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ABSTRACT

This paper presents a solution to efficiently explore the design 

space of communication adapters. In most digital signal 

processing (DSP) applications, the overall architecture of the 

system is significantly affected by communication architecture, so 

the designers need specifically optimized adapters. By explicitly 

modeling these communications within an effective graph-

theoretic model and analysis framework, we automatically 

generate an optimized architecture, named Space-Time AdapteR 

(STAR). Our design flow inputs a C description of Input/Output 

data scheduling, and user requirements (throughput, latency, 

parallelism…), and formalizes communication constraints 

through a Resource Constraints Graph (RCG). The RCG 

properties enable an efficient architecture space exploration in 

order to synthesize a STAR component. The proposed approach 

has been tested to design an industrial data mixing block 

example: an Ultra-Wideband interleaver. 

 

Categories and Subject Descriptors 

B6.3 [Design aids]: Automatic synthesis, Optimization. 

General Terms 

Algorithms, Design & Performance. 

Keywords 

Communication and interface synthesis, RTL design, Digital 

Signal Processing and Multimedia Applications. 
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1.   INTRODUCTION 
 

The ever growing complexity of applications and the 

shrinking time-to-market lead the designers to look for advanced 

design methodologies. Indeed, to design such complex 

architecture within a short design time, it is necessary to raise the 

abstraction level of design description to system level, to explore 

the design space and finally to automatically generate the 

hardware register transfer level (RTL) architecture. Nowadays, a 

widespread solution to handle design complexity is to reuse pre-

design heterogeneous IP cores. Unfortunately, the main problem 

arises from their integration.  

In the multi-processor SoC (MPSoC) context (IP cores can be 

processor, memory, bus…) the problems come from the 

interfaces and protocols of the components. To tackle interfacing 

and functional problems when designing MPSoC architectures, 

system integrators can use standard interfaces such as Virtual 

Component Interface proposed by VSIA [16] and Open Core 

Protocol proposed by the OCP International Partnership [17]. 

However, in addition to the protocol aspects, SoC designers also 

have to synchronize components and to buffer data in order to 

ensure system behavior and to meet timing constraints. In [7] 

                                                 
 

authors propose to automatically generate simulation wrappers 

for MPSoC architectures.  

However, in the field of Digital Signal Processing (DSP) 

applications (e.g. [13]), a multi-processor SoC (MPSoC) 

architecture may not be a well-suited solution because of design 

complexity. Optimized hardware accelerators (e.g. filters) -

composed of a set of computing blocks communicating through 

point-to-point links- are still needed. From this point of view, the 

designers have to tackle problems such like throughput 

adaptation, data re-ordering (e.g. row-column), Input/Output 

parallelism adaptation. Based on communication templates, [9] 

presents a generic interface unit architecture for communication 

synthesis in a platform-based design approach. In [1] a 

multiplexer/demultiplexer and FIFO-based interface architecture 

is used. In [6], the authors propose a systematic way of 

interfacing data-flow hardware accelerators (IP core) for their 

integration in a system on chip. Their interface architecture is 

based on FIFO (queue) storage elements and a Direct Memory 

Access module (DMA). They assume that the IP are data 

synchronized (i.e. at each clock cycle a data is presented and 

read). However, these previous approaches assumed that the 

sequence of produced data is the same as the sequence of 

consumed data (no re-ordering). Moreover, FIFO sizes are 

computed by a “set and simulate” approach.  

Obviously, interfacing DSP’s blocks greatly impacts the 

quality of the system (throughput, area, power consumption…), 

that’s why efficient communication adapter design is still one of 

the most important points in complex system design. In fact, 

using Input/Output (I/O) wrappers can introduce unnecessary 

memorizing elements. Such wrappers may be needed in order to 

solve data reordering problems that can arise from the IP core 

integration. In [12] the authors aim at determining at compile 

time whether a FIFO is sufficient for every producer/consumer 

pair of a Kahn Process Network. When the sequence of produced 

data is different from the sequence of consumed data, extra 

storage and control on the consumer side is proposed [15]. This 

extra module includes a CAM (Content Addressable Memory) 

where data are addressed using a hash table. This solution 

enables the implementation of non-deterministic 

communications, but there is no optimization of the adapter 

overhead since overlapping of input and output data is not 

possible. In [2], a formal technique for hardware interface design 

is proposed. A generic interface model targeted by the 

communication synthesis is used. The low-level timing 

constraints can include strict timing specifications or data transfer 

schedule. The interface synthesis is carried out by an allocation 

procedure of data storage components (FIFO, LIFO and register). 

However, the size of storage elements is not computed or even 

taken into account during the design process. The proposed 

methodology is based on NP-complete maximum clique 

algorithm. In [14] the authors develop a system-level IP reuse 

methodology where designs are described in three layers. Data 

transfer and data storage optimizations are done by reorganizing 

loop indexing and loop nesting. Unfortunately, the authors do not 



present the technique they use to produce the RTL component 

architecture from the algorithm specification. In [4], the authors 

develop a set of techniques dedicated to the design of DSP 

algorithm. High-level synthesis of the processing unit is carried 

out under I/O timing and architectural constraints. The approach 

leads to an optimized data-path synthesis but still requires the 

communication unit design.   

In [11] authors proposed approaches that use Matlab/Simulink 

for the system specification and that produce a VHDL RTL 

architecture of the system. Based on hardware macro generators 

that use the “generic”/“generate” mechanisms, the synthesis 

process can be summarized as a block instantiation and block 

interconnection thanks to memory blocks. However, minimizing 

such buffer memory size in automatic code generation from the 

high-level system specification is still one of the key technologies 

[8]. That’s why in [8] the authors propose a methodology for the 

reduction of on-chip memory size. Our goal is to tackle the same 

problem, but our methodology analyses the communication at a 

finer grain level. This fine grain communication analysis enables 

deep exploration of optimization solutions and helps us to 

generate a close to the best memorization architecture.  

In this paper, we present an automatically generated optimized 

Space-Time AdapteR (STAR). Our design flow inputs timing 

diagrams (constraints file) or a C description of I/O data 

scheduling (e.g. an interleaving formula), and user requirements 

(throughput, latency…), and formalizes communication 

constraints through a formal Resource Constraints Graph (RCG). 

The RCG properties enable an efficient architecture space 

exploration in order to synthesize a STAR component. The 

contribution of our work can be seen as a solution for the 

automatic generation of a static network on chip. Indeed, our 

Space-Time AdapteR (STAR) architecture can be used to 

interconnect a set of IP cores.   

The paper is organized as follows: the second section is 

dedicated to the problem formulation. In the third section we 

present our design flow, while the associated formal models and 

methodology are detailed in section four. Finally, the last section 

presents experimental results. 

 

2.   MOTIVATION 
 

Let us consider a simple architecture example composed of 

two components exchanging a set of data S = {a, b, c, d, e, f}. S 

is produced by a block #1 and is consumed by a block #2 through 

a single point-to-point link. 

 

The write access sequence into the communication link is Sw 

= (a,c,b,e,f,d) i.e. t
w
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d , while the read access 

sequence from the link is different Sr =(c,a,e,b,d,f) i.e. 
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f  (see Figure 1). This difference between the 

two I/O sequences can either come from the integration of two IP 

cores that were not specifically designed to work together, either 

can be explicitly described (e.g. in interleavers [5][18]). As those 

blocks do not produce and consume data in the same order nor 

with the same throughput (nor sometime the same parallelism), 

they can not be directly plugged together. The designer needs to 

introduce a space-time adapter between them to ensure correct 

functional results. A classical solution consists in using a memory 

to buffer all concerned data: this is what we call coarse grain 

approach. But in fact, this over sized buffer may be reduced 

thanks to a finer grain communication constraints analysis [4]. 

The proposed adapter can be designed either by using a set of 

registers or specific memory elements, such as FIFO (queue) or 

LIFO (stack). The problem the designer faces consists in finding 

the best architecture for this adapter: he has to find the best 

storage element binding.  

For example, the lifetimes of data a and b respect a First-In 

First-Out semantic, so they can be assigned to the same hardware 

FIFO. This timing relation is also true for the data c and b. 

However, data a and c respect a Last-In First-Out semantic, so a 

single hardware FIFO cannot be used to store the data a, b and c 

The question for the designer is: how can we bind data a, b and c 

to different storage elements, in order to generate the best final 

architecture? This highlights the fact that the local problem of a, 

b and c binding will influence the resulting global architecture. A 

methodology is thus needed to bind data a, b and c to different 

storage elements, in order to generate an optimized architecture. 

 

3.   PROPOSED SOLUTION 
 

The architecture of a STAR component is composed of a 

datapath and the associated control state machine FSM (see 

Figure 2). The data path can be composed of FIFO, LIFO or 

register. Spatial adaptation (a data read on one input port can be 

send to any/several output ports) is performed by an 

interconnection logic dealing with data dispatching from input 

port to storage elements, and from storage elements to output 

ports. We can see on Figure 2 that there is one STAR architecture 

for each input port.  
 

 

The timing adaptation (data-rates, different input/output data 

scheduling) is realized by the storage elements. STAR can have a 

GALS (Globally Asynchronous Locally Synchronous) / LIS 

(Latency Insensitive System) interface as described in [3]. 

The design flow is presented in Figure 3 and is currently 

based on three tools: StarTor for the STAR design constraint 

 
Figure 1: Data lifetime.  

Figure 2: Typical STAR architecture. 



specification, StarGene for the STAR component synthesis and 

StarBench for the STAR functional validation. The methodology 

generates a register transfer level (RTL) architecture starting from 

a functional model and a set of user requirements (timing and 

communication-architecture constraints). The architecture 

synthesis is performed by using a library of pre-designed and 

characterized storage elements (FIFO, LIFO and Registers). 

 

 

StarTor inputs a C level algorithmic description which 

specifies the interleaving scheme, and a file containing user 

requirements (latency, throughput, communication interface, I/O 

parallelism...). StarTor first extracts I/O data communication 

order by generating a trace from the execution of the C functional 

description. Next, based on designer’s requirements, it generates 

a constraints file. This file contains the number and type of ports, 

type and amount of data, relationships between data and ports 

(i.e. mapping) and finally read and write access dates for all data. 

Then, in order to generate a STAR component, our design tool 

STARGene is based on a four-step flow: (1) Resource 

Compatibility Graph construction, (2) Storage resource binding, 

(3) Architecture optimization and (4) VHDL RTL generation (see 

Figure 3). During the first step of the STAR component 

Generation, a Resource Constraints Graph RCG is generated 

from the communication constraints. The analysis of this formal 

model allows both data binding to storage elements (queue, stack 

or register), and the sizing of each storage element. This first 

architecture is next optimized by merging storage elements that 

have non-overlapping usage timing frames. Finally, an RTL level 

design is generated. The last tool, StarBench, generates a test 

bench based on constraints in order to validate the design by 

comparing simulation results. 

 

Typically, a STAR could have to deal with different 

execution modes (configuration), switching from one to another 

at run-time. In this paper, we present a formal methodology to 

synthesize a STAR architecture for a given configuration. The 

generalization of the methodology generating multi-mode 

architecture (graph merging, multi data path synthesis, multi 

FSM generation…) will be presented in a future publication. 

 

4.   STAR DESIGN FLOW 
 

4.1. Resource Compatibility Graph Construction 

The first step consists in generating a Resource Compatibility 

Graph, from the design constraints file. This RCG specifies 

through formal modeling the timing relationship between data 

that have to be handled by the STAR architecture. The vertex set 

V={v0, ..., vn} represents data, the edge set E={(vi, vj)} represents 

the compatibility between the vertices. A tag tij ∈ T is associated 

with each edge (vi,vj). This tag represents the compatibility type 

between the two data (i and j), T= {Register R, FIFO F, LIFO 

L}, e.g. Figure 4.  
 

 

In order to assign compatibility tags to edges, we need to 

identify the timing relationship that exists between two data. For 

this purpose we defined a set of rules based on functional 

properties of each storage element (FIFO, LIFO, Register). 

The lifetime of data a in a STAR is defined by Γ(a) = 

[τmin(a), τmax(a)] where τmin(a) and τmax(a) are respectively the 

date of the write access of a into the component and the last date 

of the read access to a. τfirsta
 is the first read access to a, τRia

  is 

the i-th read access to a with first ≤ i ≤ max. 

 

Rule 1: Register compatibility 

If (τminb
 ≥ τmaxa

) then we create a “Register” tagged edge. 

Here, data lifetime intervals are said to be “un-overlapping”. In 

other words, those two data can be stored in the same storage 

element. 

 

Rule 2: FIFO compatibility 

If [(τminb
 > τmina

) and (τfirstb
 > τmaxa

) and (τminb
 < τmaxa

)] then we 

create a “FIFO” tagged edge.  

In this case, data lifetime intervals are said to be “partially 

overlapping” and data a and b can be stored in the same FIFO 

structure; Note that the last relation (τminb
 < τmaxa

) enables a 

formal distinction with Register compatibility. The FIFO 

structure size is not always equal to the maximum number of data 

stored in it. This point will be detailed in the next section. 

 

Rule 3: LIFO compatibility 

If [[(τminb
 > τmina

) and (τfirsta
 > τmaxb

)] or [(τRia <τminb <τmaxb 

<τRi+1a
)]] then we create a “LIFO” tagged edge. 

In this case, data lifetime intervals are said to be “including-

overlapping”. In the rest of this paper, we will only consider the 

first part of this rule, i.e. [(τminb
 > τmina

) and (τfirsta
 > τmaxb

)]. In 

this case, LIFO structure size equals the maximum number of 

data stored in it. Future works will integrate the complete rule in 

our tool. 

 

Rule 4: Otherwise, No edge - No compatibility 

In this case, we say the data are incompatible: two 

different elements have to be used to store data a and b. 

 
Figure 3: STAR design flow and associated tools. 

 
Figure 4: Graph example (from Figure 1 constraints). 



 

An analysis of I/O timing relations, we generate a RCG. The 

graph construction supposes edge creation between data, 

respecting a chronological order (τmin). If n is the number of data 

to be handled, the graph may contain: n(n-1)/2 edges, O(n²). 

 

4.2. Storage element binding 
The second step consists in binding storage elements to data 

by using the timing relations modeled by the RCG. The aim is to 

identify and to bind as many FIFO or LIFO structures as possible 

on the RCG. 

In [2], by searching and isolating compatibility cliques in an 

undirected graph, the authors identify the different storage 

structures (FIFO or LIFO). This approach has four main 

drawbacks: (1) identifying a maximum clique in an undirected 

graph is a NP-complete problem (resource identification step), 

(2) when such a clique is found, analysis have to be performed to 

define the clique type (FIFO or LIFO) and to check if the I/O 

constraints are respected (resource identification step), (3) the 

proposed flow does not allow sizing of identified storage 

elements (resource sizing step) and (4) the authors do not 

propose any exploration algorithm (resource binding step).  
 

 

Resource identification:  

In our approach, the type of structures needed to handle two 

data is modeled by a tagged edge. Then, the storage element 

identification (FIFO, LIFO or Register) is made easier 

(polynomial algorithm) by using the notion of path. Traveling a 

path of a given type (F or L) with RCG modeling is equivalent by 

construction, to the compatibility clique searching described in 

[2].  

 

 Let a, b, c be three chronologically ordered FIFO compatible 

data (τmina
 < τminb  < τminc

), 

 

Theorem 1  

If a is FIFO compatible with b and b is FIFO compatible with 

c, then a is transitively FIFO (or Register) compatible with c. 

Due to space limitation, the formal proof of this theorem will 

not be given here, but it can be easily proven using the definition 

of FIFO compatibility, and thanks to the transitivity of the 

inequality relation. However, the distinction between FIFO and 

Register compatibility (τfirst b
 > τmaxa

) in the definition of FIFO 

compatibility cannot be transformed by transitivity. Since it is 

used to distinguish F and R compatibility, we do not have enough 

information to make this distinction in the resulting edge. So the 

compatibility between a and c can be FIFO or Register (Figure 

5.a).  

 

Lemma 1: A FIFO compatible data path PF is, by construction, a 

compatibility clique corresponding to a set of data that can be 

stored in a single FIFO. 

This can be proven by a recursive application of Theorem 1 on 

PF. 

 

Theorem 2 

If a is LIFO compatible with b and b is LIFO compatible with 

c, then a is transitively LIFO compatible with c. 

Due to space limitation, the formal proof of this theorem will 

not be given here, but it can be easily proven using the definition 

of LIFO compatibility, and using the transitivity of the inequality 

relation. Then data a and c are said to be LIFO compatible by 

definition (Figure 5.b). 

 

Lemma 2: A LIFO compatible data path PL is, by construction, a 

compatibility clique corresponding to a set of data that can be 

stored in a single LIFO. 

This can be proven by a recursive application of Theorem 2 on 

PL. 
 

Resource sizing: The size of a LIFO structure equals the 

maximum number of data stored by a LIFO compatible data path. 

So, we have to identify the longest LIFO compatibility path PL 

and then the number of vertices in PL equals the maximum 

number of data that can be stored in this LIFO (see Figure 6). 
 

 

However, data from a FIFO compatible path are not always 

FIFO compatible with each other (e.g. Figure 7.a). So the size of 

a FIFO structure is not always equal to the number of data in the 

path: the size of the FIFO is the maximum number of data (of the 

considered path) stored at the same time in the structure. In fact, 

the aim is to count the maximum number of overlapped data 

(respecting I/O constraints) in the selected path P. 

 

Theorem 3 

Let P be the longest FIFO compatibility path (edges tagged with 

F), 

Let i be a vertex of the graph, remaining in P, 

Let Si = number of incoming FIFO tagged edges, whose origin 

vertex is in P,  

Then,      Size = 1 + max ({ Si  | for all vertices i in P}). 
 

Resource binding: We use a greedy algorithm based on user 

plotted metrics (minimal amount of data to use a FIFO or a LIFO, 

average use factor, FIFO/LIFO usage priority factor, complexity 

of routing architecture…), to bind as many FIFO or LIFO 

structures as possible on the RCG. A two-steps flow is used: (1) 

identification of the best structure, (2) merging all the concerned 

  
(a) FIFO path (b) LIFO path 

Figure 5. Compatibility cliques identification. 

  
(a) LIFO Gantt (b) Associated graph 

Figure 6: LIFO compatibility cliques. 

  

(a) FIFO gantt (b) Associated graph 

Figure 7: FIFO compatibility cliques. 



data in a hierarchical node. Then, each node represents a storage 

element, as shown on Figure 8.a (e.g. data a, b and f are merged 

in a 3-stages FIFO). We say hierarchical node because merging a 

set of data in a given node, supposes adding information that will 

be useful during the optimization step: the lifetime of this 

structure (i.e. the time interval during which this structure will be 

used. e.g. Figure 8.b).  

 

Let P = {v0, ..., vn}  be a compatible data path, 

• If P is a FIFO compatible path, the structure lifetime will be 

[τminv0
, τmaxvn

], 

• If P is a LIFO compatible path, the structure lifetime will be 

[τminv0
, τmaxv0

]. 

 

 The selection of the nodes to be merged in a hierarchical one 

influences the resulting architecture, since these nodes will not be 

used to build another structure. When such a structure (FIFO or 

LIFO) has been identified, i.e. when the corresponding 

hierarchical node has been created, the binding step exploration 

is performed on the rest of the graph. When no more FIFO or 

LIFO structures can be identified on the graph, the next step is 

architecture optimization. 

 

4.3.  Architecture Optimization.  

The goal of this task is to maximize storage resource usage 

and buffer sharing, in order to optimize the resulting architecture 

by minimizing the number of storage elements and the number of 

structures to be controlled. The goal is to merge, if possible, the 

previously bound structures.  

To tackle this problem, we build a new hierarchical RCG 

with these hierarchical nodes, and their lifetimes. In order to 

avoid any conflict, the exploration algorithm of the optimization 

step will only search for Register compatibility path (buffer with 

disjoints lifetimes), between same type vertices. When two or 

more structures of the same type are Register compatible all 

together, they can be merged.  

 

Let P = {v0 ... vn} be a Register compatible data path, 

•  The lifetime of the resulting hierarchical merged structure 

will be [τminv0
, τmaxvn

] U … U [τminvn
, τmaxvn

]. 

 

The algorithm is very similar to the one used during binding 

step. When there is no more merging solution, the resulting graph 

is used to generate the RTL VHDL architecture. Figure 9 is a 

possible solution for the constraint set presented in Figure 1. 

Here, the resulting architecture consist in a 3-stages FIFO that 

handles 3 data, and a 2-stages FIFO that handles 3 data: one 

memory place has been saved. 

 

5.   EXPERIMENTS 
 

In this section we show the results of using our design flow to 

generate (1) a STAR architecture based on FIFO storage elements 

compared to a STAR architecture based on a sea of registers, (2) 

an Ultra Wide Band interleaver [18] example. We use DCUltra 

Synopsys for logic synthesis from the generated RTL STAR 

architecture. All the areas have been masked and we also use 

arbitrary units (To protect STMicroelectronics technologies). 

 

5.1 In-order transaction study 

In order to highlight the interest of FIFO/LIFO structures in 

STAR components, we first generate a naïve architecture based 

on a single FIFO; storing various numbers (from 32 up to 288) of 

8 bit data (see Table 1). Next we compare it to the corresponding 

architecture using a “sea” of registers generated by our tools 

(using the “register only” option). The corresponding constraints 

file specifies that the data are read (written) one by one through 

(on) one input (output) port, and no data can be read before all 

data are stored (no overlapping between inputs and outputs). 

Thus, the resulting architecture stores all data, preventing any 

optimization. 
 

Table 1 show that the control area for the FIFO-based 

architecture is smaller than the control area for a register-based 

STAR when the total amount of data increases. This result comes 

from the number of storage elements to be controlled: on the one 

hand, one FIFO and on the other, a sea of registers. The 

difference between data path areas arises from the greater 

integration density of the RAM blocks that are used to design 

FIFO/LIFO structures. 
 

5.2 Ultra-Wide Band interleaver 

This component has to be able to switch between different 

modes (300, 600 or 1200 data length), respecting latency 

constraints. By nature, interleavers are nearly worst case test-

benches for our design flow, since they offer few storage 

elements to be saved. In a simplistic way, the more the data are 

interleaved; the better the functional results are for 

telecommunication applications. However, these data-mixing 

schemes are well-known and very pedagogical mathematical 

examples and we can explore how metrics (I/O parallelism, 

enable/disable FIFO/LIFO, average usage factor…) can influence 

the final architecture. 

  
(a) Resulting hierarchical graph (b) Resulting constraints 

Figure 8: A possible binding for Figure 4 graph. 

 

Figure 9: Optimization of Figure 8 graph. 

Table 1. Area results for reference test case (a.u.²) 

FIFO-based Register-based 

# data 
Data 

path 
Control Total 

Data 

path 
Control Total 

32 5888 1511 7399 7040 3258 10298 

64 7860 1522 9382 14080 4959 19039 

128 12276 1561 13837 28160 8539 36699 

256 18672 1588 20260 56320 16061 72381 

272 20052 1675 21727 59840 17597 77437 



In Table 2, the number in column saved is the number of 

register saved, and the number in Ctrl column is the number 

structure to be managed. These results has been obtained with a 

parallelism of 6 data input and 10 data output. Additional 

constraints used during synthesis are F/L minimum length (e.g. 7 

or 15) and filling (%).The reference design from 

STMicroelectronics has been generated using a commercial HLS 

tool. We also use our tools to generate the corresponding 

architecture based on a sea of register (No F/L) for each mode. In 

the reference architecture there is no memory saving (1200 

registers in the worst case, 2400 when pipelined) but the three 

modes are integrated in a single architecture. 
  

Using our flow, we can save registers and decrease latency in 

any case. Moreover the number of structure to be controlled is 

smaller when we use our model. Drawback of this result is that 

the reduction of storage elements can increase the complexity of 

data multiplexing (depending on the interleaving rule). However 

our approach also enables to enhance the throughput by 

optimizing the latency to input and next output data. So, 

depending on the selected mode the throughput of our 

architecture can vary from 412 to 438 Mb/s (related to Table 2 

designs) compared to 375Mb/s as a theoretic throughput from the 

reference (Table 2).  

Currently, we generate the different modes separately, while 

the reference design integrates the three modes in a single 2400 

memory points design. But when we concatenate our three 

designs (one for each mode) in a single architecture, the total area 

is about 14% smaller than the reference design. Future works will 

enable the generation of optimized multi-modes architectures to 

further reduce the area.  

 

6.   CONCLUSION 
 

In this paper, we proposed a design space exploration 

methodology for Space-Time AdapteR STAR components. This 

approach relies on the formal modeling of communication 

constraints based on a Resource Compatibility Graph RCG 

describing timing relations between data. The binding and 

optimization steps that assign data to storage elements according 

to the timing relations have been presented. Experimental results 

in the telecom domain have demonstrated the interest of this 

methodology. Formal modeling allows RTL architectures to be 

synthesized from a single C functional specification and under 

various I/O timing constraints. We also show that it is easy to 

explore different solution by applying different constraints during 

synthesis. This allows enhancements based on refinements.  

Future works will focus on the formal transformation of the 

RCG in order to generate multi-configuration and pipelined 

architectures. Moreover, we also investigate the use of a STAR 

architecture in high-level synthesis flow: in our flow we use 

scheduling information –available from a high level synthesis 

tool- about data accesses and the cycles that they occur in. Then 

the STAR can be use to implement computation memory [10].  

 

7.  REFERENCES 
 

[1] F. Abbes, E. Casseau, M. Abid, P. Coussy, J-B. Legof, “IP 

integration methodology for SoC design”, ICM,, 2004. 

[2] A. Baganne, J-L. Philippe, E. Martin, “A Formal Technique 

for Hardware Interface design”, IEEE Trans. On Circuits And 

Systems, Vol.45, N°5, 1998. 

[3] P. Bomel, E. Martin, E. Boutillon, “Synchronization 

Processor Synthesis for Latency Insensitive Systems”, DATE, 

2005. 

[4] P. Coussy, E. Casseau, P. Bomel, A. Baganne, E. Martin, “A 

formal method for hardware IP design and integration under I/O 

and timing constraints”,  ACM Trans. on Embeded Computing 

System, 2005. 

[5] L. Dinoi, S. Benedetto, “Variable-size interleaver design for 

parallel turbo decoder architectures”, IEEE Transaction on 

Communication, Vol.53, No11, Nov. 2005. 

[6] A. Fraboulet, T. Risset, “Efficient On-chip Communications 

for Data-flow IPs”, ASAP, p.293-303, 2004.  

[7] S.II Han, A. Baghdadi et al. “An efficient scalable and 

flexible data transfer architecture for multiprocessor SoC with 

massive distributed memory”, DAC, 2004. 

[8] S.II Han, X. Guerin, S.IK Chae, A.A Jerraya, “Buffer 

memory optimization for video codec application modelled in 

simulink”, DAC, 2006. 

[9] D. Hommais, F. Pétrot, I. Augé, “A Practical Toolbox for 

System Level Communication Synthesis”, In Proceedings of the 

9th IEEE International Symposium on Hardware/Software Co-

design CODES, 2001. 

[10] R.Radhouane, P.Liu, C. Modlin, “Minimizing the memory 

requirement for continuous flow FFT implementation: continuous 

flow mixed mode FFT (CFMM-FFT)”, ISCAS, 2000. 

[11] J. Ruiz-Amaya, Al., “MATLAB/SIMULINK-Based High-Level 

Synthesis of Discrete-Time and Continuous-Time Modulators“, 

DATE, 2004. 

[12] A. Turjan, et al., “A compile time based approach for solving 

out-of-order communication in Kahn Process Networks”, ASAP, 

2002. 

[13] P. Urard, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. 

Yeo, B. Gupta, “A 135Mbps DVB-S2 compliant codec based on 

64800-bit LDPC and BCH codes (ISSCC Paper 24.3)”, DAC, 

2005. 

[14] F. Vermeulen, F. Catthoor, D. Verkest, H. De Man, 

“Formalized Three-Layer System-Level Model and Reuse 

Methodology for Embedded Data-Dominated Applications”, 

IEEE Trans.  on VLSI Systems, Vol.8, N° 2, 2000. 

[15] C. Zissulescu-Ianculescu, A. Turjan, B. Kienhuis and E. 

Deprettere, “Solving Out of Order communication using CAM 

memory: an implementation”, ProRisc, 2002. 

[16] Virtual Socket Interface Alliance, http://www.vsi.org. 

[17] OCP-IP International Partnership, Open Core Protocol 

Specification, v-2.0, http://www.ocpip.org. 

[18]  IEEE 802.15.3a, WPAN High Rate Alternative 

 

Table 2. Compared results for a given I/O parallelism 

Reference 
F/L 

(Min 7 / 95%) 

F/L 
(Min 15 / 90%) 

No F/L 
Mode 

Saved Ctrl Saved Ctrl Saved Ctrl Saved Ctrl 

300 n/a 300 56 77 60 240 60 240 

600 n/a 600 83 101 130 470 130 470 

1200 n/a 1200 96 117 120 609 168 1032 


