
 353

Technology Designers as Technology Users: the
Intertwining of Infrastructure and Product

Julia Prior Toni Robertson John Leaney
Department of Software Engineering
Faculty of Information Technology
University of Technology, Sydney

Australia
julia@it.uts.edu.au, toni@it.uts.edu.au, John.Leaney@uts.edu.au

ABSTRACT
This paper is about the developer as technical user
interacting with computer technology as part of the
infrastructure that makes possible their 'real work' of
developing a large and complex software product. A
longitudinal ethnographic study of work practice in a
software development company that uses an Agile
development approach found that the developers spend a
large part of their working time designing, creating,
modifying and interacting with infrastructure to enable
and support their software development work. This
empirical work-in-progress shows that an understanding
of situated technology design may have implications for
the future development of HCI methods, tools and
approaches.

Author Keywords
Ethnography, infrastructure, software development,
technology design, technology use.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g. HCI):
Miscellaneous.

INTRODUCTION
Software developers are specialists in designing, creating
and improving software systems. End-users’ expertise
is almost always in a different domain (i.e. not computer
software) and they generally make use of computer
systems designed by someone else to support their daily
work. Developers, however, are technically savvy users
of technology who have an understanding of how that
technology works and how to design and produce the
technology, as well as knowing how to use it.

In practice, software developers make use of an
infrastructure that supports and enables the design and
production of software products. The infrastructure
available, created and maintained in one software
development company was examined as part of a
longitudinal ethnographic study of professional software
developers’ work practice.

Understanding the situation of technology use is

fundamental to HCI. This paper is about technology
designers as technology users, interacting with the
software tools and procedures which comprise the local
development infrastructure, in order to perform their
primary work of making other software products.

The paper is structured as follows: the background
section gives an overview of the fieldwork and a site
description; a discussion of infrastructure and its role is
followed by a section describing the local use of
infrastructure and the practice of technology designers
(software developers) as technology users; and finally the
conclusion reflects on the implications that an
understanding of situated software development work
practices may have on the design and usability of
software products developed for end-users.

BACKGROUND
Over a period of two years, the first author has been
doing ethnographic research in an Australian software
development company. The fieldwork to date consists of
45 site visits, each lasting between three and eight hours:
the developers’ everyday work practices in their normal
work environment were observed, company documents,
policies and resources such as email were investigated,
meetings attended and conversations held with the
developers.

Fieldwork Site Description
The company does not develop customised software for
individual clients, but rather develops software products
that support the rules and regulations of the freight,
logistics and customs industry, and clients in this industry
purchase these products to support their own operations.
The flagship product is a large, complex software suite
called Connect.

There are several developer teams. Each focuses on one
module of Connect e.g. Freight or Customs, and consists
of a mix of senior and junior developers, including a team
leader.

The development approach used in the participant
company is strongly Agile (Agile Alliance 2001). In
essence, this means that the following are particularly
valued: people and their interactions and collaborations,
working software released frequently, and responding
actively to change. These principles are the dominant
forces for development, rather than processes and tools,
comprehensive documentation and plans, and contract
negotiation (Cockburn 2002).

OZCHI 2006, November 20-24, 2006, Sydney, Australia.
Copyright the author(s) and CHISIG
Additional copies are available at the ACM Digital Library
(http://portal.acm.org/dl.cfm) or ordered from the CHISIG secretary
(secretary@chisig.org)
OZCHI 2006 Proceedings ISBN: 1-59593-545-2

 354

One of the characteristics of Agile development is that
design is considered to be an integral part of the
development process, not a discrete phase early on;
although requirements are progressively documented,
there is very little in the way of formal design diagrams or
separate documentation of development decisions and
process, as in ‘Big Upfront Design’. Agile developers
talk about the design being ‘in the code’ and the code
(and consequently the software product) is designed and
built incrementally. Thus, program code is the major
software design artefact and the focus of the development
effort is producing working program code. The high
level design is managed by the Core Team, developers
responsible for the overall architecture of Connect. Thus,
in this paper, when the word development is used, it
encompasses software design as well as code production.

INFRASTRUCTURE
An environment is “a complex of surrounding
circumstances, conditions, or influences in which a thing
is situated or is developed, modifying and determining its
life or character”, according to the online wikipedia
[http://en.wikipedia.org/wiki/Environment]. Part of the
environment is contained in an infrastructure, which,
“most generally, is a set of interconnected structural
elements that provide the framework supporting an entire
structure” [http://en.wikipedia.org/wiki/Infrastructure].

In the world of work, infrastructure refers to the tools,
processes, rules, policies and guidelines that exist
together in an organisation to underpin all the ‘real’ work
performed by a group. In software development,
infrastructure to support the production of code is
comprised of, for instance, programming languages, code
editors, compilers, testing environments, form design
tools, database management systems, version control
software, development methodologies, processes and
techniques, and programming style standards. Not to
mention hardware, utilities, people and anything else that
maintains the physical, social and cultural environment in
which the developers work.

A paper by Star advocates the examination of
infrastructure as an essential part of the study of work
practice (Star 2002). Infrastructure is generally regarded
as background to more compelling and appealing research
interests. Infrastructure may be considered to be
mundane from a research point of view, but it is actually
a very important part of what developers do in their daily
work practice. One of the characteristics of ethnography
is that it examines and analyses the mundane and the
taken-for-granted. Ethnography always probes formal
and informal work practices, “not taking either for
granted as ‘the natural way’ of doing things” (Ibid). Star
(Ibid) sees “infrastructure as part of human organisation,
and as problematic as any other part…foregrounding the
truly back stage elements of work practice, the boring
things.”

The common understanding of infrastructure, in which it
is viewed as a substrate, a separate entity on which some
other thing ‘runs’ or ‘operates’, is an inadequate,

incomplete representation. Star and Ruhleder (Star and
Ruhleder 1996) expressed this as follows:

“infrastructure is a fundamentally relational
concept, becoming real infrastructure in relation
to organized practices…Analytically,
infrastructure appears only as a relational
property, not as a thing stripped of its use”
(p380).

In a similar vein, Bucciarelli talks about a web of
infrastructural elements – strands and lines with
interconnections at various levels. These
interconnections are dynamic, not static: existing ones
are continually expanding and contracting, and new
connections are being made. He characterises
infrastructure as “a dense, interwoven fabric that is, at the
same time dynamic, thoroughly ecological, even fragile.”
(Bucciarelli 1994)

Infrastructure is created in its use. It exists in its ability to
be embedded in work practice, as an actor, not simply as
a prop. The shape of the infrastructure, and the role that
it plays, is a consequence of its context of use. A unique
infrastructure is constructed within each working
environment as a result of the work practices used there.

TECHNOLOGY USE IN TECHNOLOGY
DEVELOPMENT
An examination of the local software development
environment illustrates that code and infrastructure are
inseparable. Sometimes, infrastructure is realised as
code. Most importantly, for the concerns of this paper,
code used as infrastructure by some developers is the
focus of other developers’ daily work. Infrastructure
changes shape as the code development effort requires
different tool and process support. The developers have a
very good understanding of their infrastructure and its
role in their work, and in fact have constructed much of it
themselves, and continue to do so. The Core Team, and
other more experienced developers, in particular work
with infrastructure as part of their daily work, and
understand its significance to the software development
work.

The infrastructure is set up and maintained to support
designing, programming and testing in an Agile
environment. On the whole, the same tools, processes
and system architecture are used by the developers to
develop and maintain infrastructure for product
developers that are used for the development of Connect.

The Core Team develops infrastructural elements such as
the automated testing harness, software to check that
developers are using the required programming style,
software for managing error reports from clients’
systems, software for managing bug fixes, and software
for managing programming jobs, often created from error
and bug lists.

So, as well as developing a non-trivial software product
for other users as their primary daily work, the developers
have, as part of their infrastructure, their own
computerised information system, most of which they
design and develop for themselves: applications and

 355

automated tools, mostly proprietary, for downloading
existing code onto their local work stations (checking-
out), changing or adding program code, compiling and
building code on local machines, designing GUIs/forms,
code testing (unit testing), submitting new or changed
code (checking-in), automated system/integration tests
and building ‘Release’ versions of the software product.

The development environment is largely realised in the
infrastructural elements that the developers interact with
in their everyday work. Some of these are technology
(software) tools, others are processes or policies

When developers and their users are working within the
same environment and reliant on the same infrastructure,
then the accountability for how their software is used is
part of the infrastructure, too. This means, in some sense,
this is probably the most ideal environment for producing
usable and useful software. This of course, is one of the
fundamentals of Agile development i.e. that the user is
working full-time in the same room as the developers.
For example, Rittenbruch et al (Rittenbruch et al, 2002)
demonstrated the very strong complementarities between
Agile approaches and Participatory Design

In the remainder of this paper, a couple of the
infrastructural elements are discussed as examples. For a
fuller description of the local infrastructure and its
implications for the work practices of professional
software developers, refer to Prior et al (Prior et al, 2006).

Technology for Product Testing
Testing is an integral part of their design and
development approach (Beck 2003), and the most
significant element of the development methodology used
by the company is the principle of TestFirst, implemented
in the coding of unit tests before coding any functional
code. Essentially, TestFirst is a design approach in which
a test for the change or addition to the software product is
designed and implemented in a unit test, and the unit test
code is executed and tested before the new functional
code is written.

The software that the developers employ to execute their
unit tests and provide feedback on the results is part of
the automated integration and regression testing system,
one of the most important tools for development used by
the developers. This software is based on the .NET
framework classes for unit and system testing, but is
primarily developed and maintained in-house by the Core
Team. The AutoTesting Monitor plays a crucial role in
the test and build cycle. The results of the latest
automated test are displayed in the Monitor’s web page,
and each developer has a Monitor icon on the status bar
of their desktops so that they can access it quickly. If all
the tests pass, the solution code can be released to current
clients to upgrade their implemented Connect systems.

The testing process has been made possible because of
software that they have written to enable, realise and
support it, and which they know that they can trust. And
they can trust it because it was built out of identified user
need in the first place, and during development, bugs
were found by users and fixed, bad performance of the

system was constantly improved, there was a change in
the information given by the Monitor to make it more
pertinent and useful, in response to the demands of the
users. It was not coincidence that this technology works
so well, nor was it a trivial accomplishment. The
important point is that by intention and design, constant
iteration and user-driven improvement are part of the
design process.

Technology for Product Building
During the fieldwork, new processes were introduced to
improve the quality of the code released and to shorten
the interval between getting ‘Good Builds’ i.e. system
builds that could be released to the clients. The process
of checking-in (submitting new or fixed code to be added
to the product code base) used to be informal and ad hoc:
it was up to the developers themselves to decide when it
was appropriate to check-in their code, and they took
responsibility to fix it if it was problematic. However,
checking-in buggy code causes problems for others, both
developers and clients. For other developers, they cannot
check-in their own code because the current system-level
test is failing, and extra effort is required to keep track of
results of the test process until they are able to check-in.
For clients, who may be given ‘Bad Builds’ in the next
code release, they would be running unreliable software.

One of these new processes is Check-In Scheduling.
Instead of the developers taking the decision to check-in
their code themselves, nowadays they have to mark the
job as ‘ready for check-in’, after a successful code
inspection has been done. The Check-In Scheduler, a
senior developer in charge of this process, goes through
the job database several times a day, and prioritises and
schedules the coding jobs to be checked-in. Once a
developer’s work is scheduled for check-in, they are
notified of this, and can then check-in their work in the
usual manner.

As a result of the check-in scheduling process, what
actually constitutes the final product code at any one time
is dependent on the decisions made by the Check-In
Scheduler, rather than being the result of every developer
checking in all their work whenever they consider it to be
ready, so the product code has a different shape because
of the infrastructural processes used in its development.

The above is an example of the adoption of a new
process, and the development of the technology to
support it, as a result of user response to breakdowns in
previous procedures. Again, as with the AutoTesting
Monitor example, the technology to support a new
process was built out of identified user need and
iteratively improved.

CONCLUSIONS
The paper described what is done in professional software
development practice, focusing on the use of computer
technology by technical users (i.e. software developers) to
enable their ‘real work’ of developing a large, complex
software product. A significant amount of this
infrastructural technology is designed and developed by
the developers themselves.

 356

The developers in this study are enmeshed in their
infrastructure: they have a deep understanding of the
technology that they in turn use to design and develop
technology for others: they build it and change it and use
it to effectively enable their daily work. They continually
consider how it is designed, how it can best be exploited,
and how it can be adapted or extended to improve the
support it provides to their primary work. These
technically savvy users’ heightened level of agency
results in an expectation that the technology developed
for them by their colleagues should adhere to high
usability standards.

Those developers responsible for the infrastructure have
to be and are mindful of their users (i.e. the other
developers) who are also their colleagues, and are directly
accountable to them. True to the Agile development
approach, the users are working in the same room as the
Core Team developers producing their infrastructural
technology. If this technology does not provide the
required functionality or is not usable in some way, the
users communicate this directly and immediately to
members of the Core Team, who may even be working at
next-door desks. Real user acceptance testing (in
contrast to simulated use situations) and accountability to
their users are embedded in the development of the
infrastructure technology.

There are two strong implications of this work for HCI
design practice. Firstly, that the way that software
products are designed and developed in situated practice,
as examined in this paper, does not appear to match
textbook assumptions about how code is or should be
developed. Design and development approaches that
enhance and increase the usability and usefulness of
software need to be researched in terms of how software
is actually made in practice. An understanding of situated
technology use in software product development may be
a worthwhile starting point.

Secondly, it is clear that the infrastructural technology
discussed in this paper, designed and used by the
developers themselves, is usable and useful.
Characteristics of software usability are embedded in
their infrastructure code, by design, and as part of the
ongoing development and maintenance of the company's
infrastructure. Given that the developers use the same
processes, tools and approaches for developing a software
product such as Connect as they use for developing their
own infrastructure, the issue then arises of how these
usability characteristics extend into other environments
where the software product is used; in other words, in the
workplaces of the 'end-users', enmeshed in their own
infrastructures.

This study is a work-in-progress, but hopefully will open
up discussion about the relationship between existing and
emerging issues of importance to HCI and our
understandings of the environments in which software is
created and used. That is to say, it could open up further
investigation of the effects of situated software
development work practices on the design and usability
of software products developed for end-users.

ACKNOWLEDGMENTS
Great appreciation and thanks to the CEO and developers
at Raptor Systems, who have willingly opened their work
practices up to the scrutiny of the first author, who is
tremendously privileged to have the opportunity to share
in their daily working lives.

REFERENCES
Agile Alliance. (2001). “The Agile Manifesto”.

http://www.agilealliance.org/intro [accessed 10th Feb
2006].

Beck, K. (2003). Test-Driven Development by Example.
Boston, Pearson Education, Inc.

Bucciarelli, L. L. (1994). Designing Engineers.
Cambridge, Massachusetts, USA, MIT Press.

Cockburn, A. (2002). Agile Software Development.
Boston, Addison-Wesley.

Prior, J., Robertson, T., Leaney, J. (2006).
“Programming Infrastructure and Code Production: An
Ethnographic Study.” Ethnographies of Code
workshop, proc. in TeamEtho-online, issue 2, June
2006, p112-120.

Rittenbruch,M., McEwan, G., Ward, N., Mansfield, T.,
Bartenstein, D.(2002) Extreme Participation - Moving
Extreme Programming Towards Participatory Design.
In: Binder, T., Gregory, J. and Wagner, I. (eds.) PDC
'02, Proceedings of the Participatory Design
Conference, Malmoe Sweden, June, 23-25, 2002,
pp.29-41. CPSR. ISBN 0-9667818-2-1

Star, S. L. (2002). "Infrastructure and ethnographic
practice." Scandinavian Journal of Information Systems
14(2): 107-122.

Star, S. L. and K. Ruhleder (1996). "Steps Toward an
Ecology of Infrastructure: Design and Access for Large
Information Spaces." Information Systems Research
7(1): 111-134.

