Check for
Updates

OLH:

An On-Line Help Facility for Managing Multiple Document Types
in Their Native Formats in a Distributed Environment

Kevin M. Cunningham
Senlor Technical Writer/OLH Project Manager
Athena Documentation
MIT Information Systems
keunning@ATHENA.MIT.EDU

ABSTRACT

In trying to construct and maintain a useful and comprehensive
on-line help system that organizes all the material available in a
heterogenous distributed UNIX-based environment, our doc-
umentation group encountered three fundamental difficulties in
dealing with existing online documents:

s an incompatible variety of formats
» no central location
« political constraints

Rather than spend our time converting and relocating perfectly
good existing documents, we developed a menu-based help
browser, OLH, that allows us to maintain the documents in their
native formats and in their original locations in a way transparent
to the user. The OLH system:

+» makes all our online documents accessible through a common
interface

» supports on-the-fly conversion of some document types to sup-
port users who can't view the documents in their native formats
(e.g., over dialup)

« allows us to maintain the hardcopy and on-line versions of
many documents in single-source modules

OLH is built on an operating-system-independent database, and
currently has interfaces for devices supporting the X Windows
System and plain-text terminals.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-452-X/91/0010/0012 $1.50

BACKGROUND

ABOUT PROJECT ATHENA

Project Athena at MIT was a major research project sponsored by
IBM and Digital Equipment Corporation to explore distributed
computing on a larger scale than had hitherto been attempted.
The goal was to create a system of engineering workstations
linked on a vast network to central services such as file servers,
printers, and system software servers. The user base for which
Athena was designed was the entire academic community at MIT,
an estimated 10,000 users.

In 1991, Project Athena ended as a funded research project, but
the Athena system continues to serve as the campus-wide academ-
ic computing resource for the MIT community. Currently, about
1,300 workstations in more than 40 clusters are connected to a
campus-wide network, enabling users to communicate over the
system and access their data as well as other resources from file
servers and other machines that are network-connected. About
150 courses in more than 20 departments at MIT require students
to use Athena.

Athena is structured so that a student may sit down at any Athena
workstation on campus, and have access to his or her own cus-
tomized environment and personal files. These files, as well as
the software applications, are located on file servers which are
scattered throughout the campus, but appear to be located on the
local workstation once the user has logged in and his home di-
rectory is automatically mounted.

Athena provides a bridge between the two familiar extremes of
stand-alone personal computers and timesharing machines. Each
user has a dedicated, powerful multitasking computer at his or her
disposal. At the the same time, users access a number of shared
services that would normally be available only on a central facil-
ity.

12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F122778.122782&domain=pdf&date_stamp=1991-10-01

DOCUMENTING THE ATHENA SYSTEM

As a research/development project aimed at constructing a vast
distributed system, Athena has always been difficult to document.
In addition to being a moving target because it was still in de-
velopment, the distributed nature of the Athena system posed a
special problem: where in this vast network of computers were the
information resources?

As an additional complication, in the Athena model not all users
have the same view of the complete distributed system. Rather
than have the entire system directly accessible all the time, each
user adds one or more filesystem subsets (called "lockers”) to his
or her local "world" as desired— so each user has a distinct subset
of the entire distributed system "attached"” to his or her worksta-
tion at any given time. There was no single system to document,

Furthermore, the contents of the various lockers were never cen-
trally registered. So a practically numberless set of new file-
systems could become available, each potentially a repository of a
significant online information resources, yet no-one was keeping
track of their contents from a central point of view. Not even
Athena knew what was "out there"” on the network. How could
even the Documentation group, nevermind the users, be expected
to find all the riches available online?

Even when we stumbled across caches of information, they were
not in the format we were using for our own documents. Instead,
they were in troff format, or were PostScript documents for which
the original Scribe or TeX manuscript files were curiously miss-
ing. We had no way to revise them, or to regenerate them into an-
other format. And we had no mechanism for including them with
the documents we were creating — they were just in a different
format, and we had no way to mix apples and oranges. We had
not yet figured out that we could buiid a crate to put both in,

FIRST ATTEMPTS

Our documentation group made what efforts it could toward pro-
viding useful free hardcopy documents, but there were only so
many topics we could cover given our meager resources. As a
first effort at online documentation, we assembled the PostScript
versions of our documents into a directory online and included a
special document displayer so that users could look at the docu-
ments. Users could also print out a complete document if they
wanted to. The displayer was limited and the results barely accept-
able, but it was a start.

In 1988, the first phase of Project Athena ended, and funds were
no longer available to provide the user community with free print-
ing. This meant both that the Documentation group could not
give away documents anymore, and that users who printed the on-
line versions of documents would have to pay for printing them
(as they now had to pay for any files they printed). Either way,
the users lost big.

We realized that, if Athena was 1o become usable to the com-
munity, we would have to find ways to provide users with access
to information without requiring them to pay for it. For us, that
meant two venues: locked racks of hardcopy documents for each
terminal room, and online documentation.

13

A NEW ONLINE SYSTEM

For online documentation, we realized that we would have to
create a better system than the one already in place: the displayer
was inadequate, and the information was simply a hardcopy docu-
ment placed online. We would need to create more modular doc-
umentation and organize it better. Modular documents would be
easier for users to use online, and smaller documents would cost
less for users to print out (users could find the specific piece of in-
formation they were looking for and just print out that module
rather than a whole document). So we began to think about "on-
line help" rather than simply "online versions of hardcopy docu-
ments”,

Over the course of months, we determined how we would convert
our existing documents into modules. This included not only seg-
regating sections of documents into separate plain-text files, but
also re-thinking how these modules could be assembled in a
menu-oriented system rather than a hardcopy-oriented system.

In starting to build a tree of modular documents, we also thought
about bringing other online resources into the picture. We knew
that there were vast stores of information out there on Athena it-
self, if we only knew where to look. Here at the outset of our de-
sign process we had a great opportunity — to design our new help
system to actually incorporate those other caches of information,
rather than ignore them.

We conducted a survey of online resources, and found nearly a
dozen significant information resources that would be immedi-
ately usable. Unsurprisingly, the information was all in different
formats, and all in different locations.

THE PROBLEM OF HETEROGENEOUS DISTRIBUTED
INFORMATION

Our fundamental problem then was how to make these different
resources easily available to users. Three key difficulties, it
seemed, stood in our way:

« The existing documents were not all in the same format, but
rather existed in an incompatible variety of formats. Each dif-
ferent lode of information had its own eccentric display mech-
anism and storage format. (Among the formats we have to deal
with on a regular basis are plain ASCII, TeX/LaTeX-generated
dvi, Scribe-generated PostScript, Andrew EZ, and troff/nroff.)

« The available documents were not centrally located, but were
instead found in various often obscure locations all over the net-
work. Furthermore, there was no single access point for finding
information (no single command or exhaustive system map).

¢ Even if we had proposals for overcoming the first two dif-
ficulties, the political climate was completely against a standard
solution. Not only were we a meager documentation group hop-
ing to influence "the powers that be" (a dire proposition under
the best of conditions), but the culture forbade a standard solu-
tion. This was a development project after all — people wanted
to continue to explore new ways of doing things, not squeeze
everything into the tried and true (or even the untried but well-
designed).

The result of the problem was palpable — Athena resources were
not being used efficiently:

» Knowledge was not easily shareable among users.

« The time it took to leamn how to use system was very long (how
could you learn about the system when it was so difficult to
even know where to look?)

» Users couldn't easily generalize their knowledge of the system
(they knew what they had learned could just be a nook of the
system, not necessarily something fundamental).

+ Even developers frequently ended up re-inventing the wheel be-
cause they did not share information with each other.

+» There was a general lack of awareness of many available sys-
tem features (even among the Athena staff).

For all these reasons, it was difficult for community-wide "folk
wisdom" to evolve, except for technically-minded hackers. Athe-
na was universally perceived, correctly, as an "insider's system."
And the continued proliferation of isolated caches of information
created an extraordinary drain on the user support services, in-
cluding documentation — how could you possibly support a sys-
tem whose dimensions bordered on the infinite?

In addressing the problem of how to deal with distributed in-
formation that exists in a variety of formats, we asked many ques-
tions: How are documents in such different formats to be accessed
by users without utter confusion? Do we have to instruct users in
all the various commands used to display the documents, or
should we select one format and convert all the documents to that
format, if that's even possible? Is it feasible or desirable to retain
all the documents in their native formats? Should we pick a limit-
ed number of supported formats and ignore documents outside
that format, or is that not comprehensive enough? Can we pro-
vide a unified approach to the various documents, even if they are
in different formats and spread across the network?

CHARACTERISTICS OF A SOLUTION

We did not have the programming resources or political clout to
solve these problems in the "obvious" way (i.e., convert the docu-
ments to a common format, and move them to a common loca-
tion), nor, after some thought, did we even desire this: we did not
want 10 spend our time converting and maintaining perfectly good
existing documents — we just needed to help users get to them.

As the main (but not sole) channel for all Athena-generated doc-
umentation, we knew our system would have to:

- provide a single point at which a user can always go to start a
search for information (this did not imply single locus of in-
formation, or inaccessibility of info by any other means)

« help users find and access the information they need (display
the information or at the very least identify where the in-
formation can be found)

» be useful to all levels of users (not just technical information)

14

* be easy to use for all levels of users (self-evident interface, rea-
sonable response/access time)

» be easily extensible (allowing new information to be added)

« interact smoothly with existing methods for storing and de-
livering information (i.e., not require major revisions to already
existing methods)

- employ a consistent, easy-to-maintain, and easy-to-learn sup-
port methodology (the maintainer's side of the system could not
be prohibitively complex)

* be portable enough that the information could be easily trans-
ferred to an alternative system in the future, if appropriate

* be funny

CREATING OLH: THE ON-LINE HELP FACILITY

With these ideas in mind, we designed a menu-based help browser
and fought for the development resources to implement the sys-
tem. As always in such situations, the resources came to us the
"wrong” way and for the "wrong" reasons, and with appalling
slowness — but they did come. And so, over the course of two
years, the part-time contributions of half a dozen programmers
helped create OLH, Athena’s On-Line Help facility.

One would expect that such haphazard contributions would pro-
duce a mess, and typically that is true. But in the case of OLH,
the documentation group maintained a very strong presence at
every stage in the development process. The key was evolving the
specifications for the software within the documentation group,
taking lots of feedback on the proposal (technical expertise from
the developers was very important here), and making sure that the
final say for the development of the system was with the "buyer"
(i.e., the documentation group), not the "seller” (the development
group).

This product orientation in the development process was anom-
olous and troublesome even by Athena standards. OLH was one
of the very few projects for which the Project Manager was not ei-
ther in upper management or in the development group itself.
Having the managerial center in an "outside" group made it dif-
ficult to get strong support for the project at certain critical points.
Not only were we contradicting the cultural idea that "develop-
ment knew best", but, more importantly, we were facing the tre-
mendous inertia of the idea "nobody cares about documentation
— we have bigger technical problems to tackle". Furthermore,
this was a research project — the idea that development should
produce a program according to design was at odds with the most
fundamental approaches of the hacker mentality ("built it first,
play around, then sece what you've got™).

But through persistence and clarity of vision, we eventually ob-
tained the resources we needed, and the expertise of several ex-
cellent programmers. And OLH, though still incomplete relative
to its complete design, was finally created.

THE OLH SYSTEM

ABSTRACTION OF THE DOCUMENT HIERARCHY

The key to OLH's success in dealing with the problem of distrib-
uted information is that it is built on an abstract operating-system-
independent database. The hierarchy of menus and documents is
not based on the actual file locations, but is instead abstracted.
Each online document is given a unique identification in the data-
base, and it is these ID's that are organized into a hierarchy — the
files themselves can be anywhere on the system. For example,
here is the database information for one document:

type DOCUMENT

node-id dialup_stepl

label Step 1 -- Seuting Up Your Terminal and Modem
keywords terminal:modem:dialup:communications software
primary-parent account:dialup_menu

file-location /mit/logos/olh/Account/dialup/stepl.olh
filesystem logos

file-format ez

author Kevin Cunningham

maintainer kcunning

This module is known to OLH as dialup_step1, even though the
operating system knows it as /mit/logos/olh/Account/dialup/
stepl.olh.

In fact, the most difficult tasks for the maintainers of OLH were
gathering the information they needed to load the database in-
formation, and designing an intelligent hierarchy of all the Athena
information. In other words, the hard part was finding everything
and making sense of it all, which are intellectual problems, not
software issues. Once those tasks are addressed, the maintenance
of OLH is, in principle, extremely simple.

(Unfortunately, one of OLH's biggest weaknesses at this time is
the tack of an easy-to-use interface for loading database in-
formation. Currently the maintainers must edit database files by
hand, and perform all the integrity checking mentally. The work
is all extremely simple, but it is time-consuming. Because this is
not a user-visibie problem, this limitation of OLH has not re-
ceived the development attention it needs — and will have to get
before OLH becomes a viable program for exporting to other sites
— but it is the highest development priority for OLH when re-
sources become available.)

OLH DOCUMENT DISPLAY CAPABILITIES

OLH's database abstraction addresses the problem of distributed
documents. The other key element of OLH is how it addresses the
problem of heterogeneous document types.

Rather than try to force all documents into a standard type, which
would involve resources we did not have, we decided to show
documents in their native formats. We were able to do this by
identifying each document in terms of what type of viewer is ap-
propriate for it. One of the pieces of information gathered into the
database about each document is its file format. The list of rec-
ognized file formats is also abstracted elsewhere in the database
(it is trivial to add a new file type).

15

For example, one document style we recognize is latex, that is, a
document generated using the LaTeX macro package of the TeX
formatter. Such files usually have the file extension ".dvi". In our
database of file-formats, we have the following entries for latex:

type FILE-FORMAT

label Files in LaTeX .dvi Format
node-id latex

tty dvi2ity $file | more

X xdvi -geometry -0+0 $file
Iptin dvi2ps -r $file | 1pr
PostScript dvi2ps -r $file | 1pr

edit emacs $file

When the user selects a document that happens to be in the latex
format, OLH checks the file-format database and determines what
command it needs to use to startup the appropriate displayer for
the file. If OLH were running X windows, OLH would call the
xdvi program. If it were on a terminal-like (tty) display, OLH
would use the dvi2tty program to convert the file to a plain-text
form and then display it using a plain-text scrolling program like
more.

LEAVING DOCUMENTS IN THEIR ORIGINAL FORMATS

When we originally considered showing documents in their native
formats, our collective aesthetic sense rejected the idea instantly --
"What an ugly thing, to show a plain-text file, a PostScript file,
and a LaTeX file on the same screen! a brutal clash of styles
presented by the Documentation group itself! No, no, we would
have to convince all the people writing online documents to

move toward a common format, then we could show all the
documents...."

But we quickly realized that this idea involved a mistaken orienta-
tion toward Athena and distributed computing. We were still hop-
ing that Athena would turn into some homogeneous complete
computer system that we could document, something like the
computer systems we used to work on or that existed elsewhere
(like the Macintosh). But Athena was anything but this wished-
for unified system, and was unlikely to suddenly standardize itself
before our eyes in the time it would take us to create our help sys-
tem.

And as we thought about it, we realized that it made sense for the
document delivery system to show different documents as they
had been created. This would reflect the way Athena really was
(which in itself is an important lesson for users), and showing the
document as written perhaps best reflected the intentions of each
document's authors (who had presumably selected the particular
format for their own aesthetic reasons).

This was not to say we should not organize the material. The
OLH menus should be standardized, but that had nothing to do
with the display types. This important distinction between the
browser (the map to the information) and the displayers (the ac-
tual presentation of the information) was rigidly maintained
throughout the design process, and is a fundamental principle of
the resulting OLH.

One other notion also eased our minds: certainly we would like to
drive people to start using the same formatting tools, for unity of
presentation, but how could we achieve this goal? Our own aes-

thetic convictions were not going to be enough to convince some
system programmer elsewhere on the network to use our formatter
of choice. But, if we presented all the documents in one place,
perhaps this vivid presentation of clashing styles would touch the
aesthetic sense of these other writers and they would naturally
want to move toward standardization.

And if they didn't, maybe standardization of presentation was not
that important anyway.
CALLING OLH

To start OLH, an Athena user can simply type the following at the
system prompt:

help
Called without arguments, the help command brings up the initial
OLH menu. OLH currently has interfaces for devices supporting
the X Windows System and plain-text terminals.

If the user is on a workstation running X Windows, a version of
OLH based in the Motif toolkit appears as a separate window:

Athena On-Line Help Service (OLH)

{I;‘xle Search Options Suggest Help

iDocumentation Browser Main Menul

I* Athena Announcements, Rules, and Policies
2* System News and Release Notes

J* Gething Started on Athena

Understanding the Athena Systemn

5* Managing Your Athena Account

6* Working with Files and Directories

™ Using X Windows

8* Printing

9 Communicating with Other Users

10* Text Processing (editing and formatting)

11* Data Analysis and Plotting

12 Graphics

13 Other Available Applications Software

14* Programming on Athena

15* MIT Courses on Athena

16* Decumentation Archives (OLC answers, Athena docs, etc.)

{View Previous| | View Selected | | View Next|

Copyright © 1990 Massachusetis Institute of Technology XOLH v1.0 Quit]

If the user is not on a workstation running X Windows {e.g., if the
user has remotely logged into Athena via the network, or if the
user has dialed in to one of Athena's dialup servers), a version of
OLH based in the curses terminal-oriented interface appears:

— Project Athena On-Line Help Service ——

To choose & topic. type 1ts nunber and press the Return key.
| Additionally. vou can use the arrow keys to move and select 1tems
] Press the "?° key for help, Press the 'q” key to quit.

Tlocumentation Brouwser Marn Henu

1¥ Hthena Hnnouncemente. Rules. and Policies
2% System News and Release Motes
3% Getting Started on Rthena
4% Understanding the Athena Sustem
5% Managing Your fthena Hecount
E% Working with Files and Directories
7 Using ¥ Windows
8% Printing
9% Communicating with Other Users
1(% Tert Procecsing rediting and formatting’
11% Dlats Analycls and Plotting
12 Graphics
More topiee below (press SFC:

1 tiumber:

|Copyright (o> 19% Massachusetts Institute of Technology OLH w0

A user can also force the terminal-oriented version of OLH to ap-
pear on a workstation that is running X Windows by the following
command:

help -tty

For the X-based version of OLH, users can also use the -internal
or -external flags to select whether OLH should use the built-in
information viewer (a plain text viewer) or to call external viewers
{e.g., EZ for EZ-based documents, xdvi for LaTeX documents,
etc.) External viewers display the help information in its original
format, but they have the disadvantage of taking up more memory
and being slow to start up. By default, OLH uses external viewers
if they are available (and if the processor is sufficiently powerful
to run them without trouble). On smaller workstations, OLH uses
the internal viewers by default.

Users can also specify a keyword or module-identification string
to have OLH go directly to a specific topic. For example, the fol-
lowing command brings the user to the OLH entry that has been
mapped to the keyword printers (or to a menu of choices if there
are multiple modules mapped 10 this keyword):

help printers
The following command brings the user directly the the module
that OLH knows as the sending module in the group of modules
concerning electronic mail:

help @email:sending
The help command relies on several other commands, configura-

tion files, and database files, but these are transparent to the user
and so will not be described here.

OLH FEATURES

OLH has many features to help users navigate through the docu-
ment hierarchy. (The following examples are taken from the Motif
version of OLH, but all of the features listed that are not directly
related to window capabilities have equivalents in the terminal-
oriented version of OLH as well.)

The main browser window of OLH lists the current menu of top-
ics. Above the menu is a label indicating where you are in the
help tree. The topics themselves are numbered, and any items that
are actually submenus are indicated with asterisks.

To select an item, you can simply double-click on it, or you can
single-click on it then click on the View Selected button. To auto-
matically go through topics in the order listed (i.e., to read them as
if they were sections in a document), you can use the View Next
button repeatedly. View Previous provides the reverse order.

If you enter a submenu, the Step Up Menu option allows you to
return to the menu from which you got to the current menu. You
can determine where you are in the hierarchy by clicking on the
menu label itself; a list of the menus you have traversed down-
ward from the main menu is displayed. You can retum to any of
the intervening menus directly by moving the cursor to that menu:

it .

Athena On-Line Help Service (OLH)

™} Documentauon Browser Main Menu

Managing Your Athena Account
gHow to Dial into an Athena Account I

Introduction

How Does a Dhalup Session Differ from a Window Session?
Step | — Selting Up Your Terminal and Modem

Step 2 — Connecting Through the Modem Pool to a CPT Call-Router
Step 3 — Logging ints an Athena Dialup Server

Exiting the Dialup Session

Zephyr Over Dialup

YT200 Terminals and Dialup

Questions or Problems

10 Summaryof Important Dialup Information

{1* Answers to Common Questions about Dialup

00 -1 Oy U & €0 N e

{View Previous| | View Selected {View Next

%S!ep Up Menul
§Quitl

Apart from these navigational tools, OLH offers other tools to
help users to get around the menus and make use of the docu-
ments.

The File menu offers options for working with modules apart
from viewing them. You can send the currently selected module

17

to the printer of your choice, or copy the module to a file, with a
name that you choose. You can also show database information
about the currently selected module, such as the date the module
was last modified, who wrote it, and where it is located on the sys-
tem:

T :
™ On_Line Help {1
Athena On-Line Help Service (OLH)

[I—
; File Search Optons Suggest Help |
Info on module "Minicourse Schedule”
label Hinicourse Schedule
polnter news:minicourse_schedule
—- pownter info —-—
tupe DOCUHENT
node-1d minicourse_schedule
label Minicourse Schedule
keyuwords minicourses

Pr 1mary~parent
f1le-location

newetschedules_menu
/m1t/1ogos/olh/System_News’schedules minicourse_schedule

f1lesystem logos

file-format plain_text

author Kevin Cunningham
maintainer keunning

ot fy-date Fri Har 22 16:13:06 1991

T i View PTevious| [view Selecied] 1visw TIESH TSP UP Mé'ﬁul
] Quit
e

The Search menu currently offers only one option, Keyword
Search. This presents a menu of currently-recognized keywords,
and a box to enter a keyword:

j=

N
_
-

OLH Keyword Search .

account

accounts

i Andrew

i answers

f Athena, introduction
H

[
ce
color workstations
common questions
¥ configuration files
console windowr
datx analysis
bdatop |
discuss
documentation
¥ dotfiles ¢
* editing :
* emacs
* email

Enter keyvrord or token id: l

(Go to selected l
i {Cancel !

You can either scroll through the menus and select a keyword us-
ing the mouse, or you can enter a keyword in the dialogue box.
As you type the letters in the box, the menu of keywords will
scroll to the keyword that matches the letters you are entering.
(You can also enter a module-identification string at the keyword
box.)

When you select the keyword of interest, the keyword menu dis-
appears and the OLH browser switches to the menu containing the
topic associated with the keyword you chose. If you chose a key-
word associated with a text module, that module is automatically
displayed.

The keyword menu is like any other OLH menu — keywords that
have several associated topics are indicated with an asterisk. If
you select such a keyword, an intermediate keyword menu is dis-
played.

The Options menu offers you miscellaneous options. The Ex-
ternal Viewers option toggles the behaviour of OLH between the -
internal and -external flag behaviour noted earlier. If you find that
your machine doesn't have enough memory to support the full for-
mat-oriented viewers, you can still have a window version of
OLH running, but the documents (where possible) will be con-
verted 1o plain text and shown in the built-in OLH plain-text
viewer.

The Suggest menu lets you give your feedback about OLH or
some document that you have displayed via OLH, so that prob-
lems can be corrected or new features added:

-) Olh Suggestion e Lalat

Type the text of your suggestion Press "send” button to mail it "cancel” to discard it.

b i
There 1¢ a mistake in the module on Dialup. H
Red Ruder 12 no longer supported on Hthena.

Thanks. H
—kevin

i

anncell

Both options bring up a text-editing box so that you can create a
message and send it to the OLH maintainers. When the message
is sent, the location of the user in the help tree is automatically
added to the message, to help the maintainers in case the user ne-
glects to put detailed information about what module is affected.

The Help options give information about how to use the help win-
dow and the other options.

18

OLH DOCUMENT DISPLAY CAPABILITIES

As explained earlier, when the user selects a document that hap-
pens to be in a particular format, OLH checks the file-format data-
base and determines what command it needs to use to startup the
appropriate displayer for the file. If the workstation were running
X windows, OLH would call a window-oriented displayer; if the
user were at a terminal-like display (e.g., dialup), OLH would
convert the file to a plain-text form (if possible) and then display
it using a plain-text scrolling program.

If the user had selected the -intemnal flag in calling OLH, the pro-
gram would likewise convert the file to plain-text, but would send
it to the built-in text viewer that the X Version of OLH has.

For some document types, there is no program on the system to
convert the document to plain-text (e.g., Athena has no program
to convert PostScript documents to plain text). For documents of
this type, if the user is on a terminal-oriented screen, OLH simply
puts up a message saying it can't display the document; if the user
is in an X session but has selected -internal, OLH still calls the
PostScript previewer (-internal means "show documents as plain
text if possible™). In other words, OLH does what it can.

Documents are shown in their native format by running separate
programs that produce separate windows appropriate to that for-
mat:

I

- % sjezviewer ———lo&os/nlh/AccmmUd_Eup/stepl.olh“" -

ezviewer “are.

jtep 1; Setting Up Your Terminal and Modem

To dial into the system, you need a terminal device and a modem (and of course, a
working phone Ime!) Dependmg on how your termmnal and modem are related to each *
other, you may also need various cables (e.g, an RS232 cable to connect the termmal N
and modem)

TERMINAL. The termmal can be erther an actual termmal, such as a VT100, or &
puter that can at L, such as a Macintosh or IBM PC with Kermit,
ProCumm, Red Ryder, White Knight, or Versaterm commumications software. For
dialmg mte Athena, you should try to have a t ! or comp that one of
the terminal types listed in Athena’s /etcitermcap file. VT100 emulabion is
re.comme_nded, smce many programs such as Iri and emacs do a thorough job of
g for slow ctions when VT100 emulation is avaflable. (If you are using a
VTZZU or VT240 termmal emulator, you may want to read the module VT200
Terminals and Dialup.)

at

Tate

MODEM. There are two different kinds of modems a modem built directly into
terminal-emulatng computer (an “mternal” modem) or 2 modem distributed as a
separate piece of equipment (an "extemal” modem). Note that an MIT digital phone, a
large black desk set with numerous buttons, contams an element that functions as «
modem, so if you are usmg one of these phones you should treat the phone itself as an
“external modem®, cven if you have a buit~in modem in your termmal-emulatng
computer

CONFIGURING YOUR DEVICES. Before you can connect to the dialup service,
youmust meke sure that your terminal and modem are configured correctly

ANALOG CONFIGURATION. Fer a standard termmal—modem setup over a regular
(analog) telephone line, you should use the followmg settmgs

Parameter Setting
Data Bits § data bits
Stop Bits 1 stop bit

Plain-text documents are shown in a separate window created by
the main program (i.e., not spawned separately). For example,
here is the same document as shown above, as it would be dis-
played if the user had selected the -internal flag (this document
type, ez, can be converted to plain text):

)

e] On-Line Help Text

Step 1-- Setting Up Your Terminal and Modem

Step 1: Setting Up tYour Terminal and Hoden

To dial into the system. you reed a terminal device and & wodew . and of

cource. a working phone linel' Depending on how your terminal and modem are H
related to sach other. you may alse need various cables we,g.. an RCEC cable (|
to connect the terminal and modem),

TEPHINAL., The terminal can be erther an actual terminal. such ac a YT, or
a computer that can emulate o terminal, such ac & Macintoch or IBM FL with
Kermit, Prolemm. Fed Ruder . Mhite Frught. or Versaterm communication:
software, For dialing into Rthena, wou chould tru to have & terminal or
computer that emulatez one of the terminal types listed in Hthens's
‘etc/termcap file, WT100 emulation 1s recommended. since mary program: cuch
ac rrnn and emacs do a thorough job of optimizing for clow connection: when l
WT10 emulation 1z available. (If you are using & WT220 or MT240 terminal 4
emulator . you may want to read the wodule YT200 Terminals and halup.

HODEM, There are twe different kinds of modems: a modew built directly into z
termnal-emulating computer {an “internal” modem} or a modem dictributed az &
separate prece of equipment (an “enternal” modem), Hote that an HIT digital

phone. & large black desh set with mumerous buttons. containz an element that
functions as & modem, so 1f wou are using one of these phones wou chould treat
the phore 1tself as an "external modem”, even 1f you have a built-in modem an |
your terminal-emulating computer.

CONFIGUPING YCUF BEVICES. Before you can connect tu the dialup cervice. vou s
must make sure that uour terminal and modem are cond 1gured correctly,

ANHLOG COWFIGURATION., For & ctandard terminal-modem setup over a regula
vanalog: telephone line. you chould use the following settinge:

lr

g ‘Close Wmdn’-vl

2

In addition to the Close Window button and scrollbar, the built-in
plain-text OLH window supports many Emacs-style key bindings
for moving around the window.

SINGLE-SOURCE MAINTENANCE

For users, OLH is a piece of software. We in Athena doc-
umentation tend to think of OLH as a complete system for ef-
ficiently creating, maintaining, and delivering online and hard-
copy documentation. OLH was not just a solution to an
intellectual problem about collecting distributed information — it
was a very practical approach toward streamlining our work.

In implementing our design goals for OLH, we were able to in-
clude certain features that make the OLH system particularly easy
to maintain and useful to our writers:

« OLH allows us to generate the hardcopy and on-line versions of
many documents from a single source.

* OLH supports on-the-fly conversion of some document types to
support users who can't view the documents in their native for-
mats. This effectively allows single-source control of formatted
and plain-text versions of documents.

19

For many documents, therefore, OLH allows for single-source
generation of three delivery types: hardcopy, formatted online,
and plain-text online.

One of the keys to this was the evolution of an effectively
WYSIWYG (What You See Is What You Get) text formatting
program named EZ, originally developed at Carnegie Mellon and
championed by an Athena developer.

Unlike other WYSIWYG-like programs, EZ not only shows for-
matted text on the screen, it also automatically refreshes the text
layout of a document to match the dimensions of a window. This
makes EZ useful for arbitrary placement and sizing on a worksta-
tion screen. And EZ documents can also be converted to plain
text on the fly, making it exceptionally useful for the ity version
of OLH (e.g., dialup).

Because we in the Documentation group create most of our docu-
ments using EZ, all Athena users can have access to our official
documents no matter what kind of system they are using. And our
documents, in any case, retain a stylistic consistency.

ASSOCIATED HARDCOPY TOOLS

Along with the OLH browser program, we have also created sev-
eral tools to help us automatically take OLH modules and as-
semble them into full documents. These tools are not yet fully in-
tegrated into the OLH system, but are worth noting to show how
OLH can serve as the basis for a complete document-generation
system, even though it is not itself a text-processing tool.

First of all, we maintain cover pages and copyright pages, as well
as separate style template files, as separate modules that are not
shown in the menu browser. When we need to create a document,
we use special concatenation programs to collect a specified set of
modules into one large file (we use the UNIX Make utility and an-
other EZ program named datacat). We can then preview the re-
sulting file online and note any small formatting problems (bad
page breaks, etc.) We fix these problems in the large file, review
it, then send it to a printer. And that's it: camera-ready copy.

If we find any factual errors, we fix the initial modules and re-
make the master file (the Make program assures that the latest ver-
sion of the files are used; we don't have to check on this, we sim-
ply issue a command such as "make all").

THE FUTURE OF OLH
CURRENT PROBLEMS

The current version of OLH has one problem that needs to be
fixed immediately: the way Keywords are implemented in the da-
tabase makes it extraordinary slow to bring up the keyword list if
there are many (> 100) keywords in the database. At Athena, we
have simply not added new keywords, and know a solution, but
we are waiting for development resources.

NEW FEATURES

OLH as it is currently implemented is fairly robust, but it does not
yet include all of the features that were part of its original design.
Some of the features were prototyped but left out of the current re-
lease for technical reasons. Others were never coded.

Among the features we plan to add when development resources
become available are:

» a fully-featured interface to help automate the task of adding
new modules/menus to the system

« automatic database generation/integrity-checking programs

* a "bookmark" capability, whereby users can "mark" modules
they refer to frequently and jump directly to those modules

» a history capability, to keep track of where a user has visited in
this OLH session to make it easy to retumn to a module already
looked at

« a search capability in the built-in plain text displayer (some of
the displayers already have this feature, OLH's built-in displayer
does not yet)

« improved conversion scripts to support more documents in
plain-text style

IMPROVEMENTS

In addition to adding new features to OLH, we would also like to
improve the way OLH is currently implemented. Our original im-
plementation included some concessions and inefficient code that
could stand to be re-examined:

» The database routines were coded quickly and inefficiently.
We already know many of the weak points and would like to re-
write these programs.

+ The database routines were developed before a standard proto-
col for information retrieval calls had been developed. Such a
protocol, Z39.50, is now emerging for library reference coding,
and we would like to explore using that standard.

* MIT has separately developed a plain-text-only information
program called TechInfo. This program offers interesting al-
ternative ways of implementing our solution (e.g., a server-
client model for the database). We would like to explore pos-
sible coordination with that program.

20

OLH OUTSIDE MIT

We first presented OLH to the world at large at an Athena Tech-
nical Conference in the Spring of 1991. At that time, we dis-
covered that other sites than Athena were facing similar problems
to ours as far as online documentation was concerned, and were
interested in exploring OLH as a possible solution.

Because Project Athena ended as a funded research project in the
Summer of 1991, resources are scarce at Athena right now to help
make OLH ready for general distribution. Nevertheless, we are
interested in sharing OLH with the world and hearing what other
sites might like to see in OLH. OLH development has not been
terminated, just slowed.

To make OLH available to other sites who have the technical
know-how to adapt it to their systems, we have prepared a rough
alpha-test version of the code. This version is available via anon-
ymous ftp from a server at MIT. This version is not a generally
usable version, but a test version.

The chief missing links in getting OLH to run at other sites are the
Athena-specific assumptions built into parts of OLH (it only runs
on UNIX systems, for example), and the lack of a interface for the
document database maintainers.

We are hoping to evolve a more shippable version, and are glad to
get input and resources toward that end.

CONCLUSION

As a documentation group trying to serve the user community of a
large computer system that is both distributed and heterogeneous,
we found that, although there was plenty of information on line,
that information was not in a common format or standard location,
nor was it like to be. Also, changes in policy were pushing us to
move our own document set online, although we did not yet have
aresource to handle this.

We decided that making online information available in an or-
ganized way was more important than assuring common formats
or central locations. We also knew we needed a coherent way to
deliver our own documents as small modules in an ordered hier-
archy. Consequently, we designed and implemented a menu-
based help browser, OLH, that allowed us to bring a wealth of on-
line material to users through a single program while leaving the
actual format and location of each document untouched.

In implementing this document browsing system, we were also
able to incorporate special features such as support for plain text

devices, and means for maintaining different versions of docu-
ments in a single source.

OLH is a powerful solution w an increasingly prevalent problem.

ACKNOWLEDGEMENTS

OLH owes its existence to lots of people. Too many people con-
tributed to the design of OLH to be mentioned here. Among the
programmers who contributed to OLH with actual coding were
John Elsbree, Jan Boardman, Lucien Van Elsen, Chris VanHaren,
Bill Cattey, Bruce Lewis, and Ezra Peisach.

