
Normalization Theory for XML∗

Marcelo Arenas

Department of Computer Science

Pontificia Universidad Católica de Chile

marenas@ing.puc.cl

1 Introduction

Since the beginnings of the relational model, it was
clear for the database community that the process
of designing a database is a nontrivial and time-
consuming task. Even for simple application do-
mains, there are many possible ways of storing the
data of interest.

During the 70s and 80s, a lot of effort was put into
developing methodologies to aid in the process of de-
ciding how to store data in a relational database. The
most prominent approaches developed at that time –
which today are an standard part of the relational
technology– were the entity-relationship and the nor-
malization approach. In the normalization approach,
an already designed relational database is given as
input, together with some semantic information pro-
vided by a user in the form of relationships between
different parts of the database, called data depen-
dencies. This semantic information is then used to
check whether the design has some desirable proper-
ties, and if this is not the case, it is also used to con-
vert the poor design into an equivalent well-designed
database.

The normalization approach was proposed in the
early 70s by Codd [9, 10]. In this approach, a normal
form, defined as a syntactic condition on data de-
pendencies, specifies a property that a well-designed
database must satisfy. Normalization as a way of
producing good relational database designs is a well-
understood topic. In the 70s and 80s, normal forms
such as 3NF [9], BCNF [10], 4NF [13], and PJ/NF
[14] were introduced to deal with the design of rela-
tional databases having different types of data depen-
dencies. These normal forms, together with normal-
ization algorithms for converting a poorly designed
database into a well-designed database, can be found

∗Database Principles Column. Column editor: Leonid
Libkin, School of Informatics, University of Edinburgh, Edin-
burgh, EH8 9LE, UK. E-mail: libkin@inf.ed.ac.uk.

today in every database textbook.
With the development of the Web, new data mod-

els have started to play a more prominent role. In
particular, XML (eXtensible Markup Language) has
emerged as the standard data model for storing and
interchanging data on the Web. As more companies
adopt XML as the primary data model for storing in-
formation, the problem of designing XML databases
is becoming more relevant.

The concepts of database design and normal forms
are central in relational database technology. In this
paper, we show how these concepts can be extended
to XML databases. The goal of this paper is to
present principles for good XML data design. We
believe this research is especially relevant nowadays,
since a huge amount of data is being put on the Web.
Once massive Web databases are created, it is very
hard to change their organization; thus, there is a
risk of having large amounts of widely accessible, but
poorly organized legacy data.

Designing a relational database means choosing an
appropriate relational schema for the data of inter-
est. A relational schema consists of a set of rela-
tions, or tables, and a set of data dependencies over
these relations. Designing an XML database is sim-
ilar: An appropriate XML schema has to be chosen,
which usually consists of a DTD (Document Type
Definition) and a set of data dependencies. However,
the structure of XML documents, which are trees as
opposed to relations, and the rather expressive con-
straints imposed by DTDs make the design problem
for XML databases quite challenging.

This paper is organized as follows. In Section 2, we
show that XML documents may contain redundant
information, which could be related to the hierarchi-
cal structure of these documents. In Section 3, we
present the basic terminology used in this paper. In
Section 4, we introduce a functional dependency lan-
guage for XML, which is used in Section 5 to define
XNF, a normal form for XML documents. In Section

1

6, we study the complexity of verifying whether an
XML document is in XNF. In Section 7, we present
an information-theoretic approach that can be used
to justify normal forms and, in particular, XNF. We
conclude the paper with some final remarks in Section
8.

2 Motivation: Redundant In-

formation in XML

How does one identify bad designs? We have looked
at a large number of DTDs and found two kinds of
commonly present design problems. One of them is
reminiscent of the canonical example of bad relational
design caused by non-key functional dependencies,
while the other one is more closely related to the hier-
archical structure of XML documents, as we illustrate
in the example below.

Example 2.1 Consider the following DTD that de-
scribes a part of a database for storing data about
conferences.

<!ELEMENT db (conf*)>

<!ELEMENT conf (issue+)>

<!ATTLIST conf

title CDATA #REQUIRED>

<!ELEMENT issue (inproceedings+)>

<!ELEMENT inproceedings EMPTY>

<!ATTLIST inproceedings

title CDATA #REQUIRED

pages CDATA #REQUIRED

year CDATA #REQUIRED>

Each conference has a title, and one or more issues
(which correspond to years when the conference was
held). Papers are stored in inproceedings elements;
the year of publication is one of its attributes.

Such a document satisfies the following constraint:
any two inproceedings children of the same issue

must have the same value of year. This too is simi-
lar to relational functional dependencies, but now we
refer to the values (the year attribute) as well as the
structure (children of the same issue). Moreover,
we only talk about inproceedings nodes that are
children of the same issue element. Thus, this func-
tional dependency can be considered relative to each
issue.

The functional dependency here leads to redun-
dancy: year is stored multiple times for a conference.
The natural solution to the problem in this case is
not to create a new element for storing the year, but
rather restructure the document and make year an

attribute of issue. That is, we change attribute lists
as:

<!ATTLIST issue

year CDATA #REQUIRED>

<!ATTLIST inproceedings

title CDATA #REQUIRED

pages CDATA #REQUIRED>

2

Our goal is to show how to detect anomalies of those
kinds.

3 Notation

We shall use a somewhat simplified model of XML
trees in order to keep the notation simple. We as-
sume a countably infinite set of labels L, a countably
infinite set of attributes A (we shall use the notation
@a1, @a2, etc for attributes to distinguish them from
labels), and a countably infinite set V of values of
attributes. Furthermore, we do not consider PCDATA
elements in XML trees since they can always be rep-
resented by attributes.

A DTD (Document Type Definition) D is a 4-tuple
(L0, P, R, r) where L0 is a finite subset of L, P is a
set of rules ` → P` for each ` ∈ L0, where P` is a
regular expression over L0 − {r}, R assigns to each
` ∈ L0 a finite subset of A (possibly empty; R(`) is
the set of attributes of `), and r ∈ L0 (the root).

Example 3.1 The DTD shown in Example 2.1 is
represented as (L0, P, R, r), where r = db, L0 = {db,
conf , issue, inproceedings}, P = {db → conf ∗, conf
→ issue+, issue → inproceedings+, inproceedings →
ε}, R(conf) = {@title}, R(inproceedings) = {@title,
@pages , @year} and R(db) = R(issue) = ∅. 2

An XML tree is a finite rooted directed tree T =
(N, E) where N is the set of nodes and E is the set of
edges, together with the labeling function λ : N → L
and partial attribute value functions ρ@a : N → V for
each @a ∈ A. We furthermore assume that for every
node x in N , its children x1, . . . , xn are ordered and
ρ@a(x) is defined for a finite set of attributes @a. We
say that T conforms to DTD D = (L0, P, R, r),
written as T |= D, if the root of T is labeled r, for
every x ∈ N with λ(x) = `, the word λ(x1) · · ·λ(xn)
that consists of the labels of its children belongs to
the language denoted by P`, and for every x ∈ N
with λ(x) = `, we have that @a ∈ R(`) if and only if
the function ρ@a is defined on x (and thus provides
the value of attribute @a).

2

4 Functional Dependencies for

XML

To present a functional dependency language for
XML we need to introduce some terminology. An el-
ement path q is a word in L∗, and an attribute path is
a word of the form q.@a, where q ∈ L∗ and @a ∈ A.
An element path q is consistent with a DTD D if
there is a tree T |= D that contains a node reachable
by q (in particular, all such paths must have r as the
first letter); if in addition the nodes reachable by q
have attribute @a, then the attribute path q.@a is
consistent with D. The set of all paths (element or
attribute) consistent with D is denoted by paths(D).
This set is finite for a non-recursive D and infinite if
D is recursive.

An XML functional dependency (XFD) over DTD
D [4] is an expression of the form {q1, . . . , qn} → q,
where n ≥ 1 and q, q1, . . . , qn ∈ paths(D). To define
the notion of satisfaction for XFDs, we use a rela-
tional representation of XML trees from [4]. Given
T = (N, E) that conforms to D, a tree tuple in T is a
mapping t : paths(D) → N ∪V ∪{⊥} such that if q is
an element path whose last letter is ` and t(q) 6= ⊥,
then

• t(q) ∈ N and its label, λ(t(q)), is `;

• if q′ is a prefix of q, then t(q′) 6= ⊥ and the node
t(q′) lies on the path from the root to t(q) in T ;

• if @a is defined for t(q) and its value is v ∈ V ,
then t(q.@a) = v.

Intuitively, a tree tuple assigns nodes or attribute
values or nulls (⊥) to paths in a consistent man-
ner. A tree tuple is maximal if it cannot be ex-
tended to another one by changing some nulls to
values from N ∪ V . The set of maximal tree tu-
ples is denoted by tuplesD(T). Now we say that
XFD ϕ = {q1, . . . , qn} → q is true in T , denoted
by T |= ϕ, if for any t1, t2 ∈ tuplesD(T), whenever
t1(qi) = t2(qi) 6= ⊥ for all i ≤ n, then t1(q) = t2(q)
holds.

Example 4.1 Among the XFDs over the DTD from
Example 2.1 one can find the following:

db.conf.@title → db.conf,

db.conf.issue →

db.conf.issue.inproceedings.@year.

The first functional dependency specifies that two dis-
tinct conferences must have distinct titles. The sec-
ond one specifies that any two inproceedings children
of the same issue must have the same value of @year.
2

Given a DTD D and a set Σ ∪ {ϕ} of XFDs over D,
we say that (D, Σ) implies ϕ, written (D, Σ) ` ϕ, if
for every tree T with T |= D and T |= Σ, it is the
case that T |= ϕ. The set of all XFDs implied by
(D, Σ) is denoted by (D, Σ)+. Furthermore, an XFD
ϕ is trivial if (D, ∅) ` ϕ. In relational databases, the
only trivial FDs are X → Y , with Y ⊆ X . Here,
DTD forces some more interesting trivial functional
dependencies. For instance, for each element path p
in D and p′ prefix of p, (D, ∅) ` p → p′, and (D, ∅) `
p → p.@a. As a matter of fact, trivial functional
dependencies in XML documents can be much more
complicated than in the relational case, as we show
in the following example.

Example 4.2 Assume that r → (a|b|c) is a rule in a
DTD D, being r the type of the root. Then, for every
path p in D, XFD {r.a, r.b} → p is trivial since for
every XML tree T conforming to D and every tree
tuple t in T , t(r.a) = ⊥ or t(r.b) = ⊥. 2

We conclude this section by pointing out that other
proposals for XFDs exist in the literature [16, 20,
28]. In particular, the language introduced in [28] is
similar to the one presented in this paper.

5 XNF: An XML Normal Form

With the definitions of the previous section, we are
ready to present a normal form for XML documents.

Definition 5.1 [4] Given a DTD D and a set Σ of
XFDs over D, (D, Σ) is in XML normal form (XNF)
iff for every nontrivial XFD X → p.@a ∈ (D, Σ)+, it
is the case that X → p is in (D, Σ)+.

The intuition is as follows. Suppose that X → p.@a
is in (D, Σ)+. If T is an XML tree conforming to D
and satisfying Σ, then in T for every set of values
of the elements in X , we can find only one value of
p.@a. Thus, to avoid storing redundant information,
for every set of values of X we should store the value
of p.@a only once; in other words, X → p must be
implied by (D, Σ).

In this definition, we impose the condition that ϕ
is a nontrivial XFD. Indeed, the trivial XFD p.@a →

3

p.@a is always in (D, Σ)+, but often p.@a → p 6∈
(D, Σ)+, which does not necessarily represent a bad
design.

To show how XNF distinguishes good XML design
from bad design, we revisit our running example.

Example 5.2 The conference example 2.1 seen ear-
lier may contain redundant information: year is
stored multiple times for the same issue of a con-
ference. This XML specification is not in XNF since

db.conf.issue →

db.conf.issue.inproceedings.@year (1)

is a nontrivial XFD in the specification but

db.conf.issue → db.conf.issue.inproceedings

is not in (D, Σ)+, as several papers are usually pub-
lished in a conference. The solution we proposed in
the introduction was to make year an attribute of is-
sue. XFD (1) is not valid in the revised specification,
which can be easily verified to be in XNF. Note that
we do not replace (1) by

db.conf.issue → db.conf.issue.@year,

since it is a trivial XFD and thus is implied by the
new DTD alone. 2

5.1 BCNF and XNF

In this section, we show that XNF generalizes BCNF.
Recall that a relation specification (G,FD) is in
BCNF, where relation G has attributes A1, . . ., An

and FD is a set of functional dependencies over G, if
for every nontrivial FD X → Y implied by FD , we
have that X is a superkey, that is, X → Ai is implied
by Σ, for each i ∈ [1, n].

Relational databases can be easily mapped into
XML documents. Given a relation G(A1, . . . , An)
and a set of FDs Σ over G, we translate the schema
(G,FD) into an XML representation, that is, a DTD
DG and a set of XFDs ΣFD . The DTD DG =
(L0, P, R, db) is defined as follows: L0 = {db, G},
A = {@A1, . . . , @An}, P = {db → G∗, G → ε},
R(db) = ∅ and R(G) = {@A1, . . . , @An}. Without
loss of generality, assume that all FDs are of the form
X → A, where A is an attribute. Then ΣFD over DG

is defined as follows.

• For each FD Ai1 · · ·Aim
→ Ai ∈ FD ,

{db.G.@Ai1 , . . . , db.G.@Aim
} → db.G.@Ai is in

ΣFD .

• {db.G.@A1, . . . , db.G.@An} → db.G is in ΣFD .

The latter is included to avoid duplicates.

Example 5.3 A schema G(A, B, C) can be coded by
the following DTD:

<!ELEMENT db (G*)>

<!ELEMENT G EMPTY>

<!ATTLIST G

A CDATA #REQUIRED

B CDATA #REQUIRED

C CDATA #REQUIRED>

In this schema, an FD A → B is translated into
db.G.@A → db.G.@B. 2

The following proposition shows that BCNF and
XNF are equivalent when relational databases are ap-
propriately coded as XML documents.

Proposition 5.4 [4] Given a relation G and a set
of functional dependencies FD over G, (G,FD) is in
BCNF iff (DG, ΣFD) is in XNF.

We conclude this section by showing that the hier-
archical structure of XML documents can be used to
overcome some of the limitations of relational normal
forms. It is well known that every relational schema
can be decomposed into an equivalent one in BCNF,
but some constraints may be lost along the way. For
instance, (R(A, B, C), {AB → C, C → B}) is a clas-
sical example of a schema that does not have any
dependency preserving BCNF decomposition. By
Proposition 5.4, one may be tempted to think that if
we translate this schema into XML, the situation will
be similar; every XNF decomposition of the trans-
lated schema should lose some constraints. The fol-
lowing example, taken from [18], shows that this is
not the case, as we can use the hierarchical structure
of XML to obtain a dependency preserving XNF de-
composition.

Example 5.5 Let D = (L0, P, R, db) be a DTD,
with L0 = {db, A, B, C}, P = {db → B∗, B → A∗,
A → C∗, C → ε}, R(db) = ∅, R(A) = {@a},
R(B) = {@b} and R(C) = {@c}. XML trees con-
forming to D are used to store instances of relation
R(A, B, C) as shown in the following figure:

4

3

A B C

2 1 3

2 1 4

3 1 5

63 2

B B

db

A @b@b

2 1

A A

C@a

@c

3

6

@aCCC@a

32

@c@c@c

54

Let Σ be the following set of XFDs over D:

db.B.@b → db.B,

{db.B, db.B.A.@a} → db.B.A,

{db.B.A, db.B.A.C.@c} → db.B.A.C,

{db.B.A.@a, db.B.@b} → db.B.A.C.@c,

db.B.A.C.@c → db.B.@b.

The first three XFDs indicate how the instances of R
are stored as XML trees conforming to D. Thus, for
example, the first XFD indicates that all the tuples
in R with the same value of attribute B are grouped
together, in a tree that stores in its root the value of
attribute B. The last two XFDs are the translations
of relational FDs AB → C and C → B, respectively.

XML specification (D, Σ) is equivalent to our orig-
inal relational specification (R(A, B, C), {AB →
C, C → B}). In fact, all the constraints in our orig-
inal relational schema can be inferred from (D, Σ).
Moreover, it is easy to prove that (D, Σ) is in XNF.
2

The approach shown in the previous example was
proposed in [18], under the name of hierarchical
translation of relational schemas, as a way to obtain
dependency preserving decompositions of relational
schemas. The advantages and limitations of this ap-
proach are explored in [18].

6 The Complexity of Testing

XNF

In the previous section, we introduce XNF, a normal
form for XML specifications. As in the case of rela-
tional databases, testing whether an XML schema is
in XNF involves testing some conditions on the func-
tional dependencies implied by the specification. In
this section, we present some results on the complex-
ity of the implication problem for XFDs, and then we
use these results to establish some complexity bounds

for the problem of testing whether an XML specifi-
cation is in XNF.

Throughout the section, we assume that the DTDs
are non-recursive. This can be done without any loss
of generality. Notice that in a recursive DTD D,
the set of all paths is infinite. However, a given set
of XFDs Σ only mentions a finite number of paths,
which means that it suffices to restrict one’s attention
to a finite number of “unfoldings” of recursive rules.

6.1 The implication problem for

XFDs

Although XML FDs and relational FDs are defined
similarly, in this section we show that the implication
problem for the former class is far more intricate.

Regular expressions used in DTDs are typically
rather simple, which allows for efficient implication
algorithms. We now formulate a criterion for sim-
plicity that corresponds to a very common practice
of writing regular expressions in DTDs [6, 8]. Given
an alphabet E, a regular expression over E is called
trivial if it is of the form s1, . . . , sn, where for each
si there is a letter ai ∈ E such that si is either ai

or ai? or a+
i or a∗

i , and for i 6= j, ai 6= aj . We
call a regular expression s simple if there is a triv-
ial regular expression s′ such that any word w in the
language denoted by s is a permutation of a word in
the language denoted by s′, and vice versa. Simple
regular expressions were also considered in [1] under
the name of multiplicity atoms.

For example, (a|b|c)∗ is simple: a∗, b∗, c∗ is trivial,
and every word in (a|b|c)∗ is a permutation of a word
in a∗, b∗, c∗ and vice versa. Simple regular expres-
sions are prevalent in DTDs [6]. We say that a DTD
D is simple if all productions in D use only simple
regular expressions. It turns out that the implication
problem for simple DTDs can be solved efficiently.

Theorem 6.1 [4] The implication problem for
XFDs over simple DTDs is solvable in quadratic time.

In a simple DTD, disjunction can appear in expres-
sions of the form (a|ε) or (a|b)∗, but a general disjunc-
tion (a|b) is not allowed. For example, the following
DTD cannot be represented as a simple DTD:

<!ELEMENT uni (student*)>

<!ELEMENT student ((name | FL), grade)>

<!ELEMENT name (EMPTY)>

<!ATTLIST name

value CDATA #REQUIRED>

<!ELEMENT FL (first, last)>

<!ELEMENT first (EMPTY)>

5

<!ATTLIST first

value CDATA #REQUIRED>

<!ELEMENT last (EMPTY)>

<!ATTLIST last

value CDATA #REQUIRED>

In this example, every student must have a name.
This name can be a string or it can be a composition
of a first and a last name. It is desirable to express
constraints on this kind of DTDs. For instance,

{uni.student.FL.first.@value,

uni.student.FL.last.@value} → uni.student,

is a functional dependency in this domain. It is also
desirable to reason about these constraints. Unfortu-
nately, allowing disjunction in DTDs, even in some
restricted ways, makes the implication problem for
XFDs harder.

A regular expression s over an alphabet E is a sim-
ple disjunction if s = ε, s = `, where ` ∈ E, or
s = s1|s2, where s1, s2 are simple disjunctions over
alphabets E1, E2 and E1 ∩ E2 = ∅. We say that a
DTD D is disjunctive if every production in D uses
a regular expression of the form s1, . . . , sm, where
each si is either a simple regular expression or a sim-
ple disjunction over an alphabet Ei (i ∈ [1, m]), and
Ei ∩ Ej = ∅ (i, j ∈ [1, m] and i 6= j). It turns out
that the implication problem for disjunctive DTDs is
coNP-complete.

Theorem 6.2 [4] The implication problem for
XFDs over disjunctive DTDs is coNP-complete.

The previous result can be extended to a larger class
of DTDs that was called relational DTDs in [4]. In
some sense these results are positive, as we can expect
that in practice we will be able to solve the impli-
cation problem for disjunctive and relational DTDs,
since XML specifications tend to be relatively small
in practice, as opposed to XML documents which can
be very large, and today we can find SAT solvers like
BerkMin [17] and Chaff [22] that routinely solve NP
problems with thousands of variables.

We conclude this section by showing that the im-
plication problem for XFDs is decidable. The exact
complexity of this problem is unknown.

Theorem 6.3 [2] The implication problem for
XFDs over DTDs is solvable in co-NEXPTIME.

6.2 Testing XNF

Testing whether an XML specification (D, Σ) is in
XNF involves testing a condition on the functional

dependencies implied by (D, Σ). Since this set of
XFDs can be very large, it is desirable to find ways to
reduce the number of XFDs to be considered. In the
previous section we introduce the class of disjunctive
DTDs. This class has the following useful property
that lets us find efficient algorithms for testing XNF.

Proposition 6.4 [4] Given a disjunctive DTD D
and a set Σ of XFDs over D, (D, Σ) is in XNF iff for
each nontrivial XFD X → p.@a ∈ Σ, it is the case
that X → p ∈ (D, Σ)+.

From this and Theorems 6.1 and 6.2 we derive:

Corollary 6.5 [4] Testing if (D, Σ) is in XNF can
be done in cubic time for simple DTDs, and is coNP-
complete for disjunctive DTDs.

CoNP-completeness also holds for the case of rela-
tional DTDs [4]. As pointed out in the previous
section, this theorem can also be seen as a posi-
tive result, as we can expect that in practice we will
be able to test whether a specification is in XNF,
since XML specifications tend to be relatively small
in practice and today we can find SAT solvers that
routinely solve NP problems with thousands of vari-
ables [17, 22].

We conclude this section by pointing out that from
Theorem 6.3, we know that the problem of testing
whether an XML specification is in XNF is decid-
able. The exact complexity of this problem is an open
problem.

7 Justifying XNF

What constitutes a good database design? This ques-
tion has been studied extensively, with well-known
solutions presented in practically all database texts.
But what is it that makes a database design good?
This question is usually addressed at a much less for-
mal level. For instance, we know that BCNF is an
example of a good design, and we usually say that this
is because BCNF eliminates update anomalies. Most
of the time this is sufficient, given the simplicity of
the relational model and our good intuition about it.

Several papers [15, 26, 21] attempted a more formal
evaluation of normal forms, by relating it to the elim-
ination of update anomalies. Another criterion is the
existence of algorithms that produce good designs:
for example, we know that every database scheme
can be losslessly decomposed into one in BCNF, but
some constraints may be lost along the way.

6

The previous work was specific for the relational
model. As new data formats such as XML are be-
coming critically important, classical database the-
ory problems have to be revisited in the new context
[25, 23]. However, there is as yet no consensus on
how to address the problem of well-designed data in
the XML setting [12, 4, 28].

It is problematic to evaluate XML normal forms
based on update anomalies; while some proposals for
update languages exist [24], no XML update language
has been standardized. Likewise, using the existence
of good decomposition algorithms as a criterion is
problematic: for example, to formulate losslessness,
one needs to fix a small set of operations in some
language, that would play the same role for XML as
relational algebra for relations.

This suggests that one needs a different approach
to the justification of normal forms and good designs.
Such an approach must be applicable to new data
models before the issues of query/update/constraint
languages for them are completely understood and
resolved. Therefore, such an approach must be based
on some intrinsic characteristics of the data, as op-
posed to query/update languages for a particular
data model. Such an approach was introduced in [5]
based on information-theoretic concepts, more specif-
ically, on measuring the information content of the
data (or entropy [11]) of a suitably chosen proba-
bility distribution. The goal there was twofold. It
was introduced an information-theoretic measure of
“goodness” of a design, and tested in the relational
world. It was shown in [5] that the measure can be
used to characterize familiar relational normal forms
such as BCNF, 4NF, and PJ/NF. Then the measure
was applied in the XML context to show that it jus-
tifies the normal form XNF.

To present the information-theoretic measure pro-
posed in [5], we need to introduce some terminol-
ogy. Let D = (L0, P, R, r) be a DTD, Σ a set of
constraints over D and T = (N, E) an XML tree
conforming to D and satisfying Σ. Then the set
of positions in T , denoted by Pos(T), is defined as
{(x, @a) | x ∈ N, @a ∈ R(λ(x))}, and the active
domain of T is defined as the set of all values of at-
tributes in T . Without loss of generality, we assume
that the active domain of every XML tree is contained
in N

+.

The goal in [5] is to define a function InfT (p | Σ),
the information content of a position p ∈ Pos(T) with
respect to the set of constraints Σ. To do this, it
is defined, for each k > 0, a function Inf

k
T (p | Σ)

that would only apply to instances whose active do-
main is contained in {1, . . . , k}. More precisely, let
X ⊆ Pos(T) − {p}. Suppose the values in those po-
sitions X are lost, and then someone restores them
from the set 1, . . . , k. It is measured how much in-
formation about the value in p this gives by calculat-
ing the entropy [11] of a suitably chosen probability
distribution1. Then Inf

k
T (p | Σ) is defined as the av-

erage such entropy over all sets X ⊆ Pos(T) − {p},
which corresponds to a conditional entropy. The ra-
tio Inf

k
T (p | Σ)/ log k is used in [5] to tell how close

the given position p is to having the maximum pos-
sible information content, for XML trees with active
domain in [1, k] (recall that the maximum value of
entropy is log k for a discrete distribution over k ele-
ments). Then measure InfT (p | Σ) is taken to be the
limit of these ratios as k goes to infinity. It is shown
in [5] that such a limit exists for every XML tree and
set Σ of XFDs.

InfT (p | Σ) measures how much information is con-
tained in position p, and 0 ≤ InfT (p | Σ) ≤ 1. A well-
designed schema should not have an instance with a
position that has less than maximum information, as
we do not expect to have redundant information on
any instance of this schema. This motivates the fol-
lowing definition:

Definition 7.1 [5] An XML specification (D, Σ) is
well-designed if for every XML tree conforming to D
and satisfying Σ, and every p ∈ Pos(T), InfT (p |
Σ) = 1.

As in the case of relational databases (in particular,
BCNF and 4NF), it is possible to show that well-
designed XML and XNF coincide.

Theorem 7.2 [5] Let D be a DTD and Σ a set of
XFDs over D. Then (D, Σ) is well-designed if and
only if (D, Σ) is in XNF.

It is worth mentioning that an alternative notion
of redundancy for XML trees is introduced in [28],
where it is proved that an XML specification is in
XNF if and only if no tree conforming to the specifi-
cation contains redundant information.

8 Final Remarks

In this paper, we show how the concepts of database
design and normal forms can be extended to XML

1Due to the lack of space we cannot formally introduce the
probability distributions used in the definition of InfT (p | Σ).
See [5] for a detail description.

7

databases. More precisely, we introduce a functional
dependency language for XML, we use this language
to define a normal form for XML specifications, and
we justify this normal form by using an information-
theoretic approach.

To conclude the paper, we provide some links for
further reading. Many dependency languages have
been proposed for XML, see [7] for an early survey on
this subject and [3] for a more recent survey includ-
ing results on the complexity of reasoning about con-
straints in the presence of DTDs. Some of these lan-
guages have been used to define other normal forms
for XML such as X3NF [18] and 4XNF [27]. The
information-theoretic approach presented in Section
7 has also been used to provide justification for “non-
perfect” relational normal forms such as 3NF [19].

Acknowledgments

The research presented in this article was conducted
while the author was a Ph.D student at the University
of Toronto under the supervision of Professor Leonid
Libkin.

References

[1] S. Abiteboul, L. Segoufin, and V. Vianu. Represent-
ing and Querying XML with Incomplete Informa-
tion. TODS, 31(1):208–254, 2006.

[2] M. Arenas. Design Principles for XML Data. PhD
thesis, University of Toronto, 2005.

[3] M. Arenas, W. Fan, and L. Libkin. Consistency
of XML Specifications. In Inconsistency Tolerance,
pages 15–41, 2005.

[4] M. Arenas and L. Libkin. A Normal Form for XML
Documents. TODS, 29(1):195–232, 2004.

[5] M. Arenas and L. Libkin. An Information-Theoretic
Approach to Normal Forms for Relational and XML
Data. JACM, 52(2):246–283, 2005.

[6] G. Jan Bex, F. Neven, and J. Van den Bussche.
DTDs versus XML Schema: A Practical Study. In
WebDB, pages 79–84, 2004.

[7] P. Buneman, W. Fan, J. Siméon, and S. Wein-
stein. Constraints for Semi-structured Data and
XML. SIGMOD Record, 30(1):47–45, 2001.

[8] B. Choi. What are real DTDs like? In WebDB,
pages 43–48, 2002.

[9] E. F. Codd. Further Normalization of the Data Base
Relational Model. In Data base systems, pages 33–
64. Englewood Cliffs, N.J. Prentice-Hall, 1972.

[10] E. F. Codd. Recent Investigations in Relational Data
Base Systems. In IFIP Congress, pages 1017–1021,
1974.

[11] T. Cover and J. Thomas. Elements of Information

Theory. Wiley-Interscience, 1991.

[12] D. Embley and W. Y. Mok. Developing XML Docu-
ments with Guaranteed “Good” Properties. In ER,
pages 426–441, 2001.

[13] R. Fagin. Multivalued Dependencies and a New
Normal Form for Relational Databases. TODS,
2(3):262–278, 1977.

[14] R. Fagin. Normal Forms and Relational Database
Operators. In SIGMOD, pages 153–160, 1979.

[15] R. Fagin. A Normal Form for Relational Databases
That Is Based on Domians and Keys. TODS,
6(3):387–415, 1981.

[16] W. Fan and J. Siméon. Integrity Constraints for
XML. In PODS, pages 23–34, 2000.

[17] E. Goldberg and Y. Novikov. BerkMin: A Fast and
Robust Sat-Solver. In DATE, pages 142–149, 2002.

[18] S. Kolahi. Dependency-Preserving Normalization of
Relational and XML Data. In DBPL, pages 247–261,
2005.

[19] S. Kolahi and L. Libkin. On Redundancy vs
Dependency Preservation in Normalization: An
Information-Theoretic Study of 3NF. In PODS,
pages 114–123, 2006.

[20] M.-L. Lee, T. W. Ling, and W. L. Low. Designing
Functional Dependencies for XML. In EDBT, pages
124–141, 2002.

[21] M. Levene and M. Vincent. Justification for Inclusion
Dependency Normal Form. TKDE, 12(2):281–291,
2000.

[22] M. W. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. In DAC, pages 530–535, 2001.

[23] D. Suciu. On Database Theory and XML. SIGMOD

Record, 30(3):39–45, 2001.

[24] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Up-
dating XML. In SIGMOD, pages 413–424, 2001.

[25] V. Vianu. A Web Odyssey: from Codd to XML. In
PODS, pages 1–15, 2001.

[26] M. Vincent. Semantic Foundations of 4NF in
Relational Database Design. Acta Informatica,
36(3):173–213, 1999.

[27] M. Vincent, J. Liu, and C. Liu. A Redundancy Free
4NF for XML. In XSym, pages 254–266, 2003.

[28] M. Vincent, J. Liu, and C. Liu. Strong Func-
tional Dependencies and their Application to Normal
Forms in XML. TODS, 29(3):445–462, 2004.

8

