [de,del 

[T,Tl [ [d,ll,Tl [[d,ll,Tl 

[d,[@,dll [[I,Tl,[d,dell [d,[d,dll 

Figure 6-3: Examples of l-l usage. 

6.2. Arc Value Sets 
There is, however, a slight oversimplification in this 

approach, in that it requires cond and fork nodes to 

“bracket” each other syntactically. This is an unreasonable 
requirement in a functional language where CSE 

recognition is aggressively performed, as is almost always 

the case. To eliminate this difficulty, we once again 
elevate our value denotations, this time to a set level. 

Static values associated with arcs are now sets of 
designations of the previous form <t,n>. The ordering 
induced is: 

Our operators (except for fork) are defined as before, 
but now apply element-wise. Thus, for example, if ~c = 

car+,), and X(Q) = S, then x(Y,) = {c[to,ll, n> ( cEg,n> E 
S]. fork is simplified to set union, but with a closure 
operator applied to its result set S, as shown in fig. 6-4. 

Figure 6-4: Closure condition on static value sets. 

7. Coherence 
It is relatively simple to extend our method to exploit 

the coherence information arising from predicate tests in 
conditionals, as long as that test has an abstract 

interpretation over D. For example, the familiar pattern 

cond(atom(v,),Y2,Y3), where y2 and y3 depend on Y, can 
readily exploit coherence, since we can add to the 

denotation set for Y, the constraints <a,(cr, t)^. . .>, and 

CL,.Ll, (a,e)* . . .>. The static analysis on y2 and y3 is 

thereby strengthened through the added strictness 

information obtained by their CSE sharing of Y,. Fig. 7-l 

states the rule in general terms. 

“,, = cond(atom(v,) ,v*,Y~)>, where 

<EO,ng> s x&)): 

Precondition: 

d g E. 
Postconditions: 

Ecd,nc>, <a,(a,t)^r,,>, 
~[l,ll,(a,e)Arro>I 5 xb,> 

E<t,,(a,t)A~,>l 5 xb,) 
E<EO,(~,e)Ano>l’~ x(v,) 

Figure 7-1: Coherence in conditionals. 

8. Direct Execution on D 
For many recursive functional programs, the direct 

execution method described above terminates without 
further ado because of the demand dissipation effect of 
propagation through the non-strictness of cons. This can 
be illustrated by the direct static evaluation of the 

standard append function (fig. 8-l), under the hypothesized 
demand [d,dl (fig. 8-2). 

9. Fixpoint Solutions 
However, in other cases there is no escape from doing 

a fixpoint solution of the reversed function equations, 

9.1. Least Fixpoints 
Since all our operators are monotonic and continuous 

over D, the least fixpoints of these equations are unique 
and algorithmically determinable to any desired degree of 
accuracy. An example of a least fixpoint solution to the 
append example under hypothesized demand de is given in 
fig. 9-l. 
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6 append + 

Figure 8-l: append example. 

9.2. Greater Fixpoints 
Taking least fixpoints during static evaluation has the 

advantage that all approximations are conservative, in the 
sense that all predicted evaluations are sure to transpire 
at run time. Thus it is safe use any information gathered 
even if the static evaluation must be aborted due to 
compile time overruns (which can occur, since D is 
infinite). 

There are situations, however, in which the least 

fixpoint solution is not the optimal solution. An alternative 
solution strategy, more “optimistic” in viewpoint, lies in 
assuming all functions are fully strict, and collecting 
evidence to the contrary. Mechanically, this is done by 

assuming de rather than L as the base of our solution 
chains. 

Given x(Y,) = {<[d,dl,@): 

xb2) = {<a,+>3 
xb3) = ~<[d,dl,(=,t)>l 
x(v,> = I<[d,dl,(a,e)>l 

x(Y~) = i<d,P, <a,(=,t)>, <[L.,Ll,(o,e)>l 
xb6) = icd,(a,e)>l 
xb,) = {cd, (a,e)>l 
x(Y~) = ~<[d,-Ll,(=,e)>l 
x(v,> = ic[d,ll ,(a,e)>l 
x(v,,,) = f<d,(u,e)>l 
xb,,) q II 

x(q2) = c<[-L,dl,(a,e)>l 
x(v,~) = {c[d,dl,(o,e)>I 
x(v,~) = {cd,+>, ca,(u,t)>, c[d,dl,(=,e)>) 

x&J = i<[d,dl,b,t)s) 

x(qfj) = l<[d,ll,b>, <[a,J-l,(a,t)>, 
<[[d,dl,ll,(a,e)>} 

x(q7) = ~<[l,[d,dll,(~,tbl 
x(v,~) = i<[d,ll,$>, <[a,[d,dll,(a,t)>, 

<E[d,dl,ll,(u,e)>l 

Figure 8-2: Direct static evaluation of append. 

Given x(Y,) q {cd’?,+>): 

x(vz) = t<a,+>l 

x($ = i<de,b,t)>l 

xb,) q I@, (a,e)>l 

x(Y,) = {cd,@, <a,(o,t)>, <[1,1l,(a,e)>j 

x(va) = {<de, (m,e>>l 

x(v7) = i<@,(a,e)>l 

xbg) = i-dd”,Ll,(~,e)>l 
xbg) = I<[d,1l,(a,e>>l 

x(v,,,) = i<d,(u,e)>l 

xb,,) = {I 

x(v,~) = (<[l,dI, (a,e)>l 

x(v,~) = {<[@,dl,(u,e)>l 

x(v,~) = i<d,b>, <a,(=,t)>, <[de,dl,(u,e)>I 
x(q5) = i@,b,t)>l 
x(v,~) = i<[d,lf,+>, <[a,-Ll,(=,t)>, 

<[[de,dl ,11, (m,e)>I 
xb,,) = i<[.J-,del,(a,tb~ 
x(v,~) = i<[d,ll,P, <[a,d”l,(=,t)>, 

<[[de,dl 41 ,(=,e)>I 

Figure 9-1: Least fixpoint static evaluation of append. 

The advantage of this approach is evident when 
append under eager demand is reconsidered. As fig. 9-2 
shows, this method concludes that append under eager 
evaluation demands a pair of fully eagerly evaluated 
arguments. In other words, it can be compiled in this 
case using standard Lisp call-by-value methods. 
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Given x(Y,) = {<de,+>]: 

x(y2) = E<a,vl 
x(Q = I<@,(a,t)>l 
X(V,) = E@,(a,e)>l 
x(u,) = Ed,+>, <a, (u,t)>, <b-,11 ,(m,e)>l 
x(v,) = {<de, (a,e)>l 
x(v,) = {<de, (a,e)>l 
X(Q) = I<[de,ll, (a,e)>l 
x(bJ = tC[de,del ,(a,e)>l 

i<d”,(a,e)>l 
I<d’,(a,e)>l 
I<[l,d”l,(u,e)>l 
i<[de,del,(a,e)>l 
{<de ,P, <a,(a,t)>, <[de,del,(a,e)>l 
{‘de,+>1 
{<[de,11 ,O>, <[a,ll,(a,t)>, 

<[[de,del,ll,(m,e)>) 
IcLL,del,+>~ 
i4de,del,v, <[a,il,(a,t)>, 

<[[de,del,ll,(a,e)>) 

Figure 9-2: Greater fixpoint static evaluation of append. 

9.3. Termination 

Unfortunately, using this stronger form of fixpoint 
analysis does not guarantee termination, either. Moreover, 
taking de as the first approximation to the strictness result 
of all functions means that the method is no longer safe, 
either. Given the recent result in [Kieburtz 861, it appears 
this dilemma is theoretically inescapable. From a practical 
standpoint, it appears that least fixpoints must be used, 
along with programmer pragmas to strengthen the 
analysis where appropriate. 

10. Implementation in Prolog 
Static analysis is very often represented via attribute 

grammars, by which compile time “semantic” aspects of 
program expressions are associated with their syntactic 
subtrees. Evaluation is then accomplished by traversal of 
the “decorated” parse tree in a manner guaranteeing 
complete execution of all attribute functions. 

While attribute grammars could be used to express and 
implement the method reported here, we have chosen to 
use Prolog instead. Our technique involves associating a 
I ogical variable with each syntactic subtree, and 
constraining that variable to assume monotonically 
increasing values in D, largely by simple unification. As 
each value becomes stronger, we propagate its effect on 
neighboring nodes through their shared constraints, in a 
relaxation manner. 

Underlying this method is a representation for values 
in D using Prolog terms. That is, values in D can be 
represented in schematic form, with unbound logical 
variables representing value attributes as vet 
unconstrained. Of particular interest is the effect whereby 
unifying two terms transforms them both to equal their 
sup. If the unification fails, they have T as their sup. Fig. 
10-l summarizes the representation. 

constraint on x replxl 

15X x (logical variable) 

d<X d(X,Y) 
de S x d(X,de(Y)) 
alx d(X,de(a)) 
[y,zl 5 x d(X,de(pair(replyl,repfz/))) 
T%x d(toP,-) 

Figure 10-l: Encoding of D as Prolog terms. 

11. Applications to Optimized Compilation 
The utility of our method in optimized compilation of 

functional languages is now considered. 

11.1. Group Compilation of Functions 
The method as described is based on consideration of 

individual functions. More realistically, groups of functions 

will be compiled together, presenting greater opportunities 
for optimization. The following steps could be observed: 

All functions are individually compiled under the 
hypothesis of simple demand. 

All possible invocations of each function f are then 
collected in order to determine the inf of all 
possible demands that have been predicted to be 
applied to f at run time. Thus, for example, if every 

invocation of f is surrounded by a car, then we can 
compile f under the assumption that its minimal 
demand is [d, ~1, and perhaps obtain stronger 
strictness results on actual parameters at all places 
of call on f. 

After f is recompiled under this more aggressive 
strictness assumption, the stronger strictness results 
emerging on its actual parameters are then 
incorporated into its places of call. This process is 
iterated until ’ convergence occurs or diminishing 
returns ensue. 

11.2. Basic Blocks in Functional Languages 
The focus of this paper on strictness of user-defined 

functions is important, but is not sufficient for thorough 

exploitation in a real compiler. Put more concretely, what 
are we to do during compilation with operators that have 
a static denotation of I? Two options appear: 

a. Compile these operators under a simple demand 
assumption, reasoning that if they ever get executed 
at all, they will do so under at least simple demand. 
(This, after all, is what current functional language 
compilers do!) 

b. Reassert demand whenever it dissipates in the 
program graph. This establishes new strict operator 
groupings, logically separated from those relating to 
function entry demand, but equally important from a 
code generation standpoint. 
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The latter approach is clearly more sensible, and we 

are currently developing it formally. Its essential 

characteristics are as follows: 

* Instead of initializing the static denotation of each 
program arc to I, we initialize it to di, where i is a 
distinct integer tag appended to the simple demand 
indicator d. 

* The strictness constraints expressed previously are 
adapted to construct equivalence classes among the 
integer tags appended to levels of evaluation in D. 
For example, given ~a = cons(v,, Ye), initially all three 
of ye, Y,, and v2 would be assigned distinct demand 
“origins” do, d,, and d,. However, if y. were to be 

constrained by a demand pattern [d3’d413’ then the 
strictness equivalence classes (0, 1, 3) and (2, 4) 
would result. 

* After the overall analysis is complete, operators 

tagged with evaluation levels in the same 

equivalence class would be combined into a basic 
block, and compiled together unconditionally. 

* Obvious dominance relationships would be exploited 
to generate code reliably assuming pre-evaluation of 
operands shared with other basic blocks. Such 

relationships include: 

a. the basic block in which a tuple is constructed 
dominates any basic block in which a 

component of that tuple is evaluated: 

b. the basic block of a conditional (and its 
predicate) dominates the basic blocks of its 
then and else subexpressions; 

c. the basic block of a function call dominates 
the basic block of its an actual parameter, and 
so on. 

11.3. A Case Study: the G-machine 
These ideas are being applied to the construction of 

and optimizing compiler for the G-machine. We anticipate 
the principal benefit will lie in the suppression of eval 
opcodes on expressions determined to be previously 
evaluated, by the basic block technique just described. 

Also, the prospect of fully evaluating tuple components 
whenever possible should greatly economize on stack 
manipulations and storage consumption (e.g. saving and 
restoring evaluation contexts on the “dump”). 

12. Extensions and Future Work 
Clearly, much further work remains to be done before 

the practicality of this method is established. Specific 

areas needing attention include the following: 

a. Cyclic function graphs can be both sensible and 
highly useful [Keller, Lindstrom 81). We thus desire 
to accommodate them in our static analysis method. 
The method described does handle them correctly, 
but their presence complicates (further) termination 
in some cases. 

b. More realistic data structures must be considered, 
including tuples of length greater than two, and 
vectors with run-time indexing. 
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c. Other sustained patterns of demand should be 
considered, including perhaps stream demand, which 
is lazy on cdr’s, but eagerly evaluates car’s 
whenever a pair is constructed. 

Application of strictness to logic programming is 
very appealing, particularly given the closeness of 
this abstract model to that in [Lindstrom 85). One 
hoped-for result would be a scientific basis for 
deciding how much open coding of unification 
should be done in the compilation of, say, each 

clause in a Prolog program. 

Extension of the domain to represent more detailed 

data type information is certainly possible and 
desirable. The constraint basis employed here 
seems quite compatible with that used in 
polymorphic type checking [Milner 78). Indeed, 
recent work [Mishra, Stark 851 indicates that the 
integration of strong typing and strictness analysis 
may be the best way to statically analyze programs 
with functional data objects and higher order 
functions. 

13. Related Work 
Strictness analysis of functional programs over non- 

flat domains such as this is a very active area. Recent 
work has included [Wadler 851, in which a very skillfully 
designed finite domain is used; [Hughes 851, which is most 
similar to the work reported here, and [Keiburtz, Napierala 
851, a formulation in the untyped lambda calculus. 

Companion efforts to bring strictness analysis methods 
to bear on higher order functions include [Burn, Hankin, 
Abramsky 85, Hudak, Young 85, Wray 85). 
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