
Extended Privilege Inheritance in RBAC

M.A.C. Dekker
Security group, TNO ICT

The Netherlands

J.G. Cederquist
SQIG-IT, IST, TU Lisbon

Portugal

J. Crampton
ISG, Royal Holloway

United Kingdom

S. Etalle
DIES, University of Twente

The Netherlands

ABSTRACT
In existing RBAC literature, administrative privileges are
inherited just like ordinary user privileges. We argue that
from a security viewpoint this is too restrictive, and we be-
lieve that a more flexible approach can be very useful in
practice. We define an ordering on the set of administra-
tive privileges, enabling us to extend the standard privilege
inheritance relation in a natural way. This means that if
a user has a particular administrative privilege, then she is
also implicitly authorized for weaker administrative privi-
leges. We prove the non-trivial result that it is possible to
decide whether one administrative privilege is weaker than
another and show how this result can be used to decide ad-
ministrative requests in an RBAC security monitor.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

Keywords
Access control, RBAC, Administrative privileges

1. INTRODUCTION
Role-based access control (RBAC) [6] is a non-discretionary
access control mechanism that simplifies the assignment of
access rights to users. The basic idea is that while there
are many access rights and users, rights and users can be
grouped using a relatively small number of roles, ordered in
a role hierarchy. In practice however, an RBAC system in
a large enterprise may involve thousands of roles [4]. Keep-
ing the access rights and roles up to date with changes in
the enterprise may be a too big task for a single admin-
istrator. The usual approach to this problem is to divide
the work and to allow delegation of part of the administra-
tor’s authority to other users. It is convenient to make this
delegation mechanism flexible, in order to reduce the likeli-
hood of bottlenecks and (administrative) users sharing keys

or passwords that should remain secret. On the other hand,
the delegation mechanism should be safe: users should not
obtain rights other than those explicitly delegated by the
administrator.

Several lines of research address the problem of delegation
of administrative privileges in RBAC systems; Ferraiolo et
al. [4] compare some of the different approaches. The main
issue in these lines of research is how to model administrative
privileges, as opposed to the ordinary user privileges, and to
decide who should have them. In ARBAC [5] administrative
privileges are assigned to a separate hierarchy of administra-
tive roles and defined by specifying a range of roles that can
be changed. Crampton and Loizou [3] take a more general
approach, by using the same hierarchy for both the admin-
istrative privileges and the ordinary user privileges. Using
the concept of administrative scope, they define which roles
should have administrative privileges over other roles. In the
Role-Control Center [4], administrative privileges over roles
are defined in terms of views, which are subsets of the role-
hierarchy, and they can only be assigned to users assigned
to these roles.

In existing RBAC literature [2, 3, 4, 5, 7], administrative
privileges are inherited just like ordinary user privileges. We
argue that this approach is more restrictive than necessary
for safety: consider a simple setting where an administrator
has delegated the authority to some user u to assign a user u′

to a high role in the role-hierarchy. When user u uses this
authority, user u′ becomes assigned to the high role, and
consequently u′ can also play lower roles. There is no secu-
rity motivation for not letting user u assign user u′ directly
to (one of) the lower roles. User u′ could play the lower
roles anyway. However, in standard RBAC, administrative
privileges are not interpreted in this way.

In this paper, we define an ordering on the administrative
privileges, enabling us to extend the standard privilege in-
heritance relation in a natural way. This means that if a user
has a particular administrative privilege, then she is also
implicitly authorized for weaker administrative privileges.
Basically, this allows for a more flexible use of administra-
tive privileges. We argue that decentralized management of
RBAC becomes more flexible with this extension.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASIACCS’07, March 20–22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003…$5.00.

383

2. ADMINISTRATIVE PRIVILEGES
Privileges can be divided into user privileges and adminis-
trative privileges [6]. While user privileges allow actions on
objects (such as printing files or viewing records), adminis-
trative privileges, allow actions on the RBAC state itself, e.g.
adding an edge from one role to another. Here we assume
that user privileges form a finite set of atomic privileges, de-
noted by Q, that corresponds to a finite set of actions on ob-
jects. On the other hand, the set of administrative privileges
is necessarily infinite, because privileges about administra-
tive privileges are included as well. We formalize the full set
of privileges by defining a grammar that encompasses both
user privileges and administrative privileges.

Definition 1 (Privilege Grammar). Given the sets
U of users, R of roles and Q of user privileges, the set of all
privileges P is defined by the following grammar:

p ::= q |addUser(u, r) | addEdge(r, r′) | addPrivilege(r, p),

where u ∈ U , q ∈ Q and r, r′ ∈ R.

Each administrative privilege corresponds to an adminis-
trative action. The privilege addUser(u, r) allows the ac-
tion of adding a member u to the role r. The privilege
addEdge(r1, r2) allows the action of adding an edge from
role r1 to r2. The construct addPrivilege is a grammatical
connective and consequently - as mentioned above - the set
P is infinite despite the fact that the sets of users, roles and
user privileges are all finite. In the existing literature the
number of administrative levels (in other words, the num-
ber of nestings of the addPrivilege connective) is sometimes
restricted to one [6] or to two levels [7]. We agree that ad-
ministrative privileges with multiple levels of administration
might not be useful in some implementations. However, here
we take a general approach, and we let the administrators
choose which administrative privileges to use. We should
mention also that most existing models constrain the roles
that can have administrative privileges, for example to pre-
vent low roles obtaining privileges to change membership of
higher roles [3]. We do not make choices with respect to
such constraints.

2.1 Extended Privilege Inheritance
An RBAC state is denoted by a triple (UA,RH ,PA), con-
taining the user-role assignments, the edges between roles
and the privilege assignments to roles. A well-known fea-
ture of RBAC is privilege inheritance [6], by which a role
has the privileges to which it is explicitly assigned, and ad-
ditionally, the privileges of lower roles.

Definition 2 (Standard Privilege Inheritance).
Let (UA,RH ,PA) denote an RBAC state and let > denote
the reflexive transitive closure of RH , we say that a role r
has the privilege p, denoted by r Ã p, iff

r > r′ and (r′, p) ∈ PA for some r′ ∈ R.

We argue that the standard privilege inheritance is inade-
quate for administrative privileges. Take for example a role
r with the privilege to add an edge e from r2 to r3. The
role r does not have the privilege to add an edge from r2

Figure 1: The right to add the dashed edge is
stronger than the right to add the dotted edge.

to any role below r3, nor the privilege to add an edge from
any role above r2 to r3. However, from a security point of
view this makes no sense, because with edge e in place there
would be anyway a path to roles below r3, or a path from
roles above r2. The standard RBAC privilege inheritance
however does not capture this, and treats administrative
privileges like ordinary user privileges. In Figure 1 we show
the six different cases where administrative privileges yield
weaker administrative privileges. For example, in Figure 1a,
the (administrative) privilege to assign user u to role r1 (the
dashed edge) is stronger than the privilege to assign user u
to role r2. In Figure 1b, the privilege to add an edge between
r1 and r2 (the dashed arrow) is stronger than the privilege
to add only user u to role r2. And so on. We formalize this
ordering by the following definition.

Definition 3 (Privilege Ordering). Let (UA,RH ,PA)
be an RBAC state, let p, p1, p2 be privileges in P , let Q be the
subset of user privileges in P , and let r1, r2, r3, r4 be roles in
R. We define the relation → as the smallest relation satis-
fying:

1. p → p, if p ∈ Q

2. addUser(u, r1) → addUser(u, r2), if r1 > r2

3. addEdge(r1, r2) → addUser(u, r3), if r2 > r3 and
(u, r1) ∈ UA

4. addEdge(r2, r3) → addEdge(r1, r4), if r1 > r2 and
r3 > r4

5. addEdge(r2, r3) → addPrivilege(r1, p2), if r1 > r2,
r3 > r4, (r4, p1) ∈ PA and p1 → p2

6. addPrivilege(r2, p1) → addPrivilege(r1, p2), if r1 > r2

and p1 → p2

The ordering → is both reflexive and transitive.

The ordering of privileges yields an extension of the standard
privilege inheritance relation.

Definition 4 (Extended Privilege Inheritance).
Let (UA,RH ,PA) be an RBAC state, let r be a role in R
and p be a role in P , and let Ã denote the standard priv-
ilege inheritance, reported in Definition 2. We say that the
extended privilege inheritance r Ã∗ p holds iff

r Ã p′ and p′ → p, for some p′ ∈ P .

384

Figure 2: A practical example of the use of the ex-
tended inheritance relation.

The extended privilege inheritance relation is useful because
it allows users, with administrative privileges, to be implic-
itly authorized for weaker administrative privileges. Thereby,
it gives administrative users the possibility to perform safer
administrative operations than the ones originally allowed.
We now give a practical example of its usage.

Example 1 (Visiting Researcher). Charlie, the se-
curity administrator, gives the staff the privilege to add vis-
iting researchers to the staff role. There is also a role below
staff called wifi, with the privilege to use the wireless net-
work. Alice is a visiting researcher and Bob is a member
of the staff. Alice only needs access to the wifi network, so
Bob would like Alice to use the wifi role. Charlie (who just
left) did not provide this privilege explicitly to the staff. This
scenario is illustrated in Figure 2.

In the standard RBAC model, Bob can only assign Alice to
the staff role. Given the fact that Alice only needs wifi access,
Bob urges Alice to apply the principle of least privilege, and
to activate only the wifi role. However, Bob can only hope
that Alice does so. With the extended privilege inheritance
relation Bob can assign Alice to the wifi role because of his
privilege to add users to the staff role. In a way, instead of
preaching the principle of least privilege to Alice, Bob applies
it for her.

2.2 Tractability
We now show that the extended privilege inheritance rela-
tion (Definition 4) is tractable. This result is not immedi-
ate, since the full set P of privileges is infinite. For instance,
a naive forward search does not necessarily terminate. The
proof also indicates how a decision algorithm, deciding which
privileges are to be given to which roles, can be implemented
at an RBAC security monitor.

Theorem 1 (Decidability).
Given an RBAC state, a role r and a privilege p in P , there
is an algorithm to determine whether r Ã∗ p.

Proof. (Sketch) The standard privilege inheritance Ã
is decidable, yielding a finite set of privileges p′ inherited
by r. Now for each privilege p′ we need to check whether
p′ → p. It can be proven that, given two privileges p′, p,
it is decidable whether p′ → p. The proof is by structural
induction over p.

We would like to mention here that it is not decidable to
determine, given p′, the set of all privileges p, such that

p′ → p, despite the fact that the UA, RH and PA are finite.
Because of space limitations, we refer to an extended paper1

for these details and the details of the proof of Theorem 1.

3. CONCLUSION
With this work we make a contribution to the design of
flexible administration models for RBAC. Flexible admin-
istration is important to cut the cost of maintenance and
to enable the RBAC system to adapt to changing circum-
stances. Concretely, our contribution is an extension of the
standard RBAC privilege inheritance relation. We defined
an ordering on administrative privileges, that enabled us
to extend the standard privilege inheritance relation in the
natural way. This means that if a user has a particular ad-
ministrative privilege, then she is also implicitly authorized
for weaker administrative privileges. We showed that this
relation is tractable. Our extension can be seen as an ap-
plication of the principle of least privilege at the level of
administration.

A number of improvements and additions can be made. We
do not express privileges such as ∀r.addEdge(r′, r)), which
may be useful in practice, but we believe that special care is
needed to deal with quantifiers. Finally, as we do not make
a particular choice regarding constraints on the administra-
tive privileges, it would be interesting to investigate how
our results can be combined with, for example, the work by
Crampton and Loizou [3] or that of Bandmann et al. [1].

4. REFERENCES
[1] O. L. Bandmann, B. S. Firozabadi, and M. Dam.

Constrained delegation. In M. Abadi and S. M.
Bellovin, editors, Proc. of the Symp. on Security and
Privacy (S&P), pages 131–140. IEEE Computer
Society Press, 2002.

[2] E. Barka and R. S. Sandhu. Framework for role-based
delegation models. In J. Epstein, L. Notargiacomo, and
R. Anderson, editors, Annual Computer Security
Applications Conference (ACSAC), pages 168–176.
IEEE Computer Society Press, 2000.

[3] J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models.
Transactions on Information System Security
(TISSEC), 6(2):201–231, 2003.

[4] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-based Access Control. Computer Security Series.
Artech House, 2003.

[5] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of roles.
Transactions on Information and System Security
(TISSEC), 2(1):105–135, 1999.

[6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[7] X. Zhang, S. Oh, and R. S. Sandhu. PBDM: a flexible
delegation model in RBAC. In D. Ferraiolo, editor,
Proc. of the Symp. on Access Control Models and
Technologies (SACMAT), pages 149–157. ACM Press,
2003.

1An extended version of this paper is available from
http://eprints.eemcs.utwente.nl

385

