
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-01

An Approximation Algorithm for
Fully Testable kEP-SOP Networks

Anna Bernasconi,
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani, Roberto Cordone
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

{ciriani, cordone}@dti.unimi.it

January 2, 2007

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

An Approximation Algorithm for Fully Testable kEP-SOP

Networks

Anna Bernasconi,
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani, Roberto Cordone
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

{ciriani, cordone}@dti.unimi.it

January 2, 2007

Abstract

Multi-level logic synthesis yields much more compact expressions of a given Boolean function
with respect to standard two-level sum of products (SOP) forms. On the other hand, minimizing
an expression with more than two-levels can take a large time. In this paper we introduce a
novel algebraic four-level expression, named k-EXOR-projected sum of products (kEP-SOP)
form, whose synthesis can be performed in polynomial time with an approximation algorithm
starting from a minimal SOP. Our experiments show that the resulting networks can be obtained
in very short computational time and often exhibit a high quality. We also study the testability
of these networks under the Stuck-at-fault model, and show how fully testable circuits can be
generated from them by adding at most a constant number of multiplexer gates. Experimental
results show the effectiveness of this method both for four-level logic and general multi-level
logic synthesis.

1 Introduction

A crucial task in logic synthesis is the derivation of high quality networks from an initial specifica-
tion. The selection of a structure for the final circuit, out of all known models, is critical and the
quality of the synthesized circuit depends on different factors, such as area, delay, synthesis time,
and testability.

The classical synthesis approach is the two-level logic minimization of Sum of Products (SOPs).
Big efforts have been done to obtain efficient SOP minimization procedures, which usually involve
refined set covering algorithms. The main advantages of SOP synthesis are the small and constant
number of levels of the resulting networks (which guarantees a very low delay); their full testability
in the Stuck-at-fault model; and the availability of very efficient heuristics for their minimization
(e.g., Espresso [18, 2], Scherzo [7], SCG [6]). On the other hand, SOP forms are in general not
very compact.

In order to obtain networks with smaller area, many multi-level logic expressions have been
proposed. Multi-level minimization methods can be divided into two groups, depending on whether
a bound on the number of levels in the resulting networks has been fixed or not. Unbounded multi-
level minimization algorithms (e.g., SIS [20] and BDD-based circuits [10]) are very fast and the
resulting networks are often compact. However, no constraint is given on the number of levels, and
therefore the delay of the corresponding networks is not guaranteed to be low. On the contrary,

1

bounded multi-level forms (e.g., EXSOP [8, 11], OR-AND-OR [9], SPP [5, 17], ESPP [16, 15],
EP-SOP [1]), while still keeping a very compact area, result into circuits of constant depth, usually
three or four levels. Bounded multi-level forms are therefore quite promising for the high quality of
the corresponding networks, but the main problem of these models is the huge minimization time
required for their synthesis.

This work is aimed to describe a new bounded multi-level form (with four levels) that can be
synthesized in reasonable time, the k-EXOR-projected sum of products (kEP-SOP) form. The main
idea is to manipulate an already minimal SOP expression in order to derive, in polynomial time, a
more compact but still bounded network. Generalizing the strategy described in [1], we project the
minimal SOP onto subspaces of the Boolean space {0, 1}n. These projections reduce the Hamming
distances among the cubes appearing in each subspace, so that further merges can be performed
using standard SOP heuristics. Due to the high complexity of their synthesis, we minimize kEP-
SOP forms with a polynomial time approximation algorithm, whose approximation ratio improves
the one derived in [1] for EP-SOP forms.

Our overall method yields a polynomial time approximation algorithm. Recall that both heuris-
tics and approximation algorithms do not guarantee the minimality of their solution, but while we
cannot perform any prediction on the result of a heuristic, an approximation algorithm guarantees
near-optimum solutions.

We first introduce a 2EP-SOP (k=2) form through an example. Let us consider the Boolean
function f that is represented by the optimal SOP x1x2x3 +x1x2x3 +x1x2x3 +x1x2x3x4 +x4x5x6 +
x4x5x6 + x4x5x6 + x3x5x6. We project this SOP onto the spaces (x1 ⊕ x2), (x1 ⊕ x2), (x4 ⊕ x5),
and (x4 ⊕ x5). These four projections return the form (x1 ⊕ x2)x3 + (x1 ⊕ x2) (x2x3 + x3x4) +
(x4 ⊕ x5)x6 + (x4 ⊕ x5) (x5x6 + x3x5x6). The resulting network is shown in Figure 2.

We can observe that kEP-SOP expressions can be seen as Boolean factorized forms. Factor-
ization of literal terms is a widely studied field in multi-level logic [4, 19]. Most of the proposed
methods produce disjoint factorization [13]. In contrast, the factorization of a kEP-SOP form is
not disjoint since a literal can stay simultaneously in the projected SOPs and in the corresponding
EXORs, as shown in the previous example.

Beside synthesis, testability is a major aspect of the design process. Therefore we study the
testability of kEP-SOP networks under the Stuck-at-fault model, and show how, adding at most a
constant number of multiplexer gates, fully testable circuits can be generated from them.

Finally we have performed an extensive set of experiments, with the classical benchmark suite
of Espresso, in order to validate in practice our theoretical proofs. The experiments show two
different results. First, the 1EP-SOP (k=1) forms seem to be sufficient to give compact four-level
networks, as 2EP-SOP forms are rarely more compact. Second, for multi-level synthesis (with SIS),
2EP-SOPs and 1EP-SOPs are both useful for obtaining compact networks.

The remainder of this paper is organized as follows. Section 2 recalls some preliminary results
from [1]; Section 3 defines kEP-SOP forms. Section 4 presents the approximation algorithm for
kEP-SOP synthesis and proves that its solution is nearly optimal. Section 5 studies the testability
of kEP-SOPs in the Stuck-at fault model. Finally, Section 6 discusses the experimental results
validating the proposed approach.

2 Preliminaries

2.1 EP-SOP Networks

In this section we recall some basic definitions from [1].

2

x1 x2

x1 x2

x1 x2
00 01 11 10

10 0

1

0

0 0 1 1

1

00 01 11 10

1

1

0

1

1 1

1 1

0

0

x3 x4

00

01

11

10

00 01 11 10

1 10 0

1 1 0 1

1

0 1 1

0

0

1 1

x2

x2

x3 x4

x3 x4

Figure 1: Karnaugh maps of a function f (left side) and its corresponding projections onto x1 ⊕ x2 (right
side, top) and x1 ⊕ x2 (right side, bottom).

Let f : {0, 1}n → {0, 1} be a Boolean function depending on n variables x1, x2, . . ., xn, and
let φ be a SOP representation of it. Let us consider a couple of variables xi and xj , where w.l.o.g.
i < j. The space {0, 1}n can be partitioned into two disjoint subspaces: the space defined by the
characteristic function χ⊕ = (xi ⊕ xj), i.e., the space where xi = xj , and its complement defined
by the function χ⊕ = (xi ⊕ xj), i.e., the space where xi 6= xj . We can represent the function f as
the sum (union) of the two projections of φ, φ⊕ and φ⊕, onto these two spaces:

ξij = (xi ⊕ xj)φ⊕ + (xi ⊕ xj)φ⊕ ,

The expression ξij is called the (i, j)-EP-SOP of f [1].

Example 1 Let us consider the Boolean function f shown on the left side of Figure 1. An optimal
SOP representation for f is φ = x1x2x3+x1x2x3+x1x2x3+x1x2x3+x3x4. Suppose to project φ onto
the spaces (x1 ⊕ x2) and (x1 ⊕ x2). The first product x1x2x3 in φ is projected only onto the space
(x1 ⊕ x2) (where x1 6= x2) because it contains both x1 (complemented) and x2; the projected product
is x2x3. All other products, but the last one, can be projected in a similar way, onto one of the
two spaces. Since the last product x3x4 does not contain x1 and x2, it projects onto both the spaces
without any literal removal. The overall procedure returns the form (x1 ⊕ x2) (x2x3+x2x3+x3x4)+
(x1 ⊕ x2) (x2x3 + x2x3 + x3x4) . Note that the projected SOP forms are not minimal. Minimizing
them we obtain (x1 ⊕ x2)x3 + (x1 ⊕ x2) (x3 + x4), as shown on the right side of Figure 1.

As Example 1 shows, the products of a generic SOP φ can be classified into two subsets: those that
are entirely included into one of the two subspaces x1 = x2 and x1 6= x2 and those that intersect
both of them, which are called crossing products [1] (for example, in Figure 1 the product x3x4). In
general, it is questionable whether it is profitable to project a crossing product, since this produces
two identical products, which reside into the two subspaces (though sometimes these products can
merge with other ones, yielding simplified SOPs). Therefore, we can choose to keep the crossing
products in an unprojected SOP, named remainder. In this case, the resulting expression is called
EP-SOP with remainder [1].

For example, for the Boolean function f shown on the left side of Figure 1, if the unique
crossing product of φ, x3x4, is inserted in the remainder, the overall projection returns the form:
(x1 ⊕ x2) (x2x3+x2x3)+(x1 ⊕ x2) (x2x3 + x2x3)+x3x4. Minimizing the projected SOPs we obtain
(x1 ⊕ x2)x3 + (x1 ⊕ x2)x3 + x3x4.

Formally, let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given a couple of
variables xi and xj , the (i, j)-EP-SOP with remainder of f is the expression

ψij = (xi ⊕ xj)φ′⊕ + (xi ⊕ xj)φ′⊕ + ρ ,

3

where φ′⊕ and φ′⊕ are the two projections of the products of φ containing both xi and xj (possibly
complemented) onto the spaces (xi⊕xj) and (xi⊕xj), respectively, and ρ is the sum of all crossing
products of φ.

3 kEP-SOP Forms

In this section we define a new algebraic expression, called kEP-SOP form, as a direct generalization
of an EP-SOP with remainder. We can observe that the remainder in an EP-SOP depends in
general on all the n binary variables, since it contains all crossing products. Our idea is to further
project the remainder, by choosing another couple of variables and projecting the crossing products
onto the two corresponding subspaces. These new projections could be performed with or without
remainder. Of course, as long as one keeps a remainder, one can iterate the procedure.

We can formally define this new expression as follows.

Definition 1 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given k couples of
variables (xai , xbi

), with i = 1, . . . , k and ai < bi, the kEP-SOP of f is the expression

kEP-SOP(f) =
k∑

i=1

(
(xai ⊕ xbi

)φi
⊕ + (xai ⊕ xbi

)φi
⊕

)
,

where

• for i = 1, . . . , k − 1, φi
⊕ and φi

⊕ are the projections with remainder of ρi−1 (setting, by
convention, ρ0 = φ) onto the spaces (xai ⊕xbi

) and (xai ⊕xbi
), respectively, and ρi is the sum

of all crossing products of ρi−1.

• φk
⊕ and φk

⊕ are the projections without remainder of ρk−1 onto the spaces (xak
⊕ xbk

)
and (xak

⊕ xbk
), respectively.

Observe that a kEP-SOP with k = 1 is an EP-SOP without remainder. Moreover, if in Definition 1
we define φk

⊕ and φk
⊕ as the projections with remainder of ρk−1, we obtain a kEP-SOP with

remainder.
For simplicity, in the following we will consider just the case k = 2. As we will point out, all

results can be easily extended to the general case

Definition 2 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given two non
identical couples of variables (xi, xj) and (xi′ , xj′) with i < j and i′ < j′, the (i,j,i’,j’)-2EP-SOP of
f is the expression

ζi,j,i′,j′ = (xi ⊕ xj)φ⊕ + (xi ⊕ xj)φ⊕ + ρ =
= (xi ⊕ xj)φ⊕ + (xi ⊕ xj)φ⊕ + (xi′ ⊕ xj′)ρ⊕ + (xi′ ⊕ xj′)ρ⊕,

where φ⊕ and φ⊕ are the projections with remainder of φ onto the spaces (xi⊕xj) and (xi⊕xj),
respectively, ρ is the sum of all crossing products of φ; and ρ⊕ and ρ⊕ are the projections without
remainder of ρ onto the spaces (xi′ ⊕ xj′) and (xi′ ⊕ xj′), respectively.

After the projections, we can further minimize the SOPs φ⊕, φ⊕, ρ⊕, and ρ⊕, in order to
minimize the 2EP-SOP ζiji′j′ .

4

Definition 3 A Minimal (i,j,i’,j’)-2EP-SOP of f is the expression

ζ
(min)
i,j,i′,j′ = (xi ⊕ xj)φ

(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ + (xi′ ⊕ xj′)ρ
(min)
⊕ + (xi′ ⊕ xj′)ρ

(min)

⊕ ,

where φ(min)
⊕ and φ(min)

⊕ are two minimal SOP forms representing the projections of φ, and ρ(min)
⊕

and ρ(min)

⊕ are two minimal SOP forms representing the projections of the remainder ρ.

In the previous definitions we have a priori fixed two couples of variables, but we can define
a 2EP-SOP expression containing the minimum number of products among all possible minimal
2EP-SOP w.r.t. any pair of couples of variables.

Let |φ| denote the number of products in a SOP φ, and |ζ| = |φ⊕|+ |φ⊕|+ |ρ⊕|+ |ρ⊕| the overall
number of products in a 2EP-SOP ζ.

Definition 4 A Minimal 2EP-SOP representation of a Boolean function f is given by a 2EP-SOP
expression ζMIN such that

|ζMIN | = min
i,j,i′,j′

|ζ(min)
i,j,i′,j′ | .

Example 2 Let us consider the Boolean function f represented by the optimal SOP

φ = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3x4 + x4x5x6 + x4x5x6 + x4x5x6 + x3x5x6 .

We first project φ onto the spaces (x1 ⊕ x2) and (x1 ⊕ x2). The first two products x1x2x3 and
x1x2x3 are projected onto the space (x1 ⊕ x2), while the products x1x2x3 and x1x2x3x4 are projected
onto the space (x1 ⊕ x2). Since the last four products do not contain both the variables x1 and x2,
they are inserted into the remainder: ρ = x4x5x6 + x4x5x6 + x4x5x6 + x3x5x6.

Second, we project the remainder ρ onto the spaces (x4 ⊕ x5) and (x4 ⊕ x5). By Definition 2,
the projection of ρ is performed without remainder. Therefore the crossing products are inserted
in both spaces, i.e., the unique crossing product x3x5x6 will be inserted in both (x4 ⊕ x5) and
(x4 ⊕ x5) without any literal removal. We then project x4x5x6, x4x5x6, and x3x5x6 onto (x4 ⊕ x5),
and x4x5x6 and x3x5x6 onto the space (x4 ⊕ x5).

The overall projections will return the form

ζ1,2,4,5 = (x1 ⊕ x2) (x2x3 + x2x3) + (x1 ⊕ x2) (x2x3 + x2x3x4)
+ (x4 ⊕ x5) (x5x6 + x5x6 + x3x5x6) + (x4 ⊕ x5) (x5x6 + x3x5x6) .

Finally, minimizing the projected SOP forms, we obtain the minimal form:

ζ
(min)
1,2,4,5 = (x1 ⊕ x2)x3 + (x1 ⊕ x2) (x2x3 + x3x4)

+ (x4 ⊕ x5)x6 + (x4 ⊕ x5) (x5x6 + x3x5x6) .

The minimal 2EP-SOP network is shown in Figure 2.

4 Synthesis of 2EP-SOP Networks

In [1] it is shown that finding an EP-SOP form minimal w.r.t. a given couple of variables is a
hard problem (NPNP -hard), even if the input SOP is already minimal. The same holds for the
2EP-SOP minimization problem (and in general for kEP-SOP minimization). Indeed, the problem
of finding an EP-SOP form minimal w.r.t. a given couple of variables xi′ and xj′ can be reduced

5

3

x 3

x 4

x 3

x 6

x 5
x 6

x

x

x
x

1

2

x 2

f

min SOP

min SOP

min SOP

min SOP

4

5x

Figure 2: 2EP-SOP network for the function f in Example 2.

in polynomial time to the problem of finding a minimal (i, j, i′, j′)-2EP-SOP form of f . The basic
idea of the reduction is that of choosing for the first projections two additional variables xi and xj

that do not belong to {x1, . . . , xn}. In this way, the remainder ρ is equal to the entire SOP given
in input, and the minimal (i, j, i′, j′)-2EP-SOP of f results in an EP-SOP form minimal w.r.t. xi′

and xj′ .
Due to the complexity of the problem, we must give up exact minimization for fast not exact

polynomial algorithms, mirroring what has been done for EP-SOP minimization. There are two
possible strategies for not exact minimization: heuristics and approximation algorithms. Both
strategies do not guarantee the minimality of their solution, but while we cannot perform any
prediction on the result of a heuristic, an approximation algorithm gives guaranteed near-optimum
solutions. In a minimization framework, a p-approximation algorithm (i.e., an algorithm with
approximation ratio p) guarantees that the cost C of its solution is such that C/C∗ ≤ p, where C∗

is the cost of an optimal solution [14].
In the next two sections we describe a polynomial approximation algorithm for the problem of

finding the minimal 2EP-SOP representation of a function f starting from a minimal SOP φ for f ,
and we prove that it guarantees a constant approximation ratio.

4.1 The Approximation Algorithm

The input to the algorithm is a minimal SOP φ for the function f . First of all, we must select
the couples of variables (xi, xj) and (xi′ , xj′) for the two projections. Instead of considering all
possible pairs of couples of variables, we choose two particular ones driven by the frequencies of
their occurrences in the original minimal SOP φ. Once the couples of variables have been chosen, we
perform the projections. This can be done in time linear in the size of φ. Finally, the four projected
SOPs will be further synthesized with a SOP polynomial heuristic (Espresso not Exact). All
steps of the algorithm can be performed in polynomial time. The overall algorithm is described in
Figure 3.

6

Approximation Algorithm for 2EP-SOP synthesis

INPUT: An optimal SOP form φ for f
OUTPUT: A 2EP-SOP form ζ for f

NOTATION: let l be a literal and p be a product, l ∈ p means that l
is a literal in p, and l /∈ p means that l is not a literal in p.

Step 1: Selection of the couples (xi, xj) and (xi′ , xj′).
max-freq := 0;
for any couple of variables (xl, xm)

φlm := sum of the products in φ containing both xl and xm (possibly complemented);
νlm := |φlm|;
ρlm := sum of the products of φ that are not in φlm;
for any couple of variables (xp, xq)

φpq := sum of the products of ρlm containing both xp and xq (possibly complemented);
νpq := |φpq|;
if (max-freq < νlm + νpq)

xi := xl; xj := xm;
xi′ := xp; xj′ := xq;
max-freq := νlm + νpq;

Step 2: Projections, with remainder ρ, of φ onto (xi ⊕ xj) and (xi ⊕ xj).
φ⊕ := 0; φ⊕ := 0; ρ := 0;
for any product p in φ

if (xi, xj ∈ p) φ⊕ := φ⊕ + xjq;
else if (xi, xj ∈ p) φ⊕ := φ⊕ + xjq;
else if (xi, xj ∈ p) φ⊕ := φ⊕ + xjq;
else if (xi, xj ∈ p) φ⊕ := φ⊕ + xjq;
else ρ := ρ+ p; //p is a crossing product

Step 3: Projections, without remainder, of ρ onto (xi′ ⊕ xj′) and (xi′ ⊕ xj′).
ρ⊕ := 0; ρ⊕ := 0;
for any product p in ρ

if ((xi′ , xj′ ∈ p) ∨ (xi′ ∈ p ∧ xj′ , xj′ /∈ p) ∨ (xi′ , xi′ /∈ p ∧ xj′ ∈ p)) ρ⊕ := ρ⊕ + xj′q;
if ((xi′ , xj′ ∈ p) ∨ (xi′ ∈ p ∧ xj′ , xj′ /∈ p) ∨ (xi′ , xi′ /∈ p ∧ xj′ ∈ p)) ρ⊕ := ρ⊕ + xj′q;
if ((xi′ , xj′ ∈ p) ∨ (xi′ ∈ p ∧ xj′ , xj′ /∈ p) ∨ (xi′ , xi′ /∈ p ∧ xj′ ∈ p)) ρ⊕ := ρ⊕ + xj′q;
if ((xi′ , xj′ ∈ p) ∨ (xi′ ∈ p ∧ xj′ , xj′ /∈ p) ∨ (xi′ , xi′ /∈ p ∧ xj′ ∈ p)) ρ⊕ := ρ⊕ + xj′q;
if (xi′ , xi′ , xj′ , xj′ /∈ p) ρ⊕ := ρ⊕ + p; ρ⊕ := ρ⊕ + p;

Step 4: Heuristic SOP minimization of the four projected SOPs computed by Step 2 and Step 3.
φ

(min)
⊕ = EspressoNotExact (φ⊕);
φ

(min)

⊕ = EspressoNotExact (φ⊕);

ρ
(min)
⊕ = EspressoNotExact (ρ⊕);
ρ
(min)

⊕ = EspressoNotExact (ρ⊕);

ζ := (xi ⊕ xj)φ
(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ + (xi′ ⊕ xj′)ρ
(min)
⊕ + (xi′ ⊕ xj′)ρ

(min)

⊕ ;
return ζ;

Figure 3: Approximation Algorithm for 2EP-SOP minimization.
7

4.2 Analysis of the Algorithm

We now prove that the proposed synthesis strategy is indeed an approximation algorithm for the
2EP-SOP minimization problem. In order to prove that the cost |ζ| of our solution is such that
|ζ|/|ζMIN | is upper bounded by a constant, where |ζMIN | is the cost of an optimal solution, we
first find a lower bound for |ζMIN |, as shown in the following lemma, and then an upper bound for
|ζ|, as shown in Theorem 1.

Lemma 1 Given a minimal SOP form φ for a Boolean function f , and a minimal 2EP-SOP ζMIN

|ζMIN | ≥
1
2
|φ| .

Proof. Suppose that

ζMIN = (xi ⊕ xj)φ
(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ + (xi′ ⊕ xj′)ρ
(min)
⊕ + (xi′ ⊕ xj′)ρ

(min)

⊕ .

We can build a SOP σ for f starting from ζMIN . Let φ(min)
⊕ =

∑|φ(min)
⊕ |

h=1 ph, φ(min)

⊕ =
∑|φ(min)

⊕ |
h=1 qh,

ρ
(min)
⊕ =

∑|ρ(min)
⊕ |

h=1 rh, and ρ(min)

⊕ =
∑|ρ(min)

⊕ |
h=1 sh. Thus

σ = (xi ⊕ xj)
|φ(min)

⊕ |∑
h=1

ph + (xi ⊕ xj)

|φ(min)

⊕ |∑
h=1

qh + (xi′ ⊕ xj′)
|ρ(min)
⊕ |∑
h=1

rh + (xi′ ⊕ xj′)

|ρ(min)

⊕ |∑
h=1

sh =

= xixj

|φ(min)
⊕ |∑
h=1

ph + xixj

|φ(min)
⊕ |∑
h=1

ph + xixj

|φ(min)

⊕ |∑
h=1

qh + xixj

|φ(min)|
⊕ |∑
h=1

qh +

+xi′xj′

|ρ(min)
⊕ |∑
h=1

rh + xi′xj′

|ρ(min)
⊕ |∑
h=1

rh + xi′xj′

|ρ(min)

⊕ |∑
h=1

sh + xi′xj′

|ρ(min)|
⊕ |∑
h=1

sh .

Observe that
|σ| = 2|ζMIN | .

Since φ is minimal, |σ| ≥ |φ| and this implies 2|ζMIN | ≥ |φ|. Thus the thesis immediately follows.

We now prove that if we project the starting minimal SOP φ with respect to the two couples
of variables selected in Step 1 of the algorithm in Figure 3, we get a solution whose approximation
ratio is bounded by a constant.

For a couple of variables xi and xj , let us denote with νij the number of products in φ containing
both xi and xj , possibly complemented, and with νi′j′ the number of products in the remainder ρ
containing both xi′ and xj′ , possibly complemented.

Theorem 1 Let ζMIN be a minimal 2EP-SOP of a Boolean function f , and φ a minimal SOP
form for f . Let ζ be the minimal (i, j, i′, j′)-2EP-SOP computed by the algorithm in Figure 3. Then

|ζ|
|ζMIN |

≤ 4−
2(νij + νi′j′)

|φ|
.

8

Proof. First observe that, after the projections performed in Step 2 of the algorithm, the number
of products in the resulting expression is not changed, and it is exactly equal to |φ|. In particular,
|φ⊕|+ |φ⊕| = νij and |ρ| = |φ| − νij . With the projections of Step 3, the |ρ| − νi′j′ = |φ| − νij − νi′j′

products of ρ not containing both xi′ and xj′ , are added to ρ⊕ and ρ⊕. Therefore

|ζ| = |φ⊕|+ |φ⊕|+ |ρ⊕|+ |ρ⊕|
= νij + νi′j′ + 2(|φ| − νij − νi′j′)
= 2|φ| − νij − νi′j′ .

Finally, by Lemma 1 we get

|ζ|
|ζMIN |

≤
2|φ| − νij − νi′j′

|φ|/2
= 4−

2(νij + νi′j′)
|φ|

.

Observe that in the best case νij + νi′j′ = |φ|, thus the bound becomes

|ζ|
|ζMIN |

≤ 2 .

Such a bound could be certainly reached by considering a kEP-SOP representation with a suffi-
ciently large k. On the other hand, this could cause the insertion of many EXOR gates into the
final network, increasing its overall cost. Comparing this result with the one proved in [1], we
have that the bound for 2EP-SOP forms is better then the one given for EP-SOP forms, which is

|ζ|
|ζMIN | ≤ 4− 2νij

|φ| .

5 Testability of 2EP-SOP Networks

Beside synthesis, testability is a major aspect of the design process. In this section the testability
of minimal 1EP-SOP (i.e., EP-SOP), with and without remainder, is studied from a theoretical
point of view under the Stuck-At Fault Model (SAFM). The results are then generalized to the
case of 2EP-SOP networks.

As we will show, minimal EP-SOP networks without remainder turn out to be fully testable
under the considered model, while the full testability of minimal EP-SOPs with remainder and of
2EP-SOPs can be guaranteed by adding to the networks a constant number of extra inputs and
multiplexer gates.

Let C be any combinational logic circuit, a fault in the SAFM [3] fixes exactly one input or
output pin of a node in C to constant value (0 or 1) independently of the values applied to the
primary inputs of the circuit. In the following we simply speak of stuck-at-0 (s-a-0) and stuck-at-1
(s-a-1) faults.

The construction of complete test sets requires the determination of the faults which are not
testable (i.e., redundant faults), even though it is easy to see that in general the detection of
redundancies is coNP-complete. Redundancies may also invalidate tests for testable faults and
often correspond to locations of the circuit where area is wasted [3]. For this reason, synthesis
procedures which result in non-redundant circuits are desirable.

A node v in C is called fully testable, if there does not exist a redundant fault with fault location
v. If all nodes in C are fully testable, then C is fully testable.

9

5.1 Testability of EP-SOPs Without Remainder

Let f : {0, 1}n → {0, 1} be a Boolean function and let φ be a minimal SOP for f . For any two
variables xi and xj , both appearing in φ, let

ξij = (xi ⊕ xj)φ
(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ ,

be the minimal (i, j)-EP-SOP without remainder representation of f , where φ(min)
⊕ and φ(min)

⊕ are
two minimal SOPs representing the projections of φ onto the spaces (xi ⊕ xj) and (xi ⊕ xj). The
network representation of ξij is shown in Figure 4(a).

Theorem 2 Minimal (i, j)-EP-SOP forms without remainder are fully testable in the SAFM.

Proof. Let ξij be a minimal (i, j)-EP-SOP form, without remainder, of a Boolean function f ,
and let C be its corresponding circuit representation. To prove the full testability of C we must
consider five cases.

1. An error occurs in the circuit representation of φ(min)
⊕ .

Since prime and irredundant SOPs are fully testable in the SAFM, and φ
(min)
⊕ is minimal

(therefore prime and irredundant), we only have to show that the error can be propagated to
the output of C, in order to be tested.

This can be done by setting xi 6= xj . In this way, C computes exactly φ(min)
⊕ , and all possible

values can be applied to its inputs (remember that φ(min)
⊕ does not depend on xi).

2. An error occurs in the circuit representation of φ(min)

⊕ .

As in the previous case, we only have to show that the error can be propagated to the output
of the network C, so that it can be tested. This can be done by setting xi = xj . In fact,
in this way, C computes exactly φ

(min)

⊕ , and all possible values can be applied to its inputs

(φ(min)

⊕ does not depend on xi).

3. An error occurs in the EXOR gate.

Suppose that a stuck-at-fault occurs at the output of the EXOR gate. In this case, either the
network C computes φ(min)

⊕ or it computes φ(min)

⊕ .

Suppose the network computes φ(min)
⊕ . The error can be tested applying in input a configu-

ration of values in {0, 1}n such that φ(min)
⊕ 6= φ

(min)

⊕ , and xi = xj (this can be done because

φ
(min)
⊕ does not depend on xi). In this way, ξij = φ

(min)

⊕ , but C computes φ(min)
⊕ 6= φ

(min)

⊕ .

Observe that we cannot have φ(min)
⊕ ≡ φ

(min)

⊕ , since this would imply that ξij ≡ φ
(min)
⊕ ≡

φ
(min)

⊕ . In this case, the function f would not depend on the variable xi, in contradiction
with the fact that xi occurs in the minimal SOP φ of f .

The other case, in which the network C computes φ(min)

⊕ , can be handled in a similar way.

4. An error occurs in one of the two AND gates.

Suppose that a stuck-at-1 occurs at the output of the AND gate between φ(min)
⊕ and (xi⊕xj).

Observe that φ(min)
⊕ 6≡ 1, otherwise ξij = (xi⊕ xj) + (xi⊕ xj)φ

(min)

⊕ and C would not contain

10

that AND gate. Thus, the error can be tested applying in input to C a configuration of values
in {0, 1}n such that φ(min)

⊕ takes the value 0, and xi = xj . In this way, ξij takes the value 0,
but C computes 1.

Now suppose that a stuck-at-0 occurs at the output of the same AND gate. Since φ(min)
⊕ 6≡ 0

(otherwise ξij = (xi ⊕ xj)φ
(min)

⊕ and we would not have that AND gate in the network), the

error can be tested applying in input to C a configuration of values in {0, 1}n such that φ(min)
⊕

takes the value 1, and xi = xj . In this way, ξij takes the value 1, but C computes 0.

The presence of an error in the other AND gate can be tested in a similar way.

5. An error occurs in the OR gate.

Suppose that a stuck-at-1 (0) occurs at the final OR gate. In this case, the network C
computes the constant 1 (0) function, and the fault can be easily tested by applying in input
to C a configuration of values in {0, 1}n such that f is equal to 0 (1).

By the proof of Theorem 2, even if the projections φ⊕ and φ⊕ are just prime and irredundant,
and not necessarily minimal, we can state the same result:

Corollary 1 An (i, j)-EP-SOP without remainder form for a Boolean function f is fully testable
in the SAFM, if f depends on both xi and xj, and if the projected SOP forms φ⊕ and φ⊕ are prime
and irredundant, and not necessarily minimal.

Proof. The thesis follows immediately since prime and irredundant SOP expressions are fully
testable in the SAFM.

5.2 Testability of EP-SOPs With Remainder

Let f : {0, 1}n → {0, 1} be a Boolean function and let φ be a minimal SOP for f . For any two
variables xi and xj , both appearing in φ, let

ψij = (xi ⊕ xj)φ
(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ + ρ ,

be the minimal (i, j)-EP-SOP with remainder representation of f , where φ(min)
⊕ and φ(min)

⊕ are two
minimal SOPs representing the projections of the products of φ containing both xi and xj (possibly
complemented) onto the spaces (xi⊕xj) and (xi⊕xj), respectively, and ρ is the sum of all crossing
products of φ.

For an EP-SOP with remainder, the assumption that f does depend on the chosen variables
xi and xj is not sufficient to guarantee the propagation of all faults to the output of the network,
and thus its testability. This is due to the presence of the remainder ρ, whose input configurations
cannot be set independently from those of φ(min)

⊕ , φ(min)

⊕ , and of the EXOR gate. This problem can
be solved by adding some extra gates and inputs: precisely three multiplexers and two additional
inputs s and t, as shown in Figure 4(b) and described in the following theorem.

Theorem 3 . By two additional inputs and three multiplexers, a circuit can be generated from a
minimal (i, j)-EP-SOP with remainder that is fully testable in the SAFM.

Proof. Let ψij be a minimal (i, j)-EP-SOP with remainder form of a given Boolean function f ,
and let C be the circuit derived from ψij adding two new inputs s and t and three multiplexers, as
shown Figure 4(b).

11

(b) Testable EP−SOP with remainder

f

M
U
X

M
U
X

M
U
X

M
U
X

SOP

fM
U
X

M
U
X

M
U
X

x
x

f
i

j

SOP

SOP

(a) Testable EP−SOP without remainder (c) Testable 2EP−SOP

x
x

SOP

SOP

x
x

i

j

SOP

SOP
s

h

k

t

x
x

i

j

SOP

SOP
s

t

Figure 4: Fully testable circuits for EP-SOP forms without and with remainder, and for a 2EP-SOP form.

To prove the full testability of C, we only have to show that any error occurring in it can be
propagated to the output, so that it can be tested. This can be accomplished in the following way.

Any stuck-at-fault occurring in the circuits for φ(min)
⊕ , φ(min)

⊕ , in one of the two AND gates, or
in the EXOR gate, can be tested by first setting s = 1 and t = 0, and then applying the appropriate
configuration of values in {0, 1}n to the other inputs of the network (these configurations can be
determined as in the proof of Theorem 2). In fact, by setting t = 0, the remainder ρ does not
influence the output of the network, allowing us to test the fault.

On the other hand, to test any stuck-at-fault occurring in ρ we must set s = 0 and t = 1. In
this way C simply computes ρ, and the testability follows since ρ is prime and irredundant, and all
possible values can be applied to its inputs.

Now suppose that a stuck-at-1 (0) occurs at the final OR gate. In this case, C computes the
constant 1 (0) function, and the fault can be easily tested by setting s = 1, t = 1 and by applying
in input to C a configuration of values in {0, 1}n such that f is equal to 0 (1).

Finally, the presence of a fault in one of the three multiplexers can be tested by applying
appropriate values to the additional variables s and t, and to the other inputs of C.

As before, we can state the following corollary.

Corollary 2 An (i, j)-EP-SOP with remainder form for a Boolean function f is fully testable in
the SAFM, if f depends on both xi and xj, and if φ⊕, φ⊕ and ρ are prime and irredundant, and
not necessarily minimal.

5.3 Testability of 2EP-SOPs and kEP-SOPs

2EP-SOPs can be seen as generalizations of EP-SOPs with remainder. Therefore to guarantee
their testability under the SAFM, we must add to the corresponding networks additional inputs
and gates.

Let f : {0, 1}n → {0, 1} be a Boolean function and let φ be a minimal SOP for f . For any four
variables xi, xj , xi′ , and xj′ , all appearing in φ, let

ζ
(min)
i,j,i′,j′ = (xi ⊕ xj)φ

(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ + (xi′ ⊕ xj′)ρ
(min)
⊕ + (xi′ ⊕ xj′)ρ

(min)

⊕ ,

12

be the minimal (i,j,i’,j’)-2EP-SOP representation of f , and let C be the circuit derived from ζ
(min)
i,j,i′,j′

adding two new inputs s and t and four multiplexers, as shown in Figure 4(c).
Using Theorem 2, and generalizing the proof of Theorem 3, one can easily prove the following

Theorem 4 By two additional inputs and four multiplexers, a circuit C can be generated from a
minimal (i, j, i′, j′)-2EP-SOP form that is fully testable in the SAFM.

As before, the full testability of the network C can be guaranteed even if we replace ζ(min)
i,j,i′,j′

with the 2EP-SOP computed by the approximation algorithm described in Figure 3. Indeed, this
algorithm never chooses variables not occurring in the minimal SOP φ in input, and the SOPs
computed in Step 4 are prime and irredundant. Thus we can state the following corollary.

Corollary 3 By two additional inputs and four multiplexers, a circuit C can be generated from the
2EP-SOP form computed by the algorithm in Figure 3 that is fully testable in the SAFM.

We finally observe that these results can be easily extended to kEP-SOP forms. In this case, the
full testability can be obtained adding k extra variables and 2k multiplexers to the corresponding
networks.

6 Experimental results

The polynomial approximation algorithm presented above has been applied to the Espresso bench-
mark suite [21], running on a Pentium 1.6 GHz processor with 1 GB RAM.

In order to test the practical performance of the approximation algorithm, we have first consid-
ered the problem of generating an optimal 1EP-SOP form equivalent to a given optimal SOP form.
Since most instances of the Espresso benchmark have multiple outputs, we have split each of them
into as many single-output functions as the original outputs. Then, we have removed the trivial
instances (zero or one product) and optimized the remaining 2 538 ones by Espresso exact. The
number of their input variables ranges from 4 to 128, while the number of products ranges from 2
to 228.

The results show that projecting the given SOP with respect to the most frequent couple of
variables pays significantly. In fact, when producing 1EP-SOPs without a remainder, 76% of the
times the result is optimal and 88% of the times the gap is below 10%. When producing 1EP-SOPs
with a remainder, 64% of the times the result is optimal, 84% of the times the gap is below 10%.
The average gap decreases from 7% for the smaller instances (up to 5 products) to 4% for the larger
ones (more than 20 products), and it is consistently lower for the instances in the Math subset of
the Espresso benchmark. Notice that, when different couples of variables have the maximum
frequency, the algorithm simply chooses at random one of them for the projection. The results
strongly improve if the algorithm evaluates all most frequent couples of variables: in this case, 85%
of the 1EP-SOPs without remainder and 71% of the 1EP-SOPs with remainder are optimal. This
confirms that the algorithm, besides enjoying an approximation guarantee, has a nearly optimal
performance also in practice. The computational times are negligible for both versions described:
always less than 1 ms when considering a single couple, a few milliseconds when considering all
couples with the maximum frequency.

Then, we have taken into account the standard multiple-output instances of Espresso and
compared the starting optimal SOP with the 1EP-SOP and 2EP-SOP produced by the approxima-
tion algorithm. As there are multiple outputs, different definitions of “frequency” can be adopted.
By global frequency of a given couple of variables, we denote the number of products in which
it occurs in the whole set of outputs, counting separately the occurrence of the same product in

13

different outputs. The algorithm adopting this definition determines a single kEP-SOP form with
exactly k EXOR gates. By local frequency of a given couple of variables, we denote the number of
products in which it occurs in each single output. The resulting algorithm performs independent
projections for each output, obtaining separate kEP-SOP forms for the outputs that have been
projected onto different couples of subspaces. Of course, if different outputs are projected with
respect to the same couple of variables, the corresponding EXOR gates are shared, but in the worst
case each output could require exactly k EXOR gates. Under both definitions of frequency, the
projected SOP forms are synthesized all together with multi-output synthesis. Combining the two
definitions of frequency and the two approaches related to the use of the remainder, we obtain
four different algorithms, respectively denoted as NG (no remainder and global frequency), NL (no
remainder and local frequency), RG (remainder and global frequency), RL (remainder and local
frequency).

In order to evaluate the practical performance of the forms generated by these algorithms, we
have used a technology mapping (mcnc.genlib) provided by the SIS tool [12] to evaluate the area
and the delay corresponding to their physical implementation. Due to the limited space available,
we report in Table 1 only a significant subset of the results. The first column reports the name
of the instance considered. The following three ones report the area and the delay of the physical
implementation of the original SOP form optimized by Espresso exact, and the computational
time in seconds required to obtain it. The next four columns report the minimum area obtained
by one of the four 1EP-SOP forms, the corresponding delay, the algorithm used to generate it
and the total computational time in seconds required to generate the four 1EP-SOP forms, that
is to factorize the starting SOP and heuristically minimize its projections with all four algorithms.
Finally, the last four columns report the same data for the 2EP-SOP forms. Of course, the physical
implementation of the EP-SOP forms also include one or more EXOR gates, whose cost cannot
be neglected, as our results clearly show. First of all, the EXOR part of the network can be
expensive, depending on the technology adopted. Second, some functions benefit from the multi-
output minimization: common products can be shared, thus reducing the overall area. Anyway,
on about 35% of the instances, the 1EP-SOP form has a lower area than the original SOP form.
The gain can be quite striking: it exceeds 50% on instance adr4 and 40% on many others (e.g.,
root, z4). Since the time required to obtain such improvements is quite limited, the evaluation of
the 1EP-SOP forms as a possible alternative to the optimal SOP form appears to be an advisable
post-processing strategy.

Comparing the performances of the four algorithms one to another, we can notice how the
number of EXOR gates particularly affects the performance of the algorithms NL and RL, which
adopt the local definition of frequency, while the best-performing algorithm seems to be the RG algo-
rithm. When considering 2EP-SOP forms, the results do not improve significantly upon 1EP-SOPs,
mainly due to the cost of the additional EXOR gates, which can indeed be relevant, depending on
the technology adopted. Most likely, the factorization with respect to the first couple of variables
is sufficient, at least for the instances in the Espresso benchmark.

In the end, we have investigated on the relationship between kEP-SOP forms and other multi-
level techniques already known in the literature and applied in synthesis tools. In particular, we
have applied the multi-level synthesis routines (script.rugged) of SIS to the optimal SOP forms, to
the four 1EP-SOP forms and to the four 2EP-SOP forms, in order to determine whether a different,
though equivalent, starting form implies a different final result. In a certain number of cases (e.g.,
on instances b2, exps and in1), SIS was unable to process the optimal SOP form in a limit time of
12 hours. Starting from 1EP-SOP forms, this only happened for instance in1, and only for the two
1EP-SOP forms with remainder. Table 2 presents the results. The first column reports the name
of the instance, the following one the cost of the multi-level network synthesized by SIS starting

14

Function min SOP min 1EP-SOP min 2EP-SOP
Area Delay CPU Area Delay Alg. CPU Area Delay Alg. CPU

addm4 1172 47.9 0.14 906 38.3 RL 0.23 1080 43.5 NL 0.22
adr4 224 19.2 0.04 105 11.1 RG 0.13 115 12.6 RG 0.04
amd 1171 46.7 0.06 1022 38.0 RL 0.17 1167 43.0 NL 0.09
b4 645 30.5 3.45 717 34.4 RG 0.04 762 29.8 RG 0.04
br1 446 32.5 0.01 353 24.5 NG 0.08 353 24.5 NG 0.04
br2 352 26.6 0.01 292 25.5 NG 0.04 292 25.5 NG 0.04
chkn 717 43.6 0.48 758 36.1 RG 0.12 766 39.2 RG 0.10
dc2 253 23.1 0.04 236 19.7 NL 0.04 267 20.4 RG 0.04
exps 3932 114.5 0.50 3760 112.6 RG 0.29 3712 107.1 NG 0.25
f51m 501 31.5 0.09 273 19.1 RL 0.16 336 24.1 RL 0.06
in0 1214 48.3 0.10 989 44.9 RL 0.19 1209 47.0 NL 0.15
in1 3876 79.8 0.23 4113 81.3 NG 0.24 4168 78.2 NG 0.34
in2 1112 41.4 0.09 1000 36.7 NG 0.10 1016 41.6 RG 0.06
in5 905 38.5 0.14 923 40.9 RG 0.04 931 40.0 RG 0.04
intb 2170 57.3 2.96 2466 57.6 RG 2.28 2511 56.3 RL 1.89
luc 806 41.0 0.01 758 52.4 RG 0.04 758 52.4 RG 0.06
m1 208 19.6 0.01 304 21.0 NG 0.12 313 22.8 NG 0.04
m2 710 37.8 0.01 833 40.9 NG 0.04 865 42.3 NG 0.04
m181 166 18.4 0.60 240 22.5 RG 0.06 267 19.8 RL 0.04
mlp4 734 36.4 0.31 839 40.5 RG 0.13 921 44.4 RG 0.15
mp2d 362 26.0 0.25 333 23.7 RG 0.04 339 24.3 RG 0.04
newcond 114 17.4 0.01 119 18.2 RG 0.04 137 20.8 NL 0.04
p82 239 18.4 0.01 239 25.8 NG 0.04 286 28.3 NG 0.04
radd 183 15.7 0.39 120 15.1 RG 0.04 120 13.2 RG 0.04
rckl 341 49.7 0.04 495 72.3 NG 0.04 459 30.2 NG 0.04
rd73 220 25.6 0.03 264 24.1 RL 0.12 389 27.6 NG 0.04
risc 228 18.7 0.01 310 29.0 RG 0.09 340 33.1 NG 0.04
root 592 35.5 0.35 349 26.5 RG 0.10 406 29.1 RG 0.04
sqr6 278 25.5 0.06 330 24.9 RG 0.04 369 27.8 RG 0.04
vg2 341 18.6 0.53 468 22.5 RG 0.17 533 21.4 RG 0.04
vtx1 324 21.3 0.17 365 23.4 RG 0.04 497 21.1 NL 0.04
x6dn 1054 36.8 0.18 817 34.8 RG 0.04 821 33.8 NG 0.04
x9dn 384 23.0 0.20 424 24.7 RG 0.17 539 23.6 RL 0.04
z4 171 18.3 0.01 99 14.2 RG 0.04 102 13.7 RG 0.04

Table 1: Area, delay and synthesis time of SOP, 1EP-SOP and 2EP-SOP forms, computed in SIS
after the technology mapping.

from the original SOP form. Then, a pair of columns reports the cost of the best network obtained
starting from the four 1EP-SOPs, and its variation with respect to the cost of the network derived
from the original SOP. In the end, three columns report the cost of the best network obtained
starting from the four 2EP-SOPs, and its variation with respect to the network derived from the
original SOP and the network derived from the best 1EP-SOP.

Only few times the final results were identical and one third of the times the final result obtained
starting from a 1EP-SOP was better than the one obtained from the optimal SOP form, ranging
from 30% better to 30% worse. The results for the 2EP-SOPs are worse on average, but they exhibit
some improvements, even with respect to both SOPs and 1EP-SOPs. We can therefore notice that,
especially for difficult benchmarks, multi-level synthesis often benefits from starting with a 1EP-
SOP or 2EP-SOP form instead of a standard SOP. A reason for this behaviour can be the fact
that SIS computes the resulting network by heuristics, which can overlook part of the underlying
regularity in the network. Therefore, the form of the input network can significantly change the
final output, and our factorization can guide the search towards a more compact multi-level form.

7 Conclusion

We have proposed a new four-level algebraic form, called kEP-SOP, based on EXOR projections of
minimal SOP forms, generalizing the approach of [1], and we have studied its testability properties.

Due to the high complexity of the exact minimization problem, we have presented a polynomial
time approximation algorithm for kEP-SOP synthesis, whose approximation ratio improves the one
derived in [1] for EP-SOP forms.

The proposed algorithm has been implemented and tested with interesting results, proving that
kEP-SOP forms are a practical alternative to standard SOP synthesis.

15

Function SOP 1EP-SOP 2EP-SOP
Cost Cost Gap w.r.t. Cost Gap w.r.t. Gap w.r.t.

SOP SOP 1EP-SOP
addm4 392 372 -5.10% 390 -0.51% 4.84%

adr4 60 44 -26.67% 44 -26.67% 0.00%
alcom 136 135 -0.74% 135 -0.74% 0.00%

alu1 41 41 0.00% 41 0.00% 0.00%
amd 265 248 -6.42% 299 12.83% 20.56%

b4 310 315 1.61% 317 2.26% 0.63%
b7 97 101 4.12% 106 9.28% 4.95%

b11 97 101 4.12% 106 9.28% 4.95%
b12 96 115 19.79% 124 29.17% 7.83%
br1 109 112 2.75% 112 2.75% 0.00%
br2 81 78 -3.70% 78 -3.70% 0.00%

chkn 462 463 0.22% 550 19.05% 18.79%
co14 78 78 0.00% 78 0.00% 0.00%
dc1 44 44 0.00% 52 18.18% 18.18%
dc2 142 140 -1.41% 134 -5.63% -4.29%

f51m 109 130 19.27% 159 45.87% 22.31%
gary 493 493 0.00% 587 19.07% 19.07%
in0 505 490 -2.97% 587 16.24% 19.80%
in2 327 389 18.96% 406 24.16% 4.37%
in5 363 357 -1.65% 352 -3.03% -1.40%
in7 136 136 0.00% 144 5.88% 5.88%

intb 306 401 31.05% 590 92.81% 47.13%
log8mod 137 138 0.73% 143 4.38% 3.62%

luc 169 174 2.96% 170 0.59% -2.30%
m1 82 84 2.44% 84 2.44% 0.00%
m2 227 226 -0.44% 226 -0.44% 0.00%
m3 284 258 -9.15% 294 3.52% 13.95%

m181 104 119 14.42% 129 24.04% 8.40%
max128 317 323 1.89% 342 7.89% 5.88%

mlp4 322 321 -0.31% 335 4.04% 4.36%
newapla1 36 36 0.00% 36 0.00% 0.00%
newapla2 28 28 0.00% 28 0.00% 0.00%
newapla 44 55 25.00% 51 15.91% -7.27%
newcond 104 106 1.92% 110 5.77% 3.77%
newcpla1 105 116 10.48% 126 20.00% 8.62%
newcpla2 68 68 0.00% 76 11.76% 11.76%
newcwp 22 25 13.64% 28 27.27% 12.00%

newill 37 31 -16.22% 31 -16.22% 0.00%
newtag 18 18 0.00% 18 0.00% 0.00%

newtpla1 33 34 3.03% 34 3.03% 0.00%
newtpla2 37 38 2.70% 41 10.81% 7.89%
newtpla 78 78 0.00% 78 0.00% 0.00%

newxcpla1 110 115 4.55% 129 17.27% 12.17%
p82 103 101 -1.94% 109 5.83% 7.92%

radd 45 45 0.00% 44 -2.22% -2.22%
rckl 258 286 10.85% 286 10.85% 0.00%
rd53 37 34 -8.11% 43 16.22% 26.47%
rd73 78 70 -10.26% 84 7.69% 20.00%
risc 100 101 1.00% 108 8.00% 6.93%
root 151 139 -7.95% 156 3.31% 12.23%
sex 61 65 6.56% 64 4.92% -1.54%

sqr6 130 146 12.31% 120 -7.69% -17.81%
t3 91 113 24.18% 110 20.88% -2.65%

tms 193 201 4.15% 206 6.74% 2.49%
vg2 106 106 0.00% 106 0.00% 0.00%

x6dn 391 395 1.02% 406 3.84% 2.78%
x9dn 146 123 -15.75% 119 -18.49% -3.25%

z4 46 36 -21.74% 36 -21.74% 0.00%

Table 2: Network costs of multilevel SIS networks computed starting from classical SOP forms, 1EP-SOP
and 2EP-SOP forms.

16

Acknowledgments The authors would like to thank Fabrizio Luccio, whose precious suggestions
have contributed to the development of this work.

References

[1] A. Bernasconi, V. Ciriani, and R. Cordone. EXOR Projected Sum of Products. In 14th
International Conference on Very Large Scale Integration, 2006. (An extended version is
available as Technical Report TR–06-10, Computer Science Department, University of Pisa).

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] M. Breuer and A. Friedman. Diagnosis & Reliable Design of Digital Systems. Computer
Science Press, 1976.

[4] G. Caruso. Near Optimal Factorization of Boolean Functions. IEEE Transactions on CAD,
10(8):1072–1078, 1991.

[5] V. Ciriani. Three-Level Logic Synthesis: Algebraic Approach and Minimization Algorithms.
PhD thesis, Dipartimento di Informatica, University of Pisa, 2003.

[6] R. Cordone, F. Ferrandi, D. Sciuto, and R. Wolfler Calvo. An efficient heuristic approach to
solve the unate covering problem. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(12):1377–1388, Dec. 2001.

[7] O. Coudert. Two-Level Logic Minimization: an Overview. INTEGRATION, 17:97–140, 1994.

[8] D. Debnath and T. Sasao. Multiple–Valued Minimization to Optimize PLAs with Output
EXOR Gates. In IEEE International Symposium on Multiple-Valued Logic, pages 99–104,
1999.

[9] D. Debnath and Z. Vranesic. A Fast Algorithm for OR-AND-OR Synthesis. IEEE Transactions
on CAD, 22(9):1166–1176, 2003.

[10] R. Drechsler, J. Shi, and G. Fey. Synthesis of Fully Testable Circuits from BDDs. IEEE Trans.
on CAD of Integrated Circuits and Systems, 23(3):440–443, 2004.

[11] E. Dubrova, D. Miller, and J. Muzio. AOXMIN-MV: A Heuristic Algorithm for AND-OR-
XOR Minimization. In 4th Int. Workshop on the Applications of the Reed Muller Expansion
in circuit Design, pages 37–54, 1999.

[12] E.M. Sentovich et al. SIS: A system for sequential circuit synthesis. Technical report, 1992.

[13] M. Fujita, Y. Matsunaga, and M. Ciesielski. Multi-Level Logic Optimization. In S. Hassoun and
T. Sasao, editors, Logic Synthesis and Verification, pages 29–63. Kluwer Academic Publishers,
2002.

[14] M. Garey and D. Johnson. Computer and Intractability: A Guide to the Theory of NP-
completeness. W.H. Freeman and Company, 1979.

[15] R. Ishikawa, T. Hirayama, G. Koda, and K. Shimizu. New Three-Level Boolean Expression
Based on EXOR Gates. IEICE Transactions on Information and Systems, (5):1214–1222,
2004.

17

[16] R. Ishikawa, T. Igarashi, T. Hirayama, and K. Shimizu. Pseudocube-based expressions to
enhance testability. In IEEE Asia-Pacific Conference on Circuits and Systems, volume 2,
pages 305–310, 2002.

[17] F. Luccio and L. Pagli. On a New Boolean Function with Applications. IEEE Transactions
on Computers, 48(3):296–310, 1999.

[18] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued Minimization for PLA Optimiza-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems, CAD-6:727–750, Sept. 1987.

[19] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Publishers, 1999.

[20] E. Sentovich, K. Singh, L. Lavagno, C. Moon, A. S. R. Murgai, H. Savoj, P. Stephan, R. Bray-
ton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. Technical
report, 1992.

[21] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. User guide,
Microelectronic Center, 1991.

18

