
A Design Methodology for Space-Time Adapter

CHAVET Cyrille
1
, COUSSY Philippe

2
, URARD Pascal

1
, MARTIN Eric

2

1
STMicroelectronics, Crolles, FRANCE. {firstname.lastname@st.com}

2
LESTER Lab, UBS University, CNRS FRE 2734. {firstname.lastname@univ-ubs.fr}

ABSTRACT

This paper presents a solution to efficiently explore the design

space of communication adapters. In most digital signal

processing (DSP) applications, the overall architecture of the

system is significantly affected by communication architecture, so

the designers need specifically optimized adapters. By explicitly

modeling these communications within an effective graph-

theoretic model and analysis framework, we automatically

generate an optimized architecture, named Space-Time AdapteR

(STAR). Our design flow inputs a C description of Input/Output

data scheduling, and user requirements (throughput, latency,

parallelism…), and formalizes communication constraints

through a Resource Constraints Graph (RCG). The RCG

properties enable an efficient architecture space exploration in

order to synthesize a STAR component. The proposed approach

has been tested to design an industrial data mixing block

example: an Ultra-Wideband interleaver.

Categories and Subject Descriptors

B6.3 [Design aids]: Automatic synthesis, Optimization.

General Terms

Algorithms, Design & Performance.

Keywords

Communication and interface synthesis, RTL design, Digital

Signal Processing and Multimedia Applications.

1

1. INTRODUCTION

The ever growing complexity of applications and the

shrinking time-to-market lead the designers to look for advanced

design methodologies. Indeed, to design such complex

architecture within a short design time, it is necessary to raise the

abstraction level of design description to system level, to explore

the design space and finally to automatically generate the

hardware register transfer level (RTL) architecture. Nowadays, a

widespread solution to handle design complexity is to reuse pre-

design heterogeneous IP cores. Unfortunately, the main problem

arises from their integration.

In the multi-processor SoC (MPSoC) context (IP cores can be

processor, memory, bus…) the problems come from the

interfaces and protocols of the components. To tackle interfacing

and functional problems when designing MPSoC architectures,

system integrators can use standard interfaces such as Virtual

Component Interface proposed by VSIA [16] and Open Core

Protocol proposed by the OCP International Partnership [17].

However, in addition to the protocol aspects, SoC designers also

have to synchronize components and to buffer data in order to

ensure system behavior and to meet timing constraints. In [7]

authors propose to automatically generate simulation wrappers

for MPSoC architectures.

However, in the field of Digital Signal Processing (DSP)

applications (e.g. [13]), a multi-processor SoC (MPSoC)

architecture may not be a well-suited solution because of design

complexity. Optimized hardware accelerators (e.g. filters) -

composed of a set of computing blocks communicating through

point-to-point links- are still needed. From this point of view, the

designers have to tackle problems such like throughput

adaptation, data re-ordering (e.g. row-column), Input/Output

parallelism adaptation. Based on communication templates, [9]

presents a generic interface unit architecture for communication

synthesis in a platform-based design approach. In [1] a

multiplexer/demultiplexer and FIFO-based interface architecture

is used. In [6], the authors propose a systematic way of

interfacing data-flow hardware accelerators (IP core) for their

integration in a system on chip. Their interface architecture is

based on FIFO (queue) storage elements and a Direct Memory

Access module (DMA). They assume that the IP are data

synchronized (i.e. at each clock cycle a data is presented and

read). However, these previous approaches assumed that the

sequence of produced data is the same as the sequence of

consumed data (no re-ordering). Moreover, FIFO sizes are

computed by a “set and simulate” approach.

Obviously, interfacing DSP’s blocks greatly impacts the

quality of the system (throughput, area, power consumption…),

that’s why efficient communication adapter design is still one of

the most important points in complex system design. In fact,

using Input/Output (I/O) wrappers can introduce unnecessary

memorizing elements. Such wrappers may be needed in order to

solve data reordering problems that can arise from the IP core

integration. In [12] the authors aim at determining at compile

time whether a FIFO is sufficient for every producer/consumer

pair of a Kahn Process Network. When the sequence of produced

data is different from the sequence of consumed data, extra

storage and control on the consumer side is proposed [15]. This

extra module includes a CAM (Content Addressable Memory)

where data are addressed using a hash table. This solution

enables the implementation of non-deterministic

communications, but there is no optimization of the adapter

overhead since overlapping of input and output data is not

possible. In [2], a formal technique for hardware interface design

is proposed. A generic interface model targeted by the

communication synthesis is used. The low-level timing

constraints can include strict timing specifications or data transfer

schedule. The interface synthesis is carried out by an allocation

procedure of data storage components (FIFO, LIFO and register).

However, the size of storage elements is not computed or even

taken into account during the design process. The proposed

methodology is based on NP-complete maximum clique

algorithm. In [14] the authors develop a system-level IP reuse

methodology where designs are described in three layers. Data

transfer and data storage optimizations are done by reorganizing

loop indexing and loop nesting. Unfortunately, the authors do not

present the technique they use to produce the RTL component

architecture from the algorithm specification. In [4], the authors

develop a set of techniques dedicated to the design of DSP

algorithm. High-level synthesis of the processing unit is carried

out under I/O timing and architectural constraints. The approach

leads to an optimized data-path synthesis but still requires the

communication unit design.

In [11] authors proposed approaches that use Matlab/Simulink

for the system specification and that produce a VHDL RTL

architecture of the system. Based on hardware macro generators

that use the “generic”/“generate” mechanisms, the synthesis

process can be summarized as a block instantiation and block

interconnection thanks to memory blocks. However, minimizing

such buffer memory size in automatic code generation from the

high-level system specification is still one of the key technologies

[8]. That’s why in [8] the authors propose a methodology for the

reduction of on-chip memory size. Our goal is to tackle the same

problem, but our methodology analyses the communication at a

finer grain level. This fine grain communication analysis enables

deep exploration of optimization solutions and helps us to

generate a close to the best memorization architecture.

In this paper, we present an automatically generated optimized

Space-Time AdapteR (STAR). Our design flow inputs timing

diagrams (constraints file) or a C description of I/O data

scheduling (e.g. an interleaving formula), and user requirements

(throughput, latency…), and formalizes communication

constraints through a formal Resource Constraints Graph (RCG).

The RCG properties enable an efficient architecture space

exploration in order to synthesize a STAR component. The

contribution of our work can be seen as a solution for the

automatic generation of a static network on chip. Indeed, our

Space-Time AdapteR (STAR) architecture can be used to

interconnect a set of IP cores.

The paper is organized as follows: the second section is

dedicated to the problem formulation. In the third section we

present our design flow, while the associated formal models and

methodology are detailed in section four. Finally, the last section

presents experimental results.

2. MOTIVATION

Let us consider a simple architecture example composed of

two components exchanging a set of data S = {a, b, c, d, e, f}. S

is produced by a block #1 and is consumed by a block #2 through

a single point-to-point link.

The write access sequence into the communication link is Sw

= (a,c,b,e,f,d) i.e. t
w

a<t
w

c<t
w

b<t
w

e<t
w

f<t
w

d , while the read access

sequence from the link is different Sr =(c,a,e,b,d,f) i.e.

t
r

c<t
r

a<t
r

e<t
r

b<t
r

d<t
r

f (see Figure 1). This difference between the

two I/O sequences can either come from the integration of two IP

cores that were not specifically designed to work together, either

can be explicitly described (e.g. in interleavers [5][18]). As those

blocks do not produce and consume data in the same order nor

with the same throughput (nor sometime the same parallelism),

they can not be directly plugged together. The designer needs to

introduce a space-time adapter between them to ensure correct

functional results. A classical solution consists in using a memory

to buffer all concerned data: this is what we call coarse grain

approach. But in fact, this over sized buffer may be reduced

thanks to a finer grain communication constraints analysis [4].

The proposed adapter can be designed either by using a set of

registers or specific memory elements, such as FIFO (queue) or

LIFO (stack). The problem the designer faces consists in finding

the best architecture for this adapter: he has to find the best

storage element binding.

For example, the lifetimes of data a and b respect a First-In

First-Out semantic, so they can be assigned to the same hardware

FIFO. This timing relation is also true for the data c and b.

However, data a and c respect a Last-In First-Out semantic, so a

single hardware FIFO cannot be used to store the data a, b and c

The question for the designer is: how can we bind data a, b and c

to different storage elements, in order to generate the best final

architecture? This highlights the fact that the local problem of a,

b and c binding will influence the resulting global architecture. A

methodology is thus needed to bind data a, b and c to different

storage elements, in order to generate an optimized architecture.

3. PROPOSED SOLUTION

The architecture of a STAR component is composed of a

datapath and the associated control state machine FSM (see

Figure 2). The data path can be composed of FIFO, LIFO or

register. Spatial adaptation (a data read on one input port can be

send to any/several output ports) is performed by an

interconnection logic dealing with data dispatching from input

port to storage elements, and from storage elements to output

ports. We can see on Figure 2 that there is one STAR architecture

for each input port.

The timing adaptation (data-rates, different input/output data

scheduling) is realized by the storage elements. STAR can have a

GALS (Globally Asynchronous Locally Synchronous) / LIS

(Latency Insensitive System) interface as described in [3].

The design flow is presented in Figure 3 and is currently

based on three tools: StarTor for the STAR design constraint

Figure 1: Data lifetime.

Figure 2: Typical STAR architecture.

specification, StarGene for the STAR component synthesis and

StarBench for the STAR functional validation. The methodology

generates a register transfer level (RTL) architecture starting from

a functional model and a set of user requirements (timing and

communication-architecture constraints). The architecture

synthesis is performed by using a library of pre-designed and

characterized storage elements (FIFO, LIFO and Registers).

StarTor inputs a C level algorithmic description which

specifies the interleaving scheme, and a file containing user

requirements (latency, throughput, communication interface, I/O

parallelism...). StarTor first extracts I/O data communication

order by generating a trace from the execution of the C functional

description. Next, based on designer’s requirements, it generates

a constraints file. This file contains the number and type of ports,

type and amount of data, relationships between data and ports

(i.e. mapping) and finally read and write access dates for all data.

Then, in order to generate a STAR component, our design tool

STARGene is based on a four-step flow: (1) Resource

Compatibility Graph construction, (2) Storage resource binding,

(3) Architecture optimization and (4) VHDL RTL generation (see

Figure 3). During the first step of the STAR component

Generation, a Resource Constraints Graph RCG is generated

from the communication constraints. The analysis of this formal

model allows both data binding to storage elements (queue, stack

or register), and the sizing of each storage element. This first

architecture is next optimized by merging storage elements that

have non-overlapping usage timing frames. Finally, an RTL level

design is generated. The last tool, StarBench, generates a test

bench based on constraints in order to validate the design by

comparing simulation results.

Typically, a STAR could have to deal with different

execution modes (configuration), switching from one to another

at run-time. In this paper, we present a formal methodology to

synthesize a STAR architecture for a given configuration. The

generalization of the methodology generating multi-mode

architecture (graph merging, multi data path synthesis, multi

FSM generation…) will be presented in a future publication.

4. STAR DESIGN FLOW

4.1. Resource Compatibility Graph Construction

The first step consists in generating a Resource Compatibility

Graph, from the design constraints file. This RCG specifies

through formal modeling the timing relationship between data

that have to be handled by the STAR architecture. The vertex set

V={v0, ..., vn} represents data, the edge set E={(vi, vj)} represents

the compatibility between the vertices. A tag tij ∈ T is associated

with each edge (vi,vj). This tag represents the compatibility type

between the two data (i and j), T= {Register R, FIFO F, LIFO

L}, e.g. Figure 4.

In order to assign compatibility tags to edges, we need to

identify the timing relationship that exists between two data. For

this purpose we defined a set of rules based on functional

properties of each storage element (FIFO, LIFO, Register).

The lifetime of data a in a STAR is defined by Γ(a) =

[τmin(a), τmax(a)] where τmin(a) and τmax(a) are respectively the

date of the write access of a into the component and the last date

of the read access to a. τfirsta
 is the first read access to a, τRia

 is

the i-th read access to a with first ≤ i ≤ max.

Rule 1: Register compatibility

If (τminb
 ≥ τmaxa

) then we create a “Register” tagged edge.

Here, data lifetime intervals are said to be “un-overlapping”. In

other words, those two data can be stored in the same storage

element.

Rule 2: FIFO compatibility

If [(τminb
 > τmina

) and (τfirstb
 > τmaxa

) and (τminb
 < τmaxa

)] then we

create a “FIFO” tagged edge.

In this case, data lifetime intervals are said to be “partially

overlapping” and data a and b can be stored in the same FIFO

structure; Note that the last relation (τminb
 < τmaxa

) enables a

formal distinction with Register compatibility. The FIFO

structure size is not always equal to the maximum number of data

stored in it. This point will be detailed in the next section.

Rule 3: LIFO compatibility

If [[(τminb
 > τmina

) and (τfirsta
 > τmaxb

)] or [(τRia <τminb <τmaxb

<τRi+1a
)]] then we create a “LIFO” tagged edge.

In this case, data lifetime intervals are said to be “including-

overlapping”. In the rest of this paper, we will only consider the

first part of this rule, i.e. [(τminb
 > τmina

) and (τfirsta
 > τmaxb

)]. In

this case, LIFO structure size equals the maximum number of

data stored in it. Future works will integrate the complete rule in

our tool.

Rule 4: Otherwise, No edge - No compatibility

In this case, we say the data are incompatible: two

different elements have to be used to store data a and b.

Figure 3: STAR design flow and associated tools.

Figure 4: Graph example (from Figure 1 constraints).

An analysis of I/O timing relations, we generate a RCG. The

graph construction supposes edge creation between data,

respecting a chronological order (τmin). If n is the number of data

to be handled, the graph may contain: n(n-1)/2 edges, O(n²).

4.2. Storage element binding
The second step consists in binding storage elements to data

by using the timing relations modeled by the RCG. The aim is to

identify and to bind as many FIFO or LIFO structures as possible

on the RCG.

In [2], by searching and isolating compatibility cliques in an

undirected graph, the authors identify the different storage

structures (FIFO or LIFO). This approach has four main

drawbacks: (1) identifying a maximum clique in an undirected

graph is a NP-complete problem (resource identification step),

(2) when such a clique is found, analysis have to be performed to

define the clique type (FIFO or LIFO) and to check if the I/O

constraints are respected (resource identification step), (3) the

proposed flow does not allow sizing of identified storage

elements (resource sizing step) and (4) the authors do not

propose any exploration algorithm (resource binding step).

Resource identification:

In our approach, the type of structures needed to handle two

data is modeled by a tagged edge. Then, the storage element

identification (FIFO, LIFO or Register) is made easier

(polynomial algorithm) by using the notion of path. Traveling a

path of a given type (F or L) with RCG modeling is equivalent by

construction, to the compatibility clique searching described in

[2].

 Let a, b, c be three chronologically ordered FIFO compatible

data (τmina
 < τminb < τminc

),

Theorem 1

If a is FIFO compatible with b and b is FIFO compatible with

c, then a is transitively FIFO (or Register) compatible with c.

Due to space limitation, the formal proof of this theorem will

not be given here, but it can be easily proven using the definition

of FIFO compatibility, and thanks to the transitivity of the

inequality relation. However, the distinction between FIFO and

Register compatibility (τfirst b
 > τmaxa

) in the definition of FIFO

compatibility cannot be transformed by transitivity. Since it is

used to distinguish F and R compatibility, we do not have enough

information to make this distinction in the resulting edge. So the

compatibility between a and c can be FIFO or Register (Figure

5.a).

Lemma 1: A FIFO compatible data path PF is, by construction, a

compatibility clique corresponding to a set of data that can be

stored in a single FIFO.

This can be proven by a recursive application of Theorem 1 on

PF.

Theorem 2

If a is LIFO compatible with b and b is LIFO compatible with

c, then a is transitively LIFO compatible with c.

Due to space limitation, the formal proof of this theorem will

not be given here, but it can be easily proven using the definition

of LIFO compatibility, and using the transitivity of the inequality

relation. Then data a and c are said to be LIFO compatible by

definition (Figure 5.b).

Lemma 2: A LIFO compatible data path PL is, by construction, a

compatibility clique corresponding to a set of data that can be

stored in a single LIFO.

This can be proven by a recursive application of Theorem 2 on

PL.

Resource sizing: The size of a LIFO structure equals the

maximum number of data stored by a LIFO compatible data path.

So, we have to identify the longest LIFO compatibility path PL

and then the number of vertices in PL equals the maximum

number of data that can be stored in this LIFO (see Figure 6).

However, data from a FIFO compatible path are not always

FIFO compatible with each other (e.g. Figure 7.a). So the size of

a FIFO structure is not always equal to the number of data in the

path: the size of the FIFO is the maximum number of data (of the

considered path) stored at the same time in the structure. In fact,

the aim is to count the maximum number of overlapped data

(respecting I/O constraints) in the selected path P.

Theorem 3

Let P be the longest FIFO compatibility path (edges tagged with

F),

Let i be a vertex of the graph, remaining in P,

Let Si = number of incoming FIFO tagged edges, whose origin

vertex is in P,

Then, Size = 1 + max ({ Si | for all vertices i in P}).

Resource binding: We use a greedy algorithm based on user

plotted metrics (minimal amount of data to use a FIFO or a LIFO,

average use factor, FIFO/LIFO usage priority factor, complexity

of routing architecture…), to bind as many FIFO or LIFO

structures as possible on the RCG. A two-steps flow is used: (1)

identification of the best structure, (2) merging all the concerned

(a) FIFO path (b) LIFO path

Figure 5. Compatibility cliques identification.

(a) LIFO Gantt (b) Associated graph

Figure 6: LIFO compatibility cliques.

(a) FIFO gantt (b) Associated graph

Figure 7: FIFO compatibility cliques.

data in a hierarchical node. Then, each node represents a storage

element, as shown on Figure 8.a (e.g. data a, b and f are merged

in a 3-stages FIFO). We say hierarchical node because merging a

set of data in a given node, supposes adding information that will

be useful during the optimization step: the lifetime of this

structure (i.e. the time interval during which this structure will be

used. e.g. Figure 8.b).

Let P = {v0, ..., vn} be a compatible data path,

• If P is a FIFO compatible path, the structure lifetime will be

[τminv0
, τmaxvn

],

• If P is a LIFO compatible path, the structure lifetime will be

[τminv0
, τmaxv0

].

 The selection of the nodes to be merged in a hierarchical one

influences the resulting architecture, since these nodes will not be

used to build another structure. When such a structure (FIFO or

LIFO) has been identified, i.e. when the corresponding

hierarchical node has been created, the binding step exploration

is performed on the rest of the graph. When no more FIFO or

LIFO structures can be identified on the graph, the next step is

architecture optimization.

4.3. Architecture Optimization.

The goal of this task is to maximize storage resource usage

and buffer sharing, in order to optimize the resulting architecture

by minimizing the number of storage elements and the number of

structures to be controlled. The goal is to merge, if possible, the

previously bound structures.

To tackle this problem, we build a new hierarchical RCG

with these hierarchical nodes, and their lifetimes. In order to

avoid any conflict, the exploration algorithm of the optimization

step will only search for Register compatibility path (buffer with

disjoints lifetimes), between same type vertices. When two or

more structures of the same type are Register compatible all

together, they can be merged.

Let P = {v0 ... vn} be a Register compatible data path,

• The lifetime of the resulting hierarchical merged structure

will be [τminv0
, τmaxvn

] U … U [τminvn
, τmaxvn

].

The algorithm is very similar to the one used during binding

step. When there is no more merging solution, the resulting graph

is used to generate the RTL VHDL architecture. Figure 9 is a

possible solution for the constraint set presented in Figure 1.

Here, the resulting architecture consist in a 3-stages FIFO that

handles 3 data, and a 2-stages FIFO that handles 3 data: one

memory place has been saved.

5. EXPERIMENTS

In this section we show the results of using our design flow to

generate (1) a STAR architecture based on FIFO storage elements

compared to a STAR architecture based on a sea of registers, (2)

an Ultra Wide Band interleaver [18] example. We use DCUltra

Synopsys for logic synthesis from the generated RTL STAR

architecture. All the areas have been masked and we also use

arbitrary units (To protect STMicroelectronics technologies).

5.1 In-order transaction study

In order to highlight the interest of FIFO/LIFO structures in

STAR components, we first generate a naïve architecture based

on a single FIFO; storing various numbers (from 32 up to 288) of

8 bit data (see Table 1). Next we compare it to the corresponding

architecture using a “sea” of registers generated by our tools

(using the “register only” option). The corresponding constraints

file specifies that the data are read (written) one by one through

(on) one input (output) port, and no data can be read before all

data are stored (no overlapping between inputs and outputs).

Thus, the resulting architecture stores all data, preventing any

optimization.

Table 1 show that the control area for the FIFO-based

architecture is smaller than the control area for a register-based

STAR when the total amount of data increases. This result comes

from the number of storage elements to be controlled: on the one

hand, one FIFO and on the other, a sea of registers. The

difference between data path areas arises from the greater

integration density of the RAM blocks that are used to design

FIFO/LIFO structures.

5.2 Ultra-Wide Band interleaver

This component has to be able to switch between different

modes (300, 600 or 1200 data length), respecting latency

constraints. By nature, interleavers are nearly worst case test-

benches for our design flow, since they offer few storage

elements to be saved. In a simplistic way, the more the data are

interleaved; the better the functional results are for

telecommunication applications. However, these data-mixing

schemes are well-known and very pedagogical mathematical

examples and we can explore how metrics (I/O parallelism,

enable/disable FIFO/LIFO, average usage factor…) can influence

the final architecture.

(a) Resulting hierarchical graph (b) Resulting constraints

Figure 8: A possible binding for Figure 4 graph.

Figure 9: Optimization of Figure 8 graph.

Table 1. Area results for reference test case (a.u.²)

FIFO-based Register-based

data
Data

path
Control Total

Data

path
Control Total

32 5888 1511 7399 7040 3258 10298

64 7860 1522 9382 14080 4959 19039

128 12276 1561 13837 28160 8539 36699

256 18672 1588 20260 56320 16061 72381

272 20052 1675 21727 59840 17597 77437

In Table 2, the number in column saved is the number of

register saved, and the number in Ctrl column is the number

structure to be managed. These results has been obtained with a

parallelism of 6 data input and 10 data output. Additional

constraints used during synthesis are F/L minimum length (e.g. 7

or 15) and filling (%).The reference design from

STMicroelectronics has been generated using a commercial HLS

tool. We also use our tools to generate the corresponding

architecture based on a sea of register (No F/L) for each mode. In

the reference architecture there is no memory saving (1200

registers in the worst case, 2400 when pipelined) but the three

modes are integrated in a single architecture.

Using our flow, we can save registers and decrease latency in

any case. Moreover the number of structure to be controlled is

smaller when we use our model. Drawback of this result is that

the reduction of storage elements can increase the complexity of

data multiplexing (depending on the interleaving rule). However

our approach also enables to enhance the throughput by

optimizing the latency to input and next output data. So,

depending on the selected mode the throughput of our

architecture can vary from 412 to 438 Mb/s (related to Table 2

designs) compared to 375Mb/s as a theoretic throughput from the

reference (Table 2).

Currently, we generate the different modes separately, while

the reference design integrates the three modes in a single 2400

memory points design. But when we concatenate our three

designs (one for each mode) in a single architecture, the total area

is about 14% smaller than the reference design. Future works will

enable the generation of optimized multi-modes architectures to

further reduce the area.

6. CONCLUSION

In this paper, we proposed a design space exploration

methodology for Space-Time AdapteR STAR components. This

approach relies on the formal modeling of communication

constraints based on a Resource Compatibility Graph RCG

describing timing relations between data. The binding and

optimization steps that assign data to storage elements according

to the timing relations have been presented. Experimental results

in the telecom domain have demonstrated the interest of this

methodology. Formal modeling allows RTL architectures to be

synthesized from a single C functional specification and under

various I/O timing constraints. We also show that it is easy to

explore different solution by applying different constraints during

synthesis. This allows enhancements based on refinements.

Future works will focus on the formal transformation of the

RCG in order to generate multi-configuration and pipelined

architectures. Moreover, we also investigate the use of a STAR

architecture in high-level synthesis flow: in our flow we use

scheduling information –available from a high level synthesis

tool- about data accesses and the cycles that they occur in. Then

the STAR can be use to implement computation memory [10].

7. REFERENCES

[1] F. Abbes, E. Casseau, M. Abid, P. Coussy, J-B. Legof, “IP

integration methodology for SoC design”, ICM,, 2004.

[2] A. Baganne, J-L. Philippe, E. Martin, “A Formal Technique

for Hardware Interface design”, IEEE Trans. On Circuits And

Systems, Vol.45, N°5, 1998.

[3] P. Bomel, E. Martin, E. Boutillon, “Synchronization

Processor Synthesis for Latency Insensitive Systems”, DATE,

2005.

[4] P. Coussy, E. Casseau, P. Bomel, A. Baganne, E. Martin, “A

formal method for hardware IP design and integration under I/O

and timing constraints”, ACM Trans. on Embeded Computing

System, 2005.

[5] L. Dinoi, S. Benedetto, “Variable-size interleaver design for

parallel turbo decoder architectures”, IEEE Transaction on

Communication, Vol.53, No11, Nov. 2005.

[6] A. Fraboulet, T. Risset, “Efficient On-chip Communications

for Data-flow IPs”, ASAP, p.293-303, 2004.

[7] S.II Han, A. Baghdadi et al. “An efficient scalable and

flexible data transfer architecture for multiprocessor SoC with

massive distributed memory”, DAC, 2004.

[8] S.II Han, X. Guerin, S.IK Chae, A.A Jerraya, “Buffer

memory optimization for video codec application modelled in

simulink”, DAC, 2006.

[9] D. Hommais, F. Pétrot, I. Augé, “A Practical Toolbox for

System Level Communication Synthesis”, In Proceedings of the

9th IEEE International Symposium on Hardware/Software Co-

design CODES, 2001.

[10] R.Radhouane, P.Liu, C. Modlin, “Minimizing the memory

requirement for continuous flow FFT implementation: continuous

flow mixed mode FFT (CFMM-FFT)”, ISCAS, 2000.

[11] J. Ruiz-Amaya, Al., “MATLAB/SIMULINK-Based High-Level

Synthesis of Discrete-Time and Continuous-Time Modulators“,

DATE, 2004.

[12] A. Turjan, et al., “A compile time based approach for solving

out-of-order communication in Kahn Process Networks”, ASAP,

2002.

[13] P. Urard, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E.

Yeo, B. Gupta, “A 135Mbps DVB-S2 compliant codec based on

64800-bit LDPC and BCH codes (ISSCC Paper 24.3)”, DAC,

2005.

[14] F. Vermeulen, F. Catthoor, D. Verkest, H. De Man,

“Formalized Three-Layer System-Level Model and Reuse

Methodology for Embedded Data-Dominated Applications”,

IEEE Trans. on VLSI Systems, Vol.8, N° 2, 2000.

[15] C. Zissulescu-Ianculescu, A. Turjan, B. Kienhuis and E.

Deprettere, “Solving Out of Order communication using CAM

memory: an implementation”, ProRisc, 2002.

[16] Virtual Socket Interface Alliance, http://www.vsi.org.

[17] OCP-IP International Partnership, Open Core Protocol

Specification, v-2.0, http://www.ocpip.org.

[18] IEEE 802.15.3a, WPAN High Rate Alternative

Table 2. Compared results for a given I/O parallelism

Reference
F/L

(Min 7 / 95%)

F/L
(Min 15 / 90%)

No F/L
Mode

Saved Ctrl Saved Ctrl Saved Ctrl Saved Ctrl

300 n/a 300 56 77 60 240 60 240

600 n/a 600 83 101 130 470 130 470

1200 n/a 1200 96 117 120 609 168 1032

