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ABSTRACT
The problem of key management for access control systems
has been well-studied, and the literature contains several
schemes for hierarchy-based and temporal-based access con-
trol. The problem of key management in such systems is how
to assign keys to users such that each user is able to compute
and have access to the appropriate resources while minimiz-
ing computation and storage requirements. In the current
paper, we consider key management schemes for geo-spatial
access control. That is, the access control policy assigns to
a user a specific geographic area, and the user consequently
obtains access to her area or information about it.

In this work, the geography is modeled as an m×n grid of
cells (let m ≥ n). Each cell has its own key associated with
it, and a user who wants to access the content of a cell needs
to obtain its key. Each user obtains access to a rectangular
area (or a finite collection of such rectangles) and is able
compute keys corresponding to the cells that comprise her
area.

Our main result is an efficient scheme with the following
properties: (i) each user obtains a small constant number
of secret keys that permit access to an arbitrary rectangu-
lar sub-grid, (ii) computation to derive the key of a spe-
cific cell in that rectangle consists of a constant number
of efficient operations, and (iii) the server needs to main-
tain O(mn(log log m)2 log∗ m) public information accessible
to all users. The public storage requirement is the worst-
case bound and can be improved if the grid is partitioned
into regions where the cells of a region share the same key.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; E.1 [Data]: Data Struc-
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tures—graphs and networks; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems.

General Terms
Security, Algorithms, Design.
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1. INTRODUCTION
The problem of key management for access control sys-

tems has been well-studied. Previously, the main focus of
key management research has been key management for hi-
erarchical access control systems (see, e.g., [1, 3, 5, 10, 12,
13, 19, 28], for a small subset of this extensive literature),
and its extension that allows to support time-based poli-
cies [6, 11, 14, 18, 23, 24, 26, 27]. In hierarchical access con-
trol, users are divided into disjoint access classes, and access
rights of a class are a superset of the access rights of every
descendant of that class in the hierarchy (as an example,
consider hierarchically organized roles in RBAC models).
In systems that additionally support temporal constraints,
each user is given access rights for a specific time interval, in
addition to having users organized in a hierarchy of classes.

A naive but simple solution to the key management prob-
lem in a hierarchy is to assign a key to every access class (i.e.,
each node in the hierarchy or each node in the hierarchy at
each time unit), and to give a user the keys to all access
classes that the user is entitled to access. Unfortunately,
this solution requires each user to store a prohibitively large
set of keys. To reduce this set of keys, the literature suggests
using key derivation mechanisms. In schemes that use key
derivation, each user is given a set of private keys, and the
key of an access class can be derived from a user’s private
keys and public information (accessible to all users) if and
only if that user is entitled to access that class. These key
derivation schemes are benchmarked by several metrics, in-
cluding: (i) the number of private keys each user must store,
(ii) the number of keys assigned to each access class, (iii) the
amount of public storage the server must maintain, and (iv)
amount of computation it takes to derive a target key by a
user.

In this paper, we introduce key assignment and deriva-
tion techniques for geo-spatial access control systems. We
consider systems where each user is granted access rights to



a specific area (or a set of areas). As this paper is a first
step in addressing this problem, we consider the case where
the user has access rights to a rectangular section of a larger
grid. If a user’s region is not rectangular, then it can be
partitioned into a number of rectangles to each of which our
technique is applicable.

We envision many applications of this work, including
(but not limited to) the following scenarios:

1. Consider a physical facility that houses projects with
different degrees of sensitivity/confidentiality, with each
project assigned its own area. A specific employee
might have access to certain areas of the building, but
not to others. In this case, the users could be given a
smartcard (or some other device) that can derive the
access keys for the areas to which the user has access.

2. Consider a GIS that contains information (e.g., de-
mographic, marketing, etc.) about specific locations.
This information may be interesting to researchers,
commercial firms, and other entities. Thus key man-
agement could be used to provide a subscription-based
service where users purchase access rights to the infor-
mation about a specific geographic area.

3. There could be a hybrid access control system based
on not only location information, but also on role hier-
archies, temporal constraints, or both. As an example,
re-consider the first scenario above. It is a reasonable
access control policy that a senior researcher might be
able to access a specific room all of the time, but a con-
sultant might be able to access the same room for two
days. As our scheme extends to higher dimensions (see
Section 10), it can be used in such hybrid frameworks
(with time as an additional dimension).

The key derivation scheme we introduce in this paper for
geo-spatial grids uses a novel data structure and achieves
the following characteristics for an grid composed of m × n
cells:

1. To obtain access to an arbitrary rectangular subsec-
tion, a user is required to store a constant number of
keys.

2. Key derivation within the authorized rectangle involves
a constant number of operations (including crypto-
graphic operations).

3. The public storage space at the server due to our so-
lution is only O(mn(log log m)2 log∗ m) with a small
constant involved in the “O(·)” notation.

4. All cryptographic operations are very efficient, and no
expensive public-key cryptography is required.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief review of related work. In Section 3, we give
a formal problem definition, describe building blocks that
are used later in this paper, and also provide a summary
of our results. Section 4 introduces a basic (and inefficient)
solution, which is later used as a part of our main scheme.
In Section 5 we present efficient schemes for special cases,
and we then describe, in Section 6, a significantly improved
scheme for the general case. Section 7 shows how the space
requirements our solution imposes can further be improved,

and Section 8 states the security of our solution. Finally, a
description of how dynamic updates are handled in given in
Section 9, and Section 10 concludes the paper with exten-
sions to higher dimensions.

2. RELATED WORK
Using location information for access control, i.e., location-

based access control (LBAC), is not a new concept. The ma-
jor challenges in geo-spatial computing were covered in the
summary of the recent NRC’s IT roadmap to a geo-spatial
future [21]. One of the issues mentioned as a future challenge
are “fine-grained access control mechanisms permitting the
precise release of location information to just the right par-
ties under the right circumstances.” Atluri and Chun [7]
propose a new model that supports privilege modes specific
to geo-spatial data and includes geometric considerations
(such at the region of overlap between an authorization and
an access request). Similarly Bertino et al. [9] extend the
RBAC model to GEO-RBAC, a model that can deal with
geo-spatial information. Other previous work includes effi-
ciently tracking the location of a user [17], other of models
for representing and evaluating LBAC conditions [2], an-
swering database queries based on location [20], the intro-
duction of architectures for supporting location-aware appli-
cations [25], and many other important problems. However,
we are not aware of any key management schemes that im-
plement geo-spatial access control policies.

There has been a significant amount of work in key deriva-
tion for user hierarchies, and a thorough survey of this liter-
ature is beyond the scope of this paper. For an overview of
such publications, see, e.g., [5] and [13]. In what follows, we
give a brief summary of the results that are used as building
blocks in this paper (a more detailed version can be found
in Section 3.1). Atallah et al. [3, 5] use efficient key deriva-
tion techniques for a user hierarchy (in [3] the hierarchy is
assumed to be a tree, and in [5] the techniques are extended
to non-trees), where user classes are organized by a partial
order into a hierarchy represented as a directed acyclic graph
(DAG) G. No interaction with the server is assumed after
the user obtains her secret key, which means that all neces-
sary access keys are computed independently by the user. In
the work of [3, 5], each user receives a single key, the server
stores public information associated with the graph to aid
the key derivation process, and computation of the access
key for a class below the user class in the hierarchy con-
sists of traversing the path from the user class to the target
class. Very efficient key derivation is achieved through the
addition of extra, so-called shortcut, edges to the hierarchy1,
such that the distance between any two nodes in the graph
is minimized.

There are also many schemes that have been introduced
for key management in temporal-based access control sys-
tems [6, 11, 14, 18, 23, 24, 26, 27]. In these temporal schemes
a user is allowed certain access rights during a specific time
interval. It is worth noting that the geo-spatial problem con-
sidered in this paper can be viewed as a higher-dimensional
version of this temporal problem, with the possibility of hav-
ing different granularity for individual cells. Several such
temporal schemes [23, 18, 11, 27] are unsatisfactory and have
been shown to be insecure with respect to collusion. How-

1While a shortcut edge is not in the original graph G, it is
in the transitive closure of G.



ever, a very recent paper of Ateniese et al. [6] is the first work
that formalizes the notion of security for time-based hierar-
chical key assignment schemes and presents provably secure
solutions. Another recent work [4] introduces an alternative
scheme that is provably secure under the same definitions of
security as [6]. As we use the temporal schemes as a build-
ing block, we present more details about these schemes in
Section 3.1.

3. BACKGROUND AND OVERVIEW OF RE-
SULTS

In this section we review previous results that are used by
the scheme we present in this paper. We also give a formal
problem definition and outline the major contributions of
this paper.

3.1 Background

3.1.1 Key derivation for graphs
In this work we use the key derivation of technique of [3],

which we review next. This techniques will be used in con-
junction with a novel data structure to achieve efficient key
derivation in the geo-spatial grid setting. Such a key deriva-
tion technique works for any directed acyclic graph (DAG)
G = (V, E), where V is the set of nodes, and E is the set of
edges. It consists of two algorithms: an algorithm to setup
the system, Set, and an algorithm to derive a key, Derive.
The Set algorithm assigns secret keys to the nodes of the
graph and computes public information associated with its
edges. The Derive algorithm, given a node v of G, its secret
key, and another node w, computes the key of w using the
public information about G as long as w is a descendant of
v in the graph.

In what follows, F : {0, 1}κ × {0, 1}∗ → {0, 1}κ denotes a
family of pseudo-random functions (PRFs) that, on input a
κ-bit key and a string, outputs a κ-bit string that is indistin-
guishable from random. Note that a PRF can be efficiently
implemented using HMAC [8] or CBC MAC constructions.

The Set and Derive algorithms are then as follows:

Set(1κ, G): For each node v ∈ V , select a random secret key
kv ∈ {0, 1}κ. For each node v ∈ V , select a unique
label `v ∈ {0, 1}κ and make it publicly available. For
each edge (v,w) ∈ E, compute yv,w = kw ⊕ F (kv, `w),
where ⊕ denotes bitwise XOR, and make it publicly
available.

Derive(v, w, kv): Let (v, w) ∈ E, i.e., v is a parent node of
w. Then given kv and the above-mentioned public in-
formation, derivation of the key kw can be performed
as kw = F (kv, `w) ⊕ yv,w, where `w and yv,w are pub-
licly available. More generally, if there is a directed
path between nodes v and u in G, then u’s key can be
derived from v’s key by considering each edge on the
path.

In other words, there is a public label associated with every
node in the graph, and there is a public information associ-
ated with every edge in the graph. This public information
is what allows users to derive appropriate keys.

To avoid changing user keys when the hierarchy changes
or when a certain class needs to be re-keyed (e.g., a user
with certain privileges leaves the system), a slightly different

special node
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v1 v2 v3 v4 v5 v6 v7

regular edge
newly added edge

graph node

v1

Figure 1: Illustration of building efficient data struc-
ture for one-dimensional graphs (original and mod-
ified graphs).

version of the scheme should be used. We refer the reader
to [3] for more details.

3.1.2 Efficient data structures for key derivation
In the current work we utilize an efficient data structure

for key derivation in a partial order of dimension one or
higher. Before reviewing prior results, we briefly define the
notion of dimension in a hierarchy. Any partial order can
be represented as the intersection of t total orders, with the
smallest t for which this is possible being the dimension of
the partial order (see, e.g., [15, 22]). That is, it is possible
to associate with every node v of G a t-tuple (xv,1, . . . , xv,t)
such that:

1. every xv,j is an integer between 1 and n;
2. if v 6= w then xv,j 6= xw,j for every 1 ≤ j ≤ t;
3. and (iii) node v is ancestor of node w in G if and only

if xv,j > xw,j for every 1 ≤ j ≤ t.

In [5], a data structure was introduced that allowed key
derivation for such a one-dimensional partial order (i.e., to-
tal order) with n nodes that facilitated O(n log∗ n) public
storage, one key per user, and O(1) key derivation time. For
the purpose of the current discussion, assume that we are
given a one-dimensional graph G, where the nodes are num-
bered according to their relationship with node vi being the
parent of node vi+1. The main idea behind this construction
is then that the (ordered) n nodes are partitioned into blocks
of the same size, with the nodes on the boundary of blocks
being “special” nodes. Within each block, each node has
a direct edge to the first special node after it, and a direct
edge from the nearest preceding special node to that node.
The special nodes are well-connected, so that going from one
block to another consists of following one or a small number
of edges. Then reaching a node vj from another node vi

in the graph (assuming that j > i) consists of reaching a
special node from vi, jumping to a special node close to vj ,
and reaching vj from that special node. Figure 1 shows a
specific example of adding extra edges to a one-dimensional
graph of 7 nodes.

This construction can be recursive, allowing for several
levels of partitioning which affect the performance of the
data structure. Note, however, that any edges that get in-
serted into the graphs (of dimension one or otherwise) do not
modify the original relationship between the nodes. They
simply allow to shorten the length of the path between nodes
in the graph. The characteristics of the data structure de-



scribed above (and which we use on one-dimensional graphs
in this work) are: there is a path of 4 edges between any
node and any of its descendants in the graph, and the space
complexity of the data structure is O(n log∗ n) for an n-node
graph. Then the key derivation mechanism of the previous
section can be applied to the data structure to achieve the
performance of one private key per user, constant key deriva-
tion time, and O(n log∗ n) public storage.

For graphs of dimension d > 1, an efficient data struc-
ture can also be built using dimension reduction techniques.
That is, [5] shows that, given a solution to the one-dimensional
graph, a data structure for a graph of dimension d will have
an extra factor of O((log n)d−1) in the space complexity of
the data structure, and extra 2(d−1) edges in the maximum
distance between any nodes (between which a path exists)
in the data structure. For instance, using the above solution
of 4 edges between nodes and O(n log∗ n) space complexity
for one-dimensional graphs, for graphs of dimension d = 4
we obtain the distance of 10 edges between any node and
its descendant and space complexity of O(n(log n)3 log∗ n).
Once again, applying the key derivation technique to this
result gives us a key management mechanism with the per-
formance corresponding to the data structure.

Finally, we also utilize the key derivation scheme of [4] for
a contiguous set of time intervals for a single resource. In
time-based key assignment schemes, the time is partitioned
into short time intervals, and user keys change during each
interval. A user who is entitled to obtain access to some
resource during a period of time obtains secret keys cor-
responding to that resource for the duration of the time
interval. Once again, to achieve efficiency, key derivation
techniques are used. Specifically, the scheme of [4] allows
a user to obtain access to an arbitrary contiguous set of
intervals by storing a constant number of keys and per-
forming a constant number of operations during key deriva-
tion. The public storage space requirement of the scheme is
O(n log log n log∗ n). This result is achieved through a non-
trivial construction, which consists of building a half of a
grid on the time intervals of the system and applying key
derivation techniques for one-dimensional graphs to parts of
it. Then this data structure is built for selected sets of time
intervals at different levels of granularity through a recursive
algorithm.

3.2 Problem description
The space consists of N cells in an m × n grid, N = mn.

Without loss of generality, we assume that m ≥ n and that
the grid has m rows and n columns. A user is permitted to
subscribe and gain access to any sub-area within the grid.
In general, user rights might permit access to areas of ar-
bitrary shape (subject to the cell partitioning), which can
be represented as a set of rectangles. Since the number of
such rectangles in user access rights will be small in most
applications, we will assume, for simplicity, that the user is
given access to a single rectangular area R.

Then a grid cell will have an access key that permits access
to the resources associated with that cell. This means that
during the system initialization the grid cells will be assigned
certain keys. Note that it will not always be the case that
each cell has a unique key, because in some systems access to
certain cells will always be granted in an all or none fashion
(i.e., if a user is allowed access one cell in the group then
that user can access all cells in the group), in which case

such cells can share the same key.
When a user joins the system and obtains access to an

area R, she will be given a key (or a set of keys) that per-
mits access to every single cell within the area (through a key
derivation process). The above means that the operation of
the system requires algorithms to (i) setup the system, (ii)
assign keys to users, and (iii) perform key derivation. Thus,
from a user perspective, the interaction with the system con-
sists of two phases:

(i) At the time of signing up, the user obtains secret keys
that correspond to the area R to which access is being
granted.

(ii) When the user would like to obtain access to a certain
cell within R, she will use her secret keys (in combina-
tion with the public data made available by the server)
to independently derive the access key for that cell. It
is assumed that access to that key will permit her to
either access the area or access information about the
area, based on the context.

The security of a geo-spatial key assignment scheme is
defined in a standard way. That is, we require the properties
of completeness and soundness to hold, as defined below:

Completeness A user with access privileges to a rectan-
gular area R is able to compute the access key for each
cell within R.

Soundness Any coalition of users with access to rectangle
areas R1, . . . , Rk is unable to obtain access to any cell
other than those contained in R1 ∪ · · · ∪ Rk.

As was mentioned above, the key assignment can be such
that each cell obtains a unique key, but for efficiency reasons
it might be advisable to assign the same key to multiple cells
(when access to a certain area is always granted as whole
and not at the level of individual cells). The fact that parts
of the grid might have different access granularity (i.e., the
level of individual cells versus the level of blocks of cells) will
allow us to achieve significant savings in the data structure
and key derivation time in certain systems. However, we
initially consider the case where the mn cells have distinct
access rights (hence there needs to be a separate key for each
cell). Later in the paper, we discuss the case when groups
of grid cells share a key (i.e., there are disjoint, arbitrarily
shaped regions of the grid, and each region has its own key).

We also would like to note that this problem formulation
easily supports multi-level security where access levels form
a military-style ladder or a hierarchy. That is, suppose that,
for instance, access to the Secret level permits access to a
certain area RS. Also suppose that access to the Top Se-
cret level permit access to the area RTS , such that RS is
contained within RTS . In our problem formulation this will
mean that a user with access rights to the Secret level ob-
tains secret keys that allow her to obtain access to every cell
of RS . Similarly, a user with access rights to the Top Secret
level obtains keys that allow her to obtain access to all cell
comprising RTS including every cell of RS. Since the user
with access to region RTS will be able to derive keys of all
cells of region RS with the converse being false, a solution to
our problem naturally provides a solution to the multi-level
access control system.
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Figure 2: Illustration of regions on the grid with
m = 9 and n = 8.

3.3 Our result
For an m × n grid of cells that have distinct keys, a user

who is entitled to access a rectangular sub-grid R of such
cells is given O(1) private keys from which the key of any cell
in R can be derived in O(1) time. Key derivation uses only
inexpensive cryptographic operations (pseudo-random func-
tions). Moreover, given any such R, it is possible to compute
the private keys for it in O(1) time. The public storage space
that the server needs to maintain is O(mn(log log m)2 log∗ m).

4. AN INEFFICIENT SCHEME
The papers [3, 5] describe schemes that are excellent for

general graphs, but that yield inefficient solutions for spa-
tial access control. This is because they fail to appropriately
exploit the spatial structure. This section examines the so-
lution that follows from [5], as it will be needed in the later
more efficient schemes,

The result of [5] is an efficient key derivation mechanism
(through building a data structure) for a graph of dimension
d. In the geo-spatial domain, we can represent each rectan-
gular area on the grid by the coordinates of its four corners.
For each corner, we can use its coordinates to form a total
order relationship, which for all of them results in four total
orders. By incorporating all possible rectangular sub-areas
of the grid, we obtain a graph of dimension d = 4 to which
the techniques of [5] can be applied.

We denote a cell by its x and y coordinate. A rectangular
region R within the grid is described by two x coordinates
a ≤ b and two y coordinates c ≤ d, i.e., by a 4-tuple rep-
resentation (a, b, c, d) where (a, c) is R’s bottom-left corner,
and (b, d) is R’s top-right corner. If R is a single cell, then
a = b and c = d. Such an R typically represents the subset
of the m × n grid that a user is entitled to access (i.e., the
user must be able to derive the key of every individual cell
in R).

For instance, in Figure 2 Region I has coordinates (7, 7,
7, 7), Region II has coordinates (2, 6, 3, 6), Region III has
coordinates (4, 6, 4, 5), etc.

We create an N2 (= m2n2) node graph G whose vertices
correspond to all possible rectangles of the grid. That is,
each vertex v in G is associated with a rectangle R(v) whose
bottom-left corner is (a(v), c(v)) and whose top-right corner
is (b(v), d(v)). For reasons that will become apparent soon,
we associate with such a vertex v the 4-tuple:

τ (v) = (n − a(v), b(v), m − c(v), d(v)).

To illustrate this function on an example, we go back to
Figure 2. Here if we associate node v1 with Rectangle I,
node v2 with Rectangle II, and node v3 with Rectangle III,
then we have τ (v1) = (1, 7, 2, 7), τ (v2) = (6, 6, 6, 6) and
τ (v3) = (4, 6, 5, 5). Note that we have nodes in G and the
corresponding values of the τ function for all possible rect-
angles on the grid.

Now observe that rectangle R(v) contains rectangle R(w)
if and only if all 4 of the following inequalities hold:

a(v) ≤ a(w), b(w) ≤ b(v), c(v) ≤ c(w), d(w) ≤ d(v)

This is equivalent to:

m − a(v) ≥ m − a(w), b(v) ≥ b(w),
n − c(v) ≥ n − c(w), d(v) ≥ d(w)

which is the same as τ (v) ≥ τ (w). Hence rectangle R(v)
contains rectangle R(w) if and only if τ (v) ≥ τ (w). This is
also true when R(w) is a single cell, i.e., when a(w) = b(w)
and c(w) = d(w).

We now describe the edge set of G. There is an edge in
G from vertex v to vertex w if and only if τ (v) ≥ τ (w), i.e.,
every one of the 4 components of the 4-tuple τ (v) is ≥ the
corresponding component of τ (w). Using rectangles from
Figure 2, there will be an edge from R(v2) to R(v3), but no
edges between any other ordered pair of the four rectangles
depicted in the figure.

Now we have a 4-dimensional partial order G in which it
is desired that v can derive the key of w if and only if v
precedes w in G. Thus, we can use the solution in [5] to
solve the problem with performance of: 1 key, constant key
derivation time, and O(N2(log N)3 log∗ N) space.

The following sections improve the performance of this
data structure and culminate in a scheme that gets rid of
the quadratic space while maintaining the constant number
of keys and the constant key derivation performance.

5. SPECIAL CASES
Before presenting our scheme for the general case, we

cover special cases. Solutions to these special cases will be
used in the overall construction for the general case. The
special cases considered in this section are rectangles that
have less than 4 degrees of freedom, i.e., each of them shares
one or more of its 4 sides with the boundary of the grid.

5.1 Rectangles that span the grid
Let us now consider rectangles that span the whole width

or whole height of the m × n grid. This happens in one of
two ways:

• Vertical spanning: The top and bottom boundaries of
the rectangle are at rows 1 and (respectively) m.

• Horizontal spanning: The left and right boundaries of
the rectangle are at columns 1 and (respectively) n.

Figure 3 illustrates such rectangles.
Given that users can only obtain access to rectangles that

span the grid, our goal is to build a data structure that
will permit a user to possess a small number of secret keys
and derive access key to each cell of her region R. Without
loss of generality, we give a solution for the case of horizontal
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Figure 3: Illustration of rectangles that span the
grid vertically and horizontally.

���������������������������������

�����������������������������������������������������������������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

������������������������������������������������������������������������������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

Figure 4: Illustration of rectangles that touch the
grid’s boundary.

spanning, and the case of vertical spanning can be addressed
analogously.

In this special case, we can treat every row as a single
“super-cell,” ignoring the fact that it consists of many cells.
Thus, we assign a key to each row, and this turns the prob-
lem into a problem with a single parameter. That is, now
the only parameter that can change is the number of rows in
user rectangle R. This makes it possible to apply the tech-
niques of [4] to solve the problem. Recall that in [4] is user
is allowed to obtain access to a contiguous set of time inter-
vals with each interval having a different key. In the current
discussion, we allow a user to obtain access to a contiguous
set of rows with each row having a different key. In other
words, now the m rows play the role the n time units played
in [4]. Then a user with access to a rectangle that spans the
grid obtains secret keys created according to the solution
of [4].

The above solution allows us to obtain the data struc-
ture of size O(m log log m log∗ m) with the distance between
any node and its descendant being at most a constant num-
ber of edges. This translates into the following result: each
user will need to store a constant number of secret keys, key
derivation can be performed in constant time, and the server
must maintain O(m log log m log∗ m) public space. Note
that none of the above characteristics depend on n, even
though the grid is m × n.

The case of vertical (rather than horizontal) spanning
is treated similarly to the above, except that the roles of
rows and columns are interchanged, as are the roles of m
and n. Thus, the space complexity for vertical spanning is
O(n log log n log∗ n).

5.2 Rectangles that share a grid boundary
Next, we consider rectangles that share at least one of

their boundaries with a grid’s boundary. This means that at
least one of the bounding four coordinates of each rectangle
of this type is in the set {1, m,n}. Figure 4 shows examples
of such rectangles.

We use “row” as an abbreviation for “y coordinate” and
“column” as an abbreviation for “x coordinate.” Without
loss of generality, assume that the rectangle touches the right
boundary of the grid, i.e., its right side is at column n as

in the second grid from the left in Figure 4. We call such a
problem right-anchored, and the other three cases are anal-
ogously referred to as left-, top-, or bottom-anchored.

Our solution to the right-anchored case consists of apply-
ing a solution to one-dimensional graphs from [5] to cells
in each row (because key derivation is unidirectional in this
case, i.e., from a certain point to the boundary). And we
also apply the solution of [4] to each column (in this case, key
derivation must be bounded by two points and key deriva-
tion is permitted within that interval only, just like in [4]
for an interval of time). The algorithm for building the data
structure is then as follows:

1. For each individual row i of the grid, we create a one-
dimensional structure Hi that allows any position j in
that row to have a short path to any other position j′

of that same row iff j < j′.

2. For each individual column j of the grid, we use the
single-parameter structure, call it Vj , of [4] to permit
key derivation between any two positions i and i′ (i <

i′) in that column.

User Key Assignment and Derivation. Let a user
be given access rights to a right-anchored rectangle R such
that the leftmost column of R is j. Then the user is given
the keys that correspond to the set of rows of R from Vj .
Derivation of the key of the cell at location (i′, j′) within R
consists of using the user’s secret keys and the Vj structure
to obtain the key for the cell (i′, j) at the same column, and
then Hi′ structure of that row to derive the target key for
cell (i′, j′).

Performance. The data structure built in Step 1 of the
above algorithm for a single row has the characteristics of
one secret key per user, constant key derivation time, and
the size of the data structure (public storage) of O(n log∗ n)
space. The total space for all rows is O(mn log∗ n). The
data structure built in Step 2 of the algorithm achieves, for
a single column, a constant number of secret user keys, con-
stant key derivation time, and O(m log log m log∗ m) stor-
age space for the data structure. The total public stor-
age space for all columns is then O(mn log log m log∗ m).
This gives us the overall performance of a constant number
of secret keys per user, constant key derivation time, and
O(mn log log m log∗ m) public storage space.

The case of left-anchored rectangles is handled very simi-
lar to the case of right-anchored rectangles. The only differ-
ence is in Step 1 of the algorithm, where the data structure
built should permit key derivation from a cell at position
j to a cell at position j′ iff j > j′. For top-anchored and
bottom-anchored rectangles, the solution will consists of the
roles of rows and columns reversed in the original algorithm.
That is, we apply the solution of [5] to each column, and the
solution of [4] to each row.

6. THE GENERAL CASE: A PRELIMINARY
SOLUTION

This section describes our preliminary scheme for the gen-
eral case of rectangles R with no assumptions other than
that they must be contained within the m × n grid (which
we denote by S). In Section 7 we show how to lower the
space complexity associated with the storage required for
the data structure.



In this section, we first (in Section 6.1) describe how to
build the data structure that permits efficient key derivation.
This computation must be performed when the geo-spatial
system is being setup. Then we show in Section 6.2 how,
given a rectangle area R access to which is to be granted
to a user, user secret keys are generated. This procedure is
performed at the time a user joins the system and grants
access privileges to access area R. Lastly, given access to
R, we show in Section 6.3 how a user can obtain keys for a
cell contained in R. It is assumed that access to such a key
enables the user to obtain access to the area or information
about the area, depending on the context.

6.1 The data structure
This section describes how, for a grid S, to build the public

tree data structure, which we will use for key management.
How it is used is covered in the next sections.

Without loss of generality, we assume m = 22
s

and n =
22

q

, where s ≥ q.2 The algorithm for building the data struc-
ture takes, as inputs, a node v and an m×n grid S. It builds
a tree for S rooted at v, using a recursive construction.

The idea behind it is to partition the grid into tiles of
size

√
m × √

n each, and apply the (inefficient) scheme of
Section 4 on them treating each tile as a giant cell. Such
a data structure will be able to handle key assignment and
derivation at the granularity of tiles: now only rectangles
that consist of a whole number of tiles are supported. Then
the algorithm builds support for the special cases of Sec-
tion 5 on the grid. In more detail, it builds data structures
to support rectangles that border the boundary of the grid
or span (vertically or horizontally) across one or more tiles.
Finally, the algorithm is invoked recursively on each of the
tiles to build the equivalent data structures at finer levels of
granularity.

Data Struct Build(v, S)

1. If n = 2 (i.e., q = 0) then S consists of two columns
of length m each. For each of these columns, create
and store at node v the data structure for the m cells
described in [4]. That is, we build a data structure
that will permit key assignment and derivation for any
contiguous set of cells within those m cells.

2. Partition S into a
√

m × √
n array of tiles Si,j , 1 ≤

i ≤ √
m and 1 ≤ j ≤ √

n, where each tile is itself a√
m × √

n grid. That is, Si,j consists of the cells of
S whose row number is in the interval [(i − 1)

√
m +

1, i
√

m] and whose column number is in the interval
[(j − 1)

√
n + 1, j

√
n]. Create a node vi,j for each Si,j ,

and make vi,j a child of v.

3. Generate a grid C(v), derived from S by treating each
Si,j as a single cell (i.e., “merging” the constituents
of cells of Si,j into a single cell). Note that C(v) is√

m ×√
n.

4. Store at node v the scheme of Section 4 for C(v), which
we denote by D(v). D(v) will allow for user key assign-
ment and derivation at the granularity of tiles. This

2Note that these assumptions are for presentation purposes
only, and our data structures can easily be generalized to
other grids that are not of this form. That is, it is not
necessary to increase the actual size of the grid to obtain m
and n of the above form, but instead rounding can be used
in computing partitions of the grid.

.  .  .
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Figure 5: Illustration of building the data structure
for a grid 16 × 9, the first level of recursion.

means that D(v) can process a rectangle only if that
rectangle is the union of a subset of the Si,j ’s (i.e., it
cannot handle rectangles whose corners are inside the
Si,j ’s, as it cannot “see” inside an Si,j).

5. Also store at node v a solution for each of the 4 “an-
chored” special cases (rectangles that have at least 1
side along a boundary for S). Call these structures
AL(v) for rectangles anchored at the left, AR(v) for
rectangles anchored at the right, AT (v) for rectan-
gles anchored at the top, and AB(v) for rectangles
anchored at the bottom. Having these structures en-
ables the handling of anchored rectangles.

6. Let HSi,j′,j′′ , where 1 ≤ i ≤ √
m and 1 ≤ j′ ≤ j′′ ≤√

n, be the horizontal slab consisting of the union of
all of the tiles Si,j′ , Si,j′+1, . . . , Si,j′′ . For every such
HSi,j′,j′′ , we store at v a “horizontal spanning” struc-
ture for processing rectangles that horizontally span it.
Since there are

√
m choices for i and

√
n choices for

each of j′, j′′, the total number of such slabs is n
√

m.
We denote by H(v) the information stored at v for all
of these O(n

√
m) horizontal slabs. The H(v) can han-

dle any rectangle that horizontally spans any one of
those horizontal slabs.

7. Similarly, let VSi′,i′′,j , 1 ≤ i′ ≤ i′′ ≤ √
n, be the ver-

tical slab consisting of the union of all of the tiles
Si′,j , Si′+1,j , . . . , Si′′,j . For every such VSi′,i′′,j , we
store at v a “vertical spanning” structure for process-
ing rectangles that vertically span it. The number of
such slabs is m

√
n. We denote by V (v) the informa-

tion stored at v for all of these vertical slabs. The V (v)
can handle any rectangle that vertically spans any one
of those vertical slabs.

8. Recursively apply the scheme to each child of v, that is,
call Data Struct Build(vi,j , Si,j) for all 1 ≤ i ≤ √

m

and 1 ≤ j ≤ √
n.



Now we analyze the performance of the data structure built.
In Step 1, we obtain a construction of O(m log log m log∗ m)
space, constant distance between nodes, and a constant num-
ber of keys per user. In Step 4, the data structure built
has the space complexity of O(mn(log m)3 log∗ m) with con-
stant distance between nodes and one key per user. In
Step 5, the construction gives us the space complexity of
O(mn log log m log∗ m) with a constant distance between nodes
and a constant number of user secret keys.

In Step 6, we have that each structure HSi,j′,j′′ has space
complexity of O(

√
m log log m log∗ m), a constant number of

keys per user, and a constant distance between nodes. Since
there are

√
m choices for i and

√
n choices for each of j′, j′′,

the total space for all such structures is O(mn log log m log∗ m).
Finally, in Step 7, each structure VSi′,i′′,j has space com-
plexity of O(

√
n log log n log∗ n), a constant distance between

nodes, and a constant number of keys per user. Since there
are

√
n choices for j and

√
m choices for each of i′, i′′, the

total space for all such structures is O(nm log log n log∗ n).
Since Step 1 is at the bottom of the recursion, the total

space satisfies the following recurrence:

f(m, n) ≤
√

mnf(
√

m,
√

n) + c1mn(log m)3 log∗
m

if n > 2, and

f(m, 2) = c2m log log m log∗
m

where c1 and c2 are constants. The solution is f(m, n) =
O(mn(log m)3 log log m log∗ m).

The above “augmented tree” data structure (call it G) is
used to set up the system, i.e., we associate with each node
of G a key, and we create public information associated with
each edge (v, w) in G that allows someone with v’s key to
derive w’s key in one simple step.

In addition to the above data structure, the server will
need to maintain public information associated with an-
other, simple graph that maps keys corresponding to tiles to
cell keys. A description of such an auxiliary data structure
is given in Section 6.3 where we explain how key derivation
is performed.

6.2 Key assignment
We now turn our attention to describing how keys are

assigned to a user who is being granted access to a rectangle
area of cells R.

In what follows, v is the root node of the above tree data
structure, S is the m × n grid associated with v (with m ≥
n), and R is an arbitrary rectangle in S. Although our
ultimate goal is to achieve constant time in computing the
key assignment of any such R, we begin with describing a
key assignment algorithm that does so in O(log log n) time.

6.2.1 Sub-optimal key assignment
Given a user’s rectangle R, the recursive procedure below

returns a constant-size set of secret user keys that will per-
mit access to R. The algorithm majorly follows the data
structure build using Data Struct Build to find the largest
blocks of cells, keys for which are encoded in the data struc-
ture.

Assign Keys(R, v, S)

1. If v is a leaf node, it stores data structures for a small
sub-area of size m × n where n = 2. More precisely,

1

R 2 3R

Step 2b

Step 2c

Step 2d

Step 2a

R1

Figure 6: Illustration of the key assignment pro-
cedure for various user rectangles. The color of an
area indicates where in the Assign Keys algorithm the
area is addressed.

it stores two solutions to the single-parameter prob-
lem of m cells (one for each of the two columns). If
R consists of a single column, we retrieve from the
data structure corresponding to that column the keys
that permit access to the range of R’s rows. If R con-
sists of two columns, we retrieve such keys from both
data structures. Return the (constant number of) keys
computed.

If v is not a leaf, continue with the next step.

2. Recall from the above data structure construction al-
gorithm that the vi,j ’s are the children of v, and that
Si,j is the

√
m×√

n tile associated with node vi,j . We
distinguish different cases, based on how R overlaps
with the Si,j ’s. They are also depicted in Figure 6.

(a) If R overlaps with only one Si,j , then we recur-
sively call Assign Keys(R, vi,j , Si,j) and return the
keys returned by that recursive call. Otherwise,
we continue with the next steps, in which differ-
ent pieces of R are handled separately depending
on how they intersect with the Si,j ’s.

(b) Let R1 be the maximal sub-rectangle of R that
consists of the union of one or more Si,j ’s. If no
such R1 exists, then continue to the next step.
Otherwise, obtain the key for R1 from the D(v)
structure stored at v, in constant time (by index-
ing into the D(v) structure).

(c) Let R2 be any of the (at most 4) maximal sub-
rectangles of R that (i) are disjoint from R1, and
(ii) horizontally or vertically span one of the slabs
HSi,j′,j′′ or VSi′,i′′,j . There can be at most 2
such horizontally spanning R2’s (a top one and a
bottom one), and at most 2 vertically spanning
R2’s (a left one and a right one). For each of (at
most 4) such R2’s we obtain the O(1) keys by
using the H(v) or V (v) structure stored at v, in
constant time.

This and the previous steps have considered all
but the “corners” of R, each of which could lie



inside an Si,j . These are considered in the next
step.

(d) Let R3 be any of the (at most 4) maximal sub-
rectangles of R that contain a corner of R and are
disjoint from R1 and the R2’s of the previous two
steps. Note that there could be fewer than four
such R3’s, as such an R3 could contain 2 corners
of R (when both corners lie within the same Si,j).
Each such R3 is surely “anchored”, therefore the
O(1) keys for it can be obtained in constant time
from one of the four structures AL(v), AR(v),
AT (v), AB(v). That is, we first index to the
appropriate Vj data structure for left- and right-
anchored rectangles (and Hj for top- and bottom-
anchored rectangles) and then retrieve the right
keys from it in constant time (as in [4]).

(e) Return the O(1) keys computed in the previous
three steps.

The above procedure assigns a constant number of keys per
rectangle R and does so in O(log log n) time. In the next
subsection we sketch a modification that brings the time
down to O(1).

As can be seen from above, Step 2b of the Assign Keys

procedure returns from D(v) keys associated with tiles, but
not with individual cells. When users, however, want to ob-
tain access to cells, they will need to have keys associated
with those cells. For that reason, the server must maintain a
mapping from tile keys to the keys that compose the corre-
sponding tiles. The data structure that allows such mapping
is explained in Section 6.3 along with the key derivation pro-
cess.

6.2.2 Constant-time key assignment
What is preventing the above Assign Keys procedure from

working in constant time is the fact that we are going down
the tree G (working with blocks of finer granularity) until
we find the node u at which R overlaps with more than one
Si,j . To achieve O(1) time performance for key assignment,
we need to find this u is constant time. This can be done as
follows.

1. Let cells α, β, γ, θ be the four corners of R. For ev-
ery λ ∈ {α, β, γ, θ}, let `(λ) denote the leaf of G that
contains λ.

2. Use the constant-time algorithm for computing nearest
common ancestors (NCA) in a tree [16] to compute the
lowest (i.e., farthest from the root) node of G that is
ancestor of all of `(α), `(β), `(γ), `(θ). That node is
the u we seek.

The above computation of u clearly takes O(1) time. We
prove its correctness by contradiction. Suppose, to the con-
trary, that the u returned does not have the desired prop-
erty, i.e., that at that node u the rectangle R overlaps with
only one of the Si,j (Step 2a of Assign Keys). In that case,
the corresponding child vi,j is an ancestor of all of `(α),
`(β), `(γ), `(θ), thereby contradicting the fact that u is their
NCA.

6.3 Constant-time key derivation
The above key assignment process could also be used to

guide the processing of a key derivation request. But before

we proceed with sketching it, we describe an auxiliary data
structure, G′, that will allow users to map keys associated
with tiles to cell keys. Given the augmented tree G, G′ is
constructed as follows:

1. Starting with the root node v of G and going down the
tree, add to the set of nodes of G′ a node associated
with each tile in C(v).

2. Add to the set of nodes of G′ a node for each cell of S.

3. For each node of G′ that corresponds to a tile, insert
an edge from it to every cell contained in that tile.

Given the above graph G′, we assign a fresh unique public
label to every node of it as in the key derivation method
given in Section 3.1.1. We then use the corresponding secret
keys from G to compute public information associated with
G′. Now each user who obtains a key for a tile in S will be
able to use the public information for G′ to obtain the key
for any cell within that tile.

The space complexity of G′ is O(mn log log m), which is
lower than that of G.

Going back to the key derivation procedure at large, we
have that a user with secret keys for an area R should be
able to obtain the key of a cell within R using the public
information associated with the augmented tree G and the
additional graph G′ above. To do so, the user locates (in
constant time using the NCA algorithm, as in the previous
sub-section) the node u at which R overlaps with more than
one Si,j . Having u, the user derives the key depending on
whether the target grid cell is in an R1 (Step 2b), an R2

(Step 2c), or an R3 (Step 2d). All that is needed to carry
out the constant-time derivation of the target cell’s key is
the local information stored at node u, i.e., AL(u), AR(u),
AT (u), AB(u), H(u), V (u), or data structures stored at
leaves. The only exception is the case when the key is re-
turned from D(u) in Step 2b. In this case, such a key will
correspond to a tile, but not to an individual cell. This
means that the user will need to refer to G′ to compute the
cell’s key from the tile key obtained above (by following one
edge in G′).

An alternative way to the use of NCA computations in
locating u would be to provide the user with access rights
to R with a pointer to the node u, thereby allowing con-
stant access to that node whenever that user needs to do
key derivation.

7. IMPROVING THE SPACE COMPLEXITY
We now give an improvement in the space complexity

of the scheme. The improved scheme looks just like the
preliminary scheme of Section 6, except that in Step 4 of
Data Struct Build(v, S), instead of using the inefficient sche-
me of Section 4 for C(v), it uses the better scheme of Section
6. This implies that the space for Step 4 of Data Struct Build

goes down to
√

m
√

n(log m)3 log log m log∗ m, which is dom-
inated by the O(mn log log m log∗ m) space for other struc-
tures AL(v), AR(v), AT (v), AB(v), H(v), and V (v). The
recurrence for the total space thus becomes:

f(m, n) ≤
√

mnf(
√

m,
√

n) + c1mn log log m log∗
m

if n > 2, and

f(m, 2) = c2m log log m log∗
m



where c1 and c2 are constants. The solution is f(m, n) =
O(mn(log log m)2 log∗ m).

As was mentioned earlier, in practice it is quite likely that
not every cell has its own distinct access key, and that groups
of cells may have the same key. The easiest way to ex-
ploit this structure is for the recursive construction of the G
structure to stop as soon as its corresponding sub-grid con-
sists of cells that all have the same key. That is, Step 1 of
Data Struct Build needs to contain a termination test for
when all of the mn cells share the same key (in which case
it stops even if n > 2). This is likely to result in less space
that the worst-case theoretical bound we proved, especially
when the cells that share a key tend to be contiguous (but
not when they form a checkered pattern). We can quantify
the improvement if we make assumptions about the shapes
of those sub-regions of cells that share the same key (e.g.,
assume a rectangular shape), but we do not include these
analyses in this document (they will be given in the journal
version of this paper).

8. SECURITY
To show the security of our schemes, we must show that,

given a user’s keys, the user: (i) can generate all keys for his
designated region (completeness) and (ii) cannot generate
a key outside of his region (soundness). Given the security
properties of the key derivation method of [3] (which can be
applied to any DAG and proven to be secure) and the above
properties, this scheme is secure even against collusion of
multiple users. We omit the detailed proof (which is more
tedious than difficult) of this claim, but it will be given in
the full version of the paper.

9. HANDLING UPDATES
It was already described earlier how keys are issued to

a new user, therefore this section focuses on what happens
when: (i) a cell’s key is modified or (ii) a user’s access rights
are revoked. These issues were considered in [3] for hierar-
chical access control systems, and the same basic techniques
work for the geo-spatial problem considered in this paper.

One concept used in [3] is to use a level of indirection
for the keys. That is, the system creates two keys for ev-
ery key in the system. The first key, a system key, is as-
signed as before and the data structure is built exactly as
the scheme described in this work. The second key, a user
key, is assigned a random value, and the public information
is amended so that when given a user key it is possible to
derive the corresponding system key (i.e., by adding an edge
between the two keys’ nodes). Furthermore, the system keys
are the “used keys” in the system (e.g., the encryption keys
for content). The advantage of this approach is that when
the system wants to change a specific key, it needs only to
change the system key and the public information associated
with that key, and thus does not need to re-key any users.

This approach avoids having to re-key every user who
shares access to a cell with the revoked user: Only if they
share a key is there a need for re-keying. On the other
hand, in some environments, re-keying even a single user is
expensive (or is simply not possible). In such environments
it is possible (again using techniques of [3]) to not require
rekeying of any user for revocation. The basic idea of this
approach is that each user is given their own node in the
public structure, and an edge is added in the public struc-

ture from the user’s node to the nodes containing keys for
that user. Now one can change the keys for the underlying
structure and can update the user’s keys by modifying only
public information. An added benefit of this approach is
that each user needs to store only a single key. Note that
this benefit comes as a cost: the public structure now grows
linearly as the number of users increases.

10. EXTENSIONS
The scheme we gave extends to higher dimensions: Every

additional dimension causes an additional log log N factor
in the space complexity, an extra constant number steps in
key derivation, and a multiplicative constant factor in the
number of keys. Therefore for a dimension d problem, we
obtain:

(i) The number of keys is O(cd) for some constant c (and
thus is only efficiently applicable when the number of
dimensions is small);

(ii) The key derivation time becomes O(d);

(iii) The space complexity becomes O(N(log log N)d log∗ N).
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