
Modeling Traceability of Concerns in Architectural Views 

Bedir Tekinerdogan, Christian Hofmann, Mehmet Aksit 
Department of Computer Science,  

University of Twente 
P.O. Box 217 7500 AE Enschede 

{bedir|c.hofmann, m.aksit}@cs.utwente.nl 
 
ABSTRACT 
Software architecture modeling includes the description of 
different views that represent the architectural concerns 
from different stakeholder perspectives. In case of 
evolution of the software system the related architectural 
views need to be adapted accordingly. For this it is 
necessary that the dependency links among the 
architectural concerns in the architectural views can be 
easily traced.  Unfortunately, despite the ongoing efforts 
for modeling concerns in architectural views, the 
traceability of concerns remains a challenging issue in 
architecture design. We propose the concern traceability 
metamodel (CTM) that enables traceability of concerns 
within and across architectural views. The metamodel can 
be used for modeling the concerns, the architectural 
elements and the trace links among the elements in 
architectural views. We have implemented CTM in the tool 
M-Trace, that uses XML-based representations of the 
models and XQuery queries to represent tracing 
information. CTM and M-Trace are illustrated for 
analyzing the impact of concerns of a Climate Control 
System case.  

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and 
Techniques. D.2.11 [Software Engineering]: Software 
Architectures; K.6.3 [Software Management]: Software 
Maintenance 

General Terms 
Design, Languages, Management 

Keywords 
Software Architecture Modeling, Traceability of Concerns, 
Concern Modeling 

1. INTRODUCTION 
Software architecture design aims to identify the key 
concerns at an early stage of the software development 
lifecycle and modularize the concerns in an architecture 
model. A software architecture for a program or computing 
system consists of the structure or structures of that system, 
which comprise elements, the externally visible properties 
of those elements, and the relationships among them [7]. 
This definition implies that software architecture does not 
consist of a single structure but is represented using more 
than one architectural views. An architectural view is a 
representation of a set of system elements and relations 
associated with them [13]. Different views may include 
different type of elements, relations and constraints. 
Several approaches for organizing architecture around 
views have been proposed in the literature. These include, 
for example, the traditional Kruchten’s 4+1 view approach, 
the views in the Rational’s Unified Process, the Siemens 
Four Views model, and others as described in  [7]. 

Concerns in the system are rarely stable and need to evolve 
in accordance with the changing requirements. To cope 
with the evolution at the architecture design level it is 
necessary that the dependency links between the 
architectural concerns in the architectural views can be 
easily traced.  This is because changes to concerns as such 
can have consequences for other architectural elements, 
which are directly or indirectly related to it.  

Unfortunately, despite the ongoing efforts for identification 
and modeling of concerns in architectural views, the 
traceability of concerns remains a challenging issue in 
architecture design. In the aspect-oriented software 
development community the interest is in particular on 
crosscutting concerns which cannot be easily localized and 
are scattered over multiple implementation units. Several 
approaches have already been proposed to model 
crosscutting concerns at the architecture design level [6][2], 
and focused on mapping aspect-oriented models through 
the life cycle. However, traceability of concerns in AOSD, 
whether crosscutting or not, has not yet been tackled 
broadly.  

The topic of traceability is not new and has been discussed 
in various domains. In requirements engineering lots of 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Workshop AOM '07, March 12-13, 2007 Vancouver, British Columbia, 
Canada .Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00. 



work has been done on tracing requirements from the 
stakeholders and in the design process [14][21][22]. In the 
model-driven engineering approach [4][5] traceability is 
considered important for tracing model elements. The 
problem of traceability has recently also been addressed by 
the AOSD community [12], encompassing the adoption of 
aspects throughout the lifecycle. In each of these domains 
different definitions for traceability are given [16]. 

In this paper we build on existing work on traceability to 
trace aspects in architectural views. For this, we propose 
the Concern Traceability Metamodel (CTM) that can be 
used for modeling the concerns, modeling the architectural 
elements and the traceability links among the elements 
within and across the architectural views. We have 
implemented CTM in the tool M-Trace, that uses XML-
based representations of the models and XQuery queries to 
represent tracing information. CTM and M-Trace are 
illustrated for a Climate Control System.  

The remainder of the paper is organized as follows. In 
section 2 we will shortly discuss the background on 
architectural views. In section 3 we present the example on 
Climate Control System (CCS) and illustrate the need for 
tracing crosscutting concerns within and across views. In 
section 4 we define the requirements for architectural 
concern traceability. In section 5 we provide the CTM 
which aims to meet these requirements. Section 6 will 
discuss the application of CTM to trace aspects within and 
across architectural views in the example case. Section 7 
will finalize the paper with the conclusions.  

2. EXAMPLE: CLIMATE CONTROL 
SYSTEM (CCS) 
In the following we will define the case study that we will 
apply throughout the paper. The case study involves the 
architecture design of a climate control system (CCS) in 
cars. A CCS includes functions for heating, ventilating and 
air-conditioning. For the representation of architectural 
views we adopt the approach as defined in [7] and present 
the so-called module view, C&C view and deployment 
view1. We define a set of concerns that can be identified 
within each view and across views.  

2.1 Module View of CCS 
The module view represents the structuring of 
implementation units, or modules. The module view of 
CCS is illustrated in Figure 1. Controller is the module that 
defines the main control loop. It uses ReferenceModel that 
defines the preferences of the user. TemperatureSensor 
senses the temperature of Car and provides on request 

                                                           
1 These views should only be considered as an example to 

motivate the problem. In principle, the approach for tracing 
concerns is independent of the different views. 

sensor data to Controller. Controller sends current state of 
the car to Display and determines the action climate control 
action based on the difference between ReferenceModel  
and sensor data. The actions are defined by Cooler, Heater 
or Fan.  

 
Figure 1. Module View of CCS 

2.2 Component and Connector View of CCS 
The Component and Connector (C&C) view represents the 
structuring of elements which have run-time behavior, 
which are usually components and connectors.  Figure 2 
shows the C&C view consisting of four components: 
Controller, Sensor, Actuator and GUI. The GUI 
component controls user inputs and transfer the 
information to the Controller component. The GUI 
component will also present information from the 
Controller component to the user. The Sensor component 
senses the car information, while Actuator consists of the 
invoking the implementations of the actuator classes. 

sense actuate display

 
Figure 2. C&C View of CCS 

2.3 Deployment View of CCS 
The deployment view represents the allocation of software 
elements to hardware nodes. Figure 3 shows the 
deployment view of the CCS in which components are 
mapped to physical nodes in the system. We have 
identified three nodes: Microcontroller, Physical Sensors 
and Physical Actuator. The MicroController includes the 
components Controller and GUI. Physical Sensor executes 
the Sensor. Physical Actuator includes the Actuator 
component.  



bus

1..*1..*

 
Figure 3. Deployment View of CCS 

2.4 Change Scenarios 
To illustrate the problem of traceability within and across 
architectural views we define a set of change scenarios. 
Each of these change scenarios refers to a particular 
concern. The scenarios are the following: 
• Adapt data format 
The common data format that is used in the CCS for 
representing the sensor data needs to be adapted.  
• Adapt UI 
The CCS will be deployed in cars that require different UI 
platforms. As such the display must be adaptable and be 
changed to the corresponding context.  
• Add Humidity Concern 
The current design includes only the control of temperature 
in the car. The system needs to be enhanced to control the 
humidity in the car/  
• Add diagnostics 
To cope with failures in the system it is required that the 
climate control elements provide mechanisms for failure 
detection and failure correction.  
The above scenarios are selected examples that could be 
required in a CCS and we could easily identify several 
other scenarios. What is important here is that, without 
tracing support, it is very difficult to assess the impact of 
these scenarios and enhance the architectural views 
appropriately.  For the impact analysis, we need to know to 
which architectural elements the concerns in the scenarios 
apply. Since the architecture description does not provide 
explicit links to the concerns, it is very difficult to 
understand the relation among these concerns and the 
architectural elements in the architectural views. Usually, 
the tracing is done implicitly by iterating over each element 
and interpreting whether the element relates to a given 
concern or not. It should be clear that this is not easy and 
also cumbersome due to the potential subjective 
interpretations.  

3. REQUIREMENTS FOR CONCERN 
TRACEABILITY IN ARCHITECTURAL 
VIEWS 
Based on the work in the literature on traceability and the 
concern modeling in AOSD we provide a set of 
requirements for traceability of concerns in architectural 
views.  

3.1 Explicit Modeling of Concerns 
In order to explicitly reason about traceability of the 
concerns in architectural views it is necessary that the 
corresponding concerns are explicitly modeled as first class 
abstractions. The detail of concern model could range from 
just a description of its name to a full semantic model 
including attributes such as stakeholder, the domain of the 
concern, the date it was raised, the impact that it has, etc. 
Harrison et. al define the following requirements for 
concern modeling:  (a) providing modeling concepts for 
concerns and their organization (b) Neutrality and open-
endedness with respect to the kind of artifacts, (c) and 
specification that captures intended structure of material 
rather than simply reflecting existing structure. If we 
decide to explicitly model concerns then the question arises 
whether to provide a uniform model for both the concerns 
and artifacts, or explicitly separate these using dedicated 
language constructs. In general these two different 
approaches are identified as symmetric and asymmetric 
approaches [15].  

3.2 Explicit Modeling of Dependency 
Relations 
In principle, every architectural element implements one 
ore more concerns. To support tracing these relations 
among architectural elements and concern explicit needs to 
made explicit. This can be achieved when dependency 
relations are recorded as trace links. For this, like concerns, 
traceability links should also be specified as first class 
abstractions in the adopted traceability model. The choice 
for a symmetric or asymmetric approach seems also to have 
an impact on the traceability links. In the asymmetric 
model the traceability links will need to be established for 
both architectural elements and concerns. On the other 
hand, in the symmetric approach the traceability links need 
to refer to one type of concern. This simplifies the 
traceability specification but could reduce 
understandability because the user has to explicitly 
distinguish between concerns and architectural elements. 

3.3 Intra-View Traceability of Concerns 
To understand the relations among the concerns and 
architectural elements within the same view it is necessary 
to model traceability for the given view. Figure 4 shows the 
abstract model for tracing within a given view. Here we 
have shown the case of an asymmetric model and 
distinguished between an architectural element and a 



concern. We define here two types of traceability: (1) intra 
concern to element traceability and (2) intra element to 
concern traceability. Note that Architectural Element can 
be either an architectural relation or architectural entity. In 
this way concerns can be both linked to architectural 
relations and architectural entities. Further, since 
architectural entities may be composed of other sub-entities 
a single concern can then be attached to a composition of 
architectural entities.  

 
Figure 4. Traceability Relationships within a View 

3.4 Inter-View tracing of concern 
Besides tracing concerns within an architectural view it is 
important to trace concerns that cut across views. Figure 5 
presents the abstract model for traceability relationships 
across architectural views.  

 
Figure 5. Traceability Relationships  

across Architectural Views 
To distinguish from the previous intra-view traceability we 
use the term inter referring to traceability relations across 
different views. In principle, there are two kinds of 
relations. First, architectural elements in different views 
might be related, this is called, inter element to element 
traceability. Second, a common concern might be related to 
architectural elements in different views, which is termed 
as inter concern to element traceability.  

3.5 Support for Automated Tracing 
Explicit models for concerns and the traceability will help 
to define the links between the different concerns and the 
architectural elements. By providing the traceability links, 
concerns can be more easily traced by just following the 
trace links. For simple, small scale systems tracing could be 
done in this way. However, for a complex system 
following the traceability links manually might not be 
trivial. Even though the traceability links are made explicit 
it may be hard to expose the required traceability links. To 
support tracing, the system should provide automated 
support for defining generic and user-defined queries to 
identify and trace the concerns. This is in particular 
important for architectural models that consist of a broad 
set of concerns and architectural views.  

4. CTM: ARCHITECTURAL CONCERN 
TRACEABILITY METAMODEL 
In the following we present the concern traceability 
metamodel (CTM) for tracing concerns in architectural 
views as depicted in Figure 6.  The metamodel represents 
three key issues: the architecture, the concerns, and the 
tracing. The metamodel should be preferably read from the 
left to the right. On the left, ConcernModel consists of 
ConcernGroup and UnitModel.  ConcernGroup groups a 
set of Concerns. Concerns can be either crosscutting or not, 
the metamodel does not make an explicit distinction. 
Concern is defined for one or more Stakeholder. 
UnitModel represents the Units to which the concerns 
apply. A unit refers to an artifact in the software life cycle. 
Here we focus on the architecture design phase. 
ArchitectureModel is a subclass of Unit and consists of one 
or more ArchitectureView which consists of one or more 
ArchitecturalElement. ArchitecturalElement includes in the 
metamodel is in fact a representation of the actual 
architectural elements. To refer to the actual elements 
ArchitecturalElement includes the attributes reference and 
name. Element can be Relation, Entity and Aspect. Relation 
represents an architectural relation such as uses, depends 
on and calls. Entity represents an architectural entity such 
as a Module, Component or Node. The specific elements 
will be different for different views, and if necessary, the 
metamodel can be extended for this purpose. Entities may 
have sub-elements that are represented by children 
relationship. Architectural Aspect represents a specification 
of an architectural aspect, which is associated to one or 
more entities. The relationship advices represents the 
dependency of an aspect with the architectural elements.  



1..*

1..*

1..*

1..*

advices

1..*

-reference
-name

source

1..* 0..*

target
0..*

1..*

-sourceQuery
-targetQuery

1..*

1..* 1..*

children

children

1..*

 
 

Figure 6. Architectural Concern Traceability Metamodel (CTM) 
 

Traceability of architectural elements and concerns is 
represented by TraceableElement and Trace. A traceable 
element is either a unit or a concern. The trace relation is 
modeled explicitly by Trace, which relates one or more 
source elements to one or more target elements with the 
respective source and target relations. Since the source 
and target can be an architectural element or a concern 
within any view, and for any tracing direction, the 
metamodel can express the traceability relations as 
defined in section 3. 
Traces can be specified extensionally by just enumerating 
all source-target mappings between traceable elements, or 
intensionally queries are applied to specify the source and 
target elements. ExtensionalTrace and IntensionalTrace 
represent the two different alternatives. Finally, traces are 
modeled as parts of a trace model, represented by 
TraceModel, which makes it possible to specialize it. 
Pointcut models are represented by PointcutModel.  

5. APPLICATION OF CTM 
The CTM is a metamodel that can be instantiated in 
different ways. We follow the subsequent steps to 
instantiate and use the metamodel for supporting 
traceability of concerns in architectural views. 
• Instantiating CTM 
CTM is implemented by defining XML Document Type 
Definition (DTD) files for the metamodel elements. This 
includes DTDs for concern model, unitmodel, 
architectural views and trace links.  

• Modeling concerns and architecture model for case 
By instantiating the DTDs the specific concern model and 
architecture model of the corresponding case are defined. 
This is explained in section 5.1. 
• Defining trace links (mappings) of concerns to 

architectural elements in the views 
To support traceability, the concerns are mapped to the 
corresponding architectural elements. This could be 
within or across architectural views. This is explained in 
section 5.2. 
• Tracing of concerns 
Once the models and the mappings are defined we can 
trace any concerns in the architectural views. In this paper 
we show traceability for impact analysis of evolving 
concerns. This is explained in section 5.4. 

5.1 Modeling Concerns and Architecture  
Figure 7 shows the concern model for the CCS. It consists 
of ConcernGroup and UnitModel elements that are used 
to organize Units and Concerns, as we have defined in the 
metamodel. In the example we have defined three 
concerns controlling, sensing, and displaying. The 
unitmodel defines one architecture model with identifier 
AM1. The architectural views are specified in a separate 
file. 



1. <concernmodel> 
2.  <concerngroup> 
3.   <concern id="c1" name="controlling"></concern> 
4.   <concern id="c2" name="sensing"></concern> 
5.   <concern id="c3" name="displaying"></concern> 
6.   …  
7.  </concerngroup> 
8.  <unitmodel> 
9.   <unit id="am1" reference="CCS-AM.xml"  
10.    name="CCS" type="architectural model"></unit> 
11.  </unitmodel> 
12. </concernmodel> 

 

Figure 7. Concern Model for CCS 
The XML document shown in Figure 8 represents the 
architectural model of CCS consisting of three views. The 
components and connectors view, for example, is shown 
in line 5. This view with the identifier cc1 is defined in 
the XML document “ccs-cc.xml”, which can be found 
under the link given by the parameter reference (Line 5). 
The module view and deployment views with the 
identifiers mv1 and dv1 are defined similarly.  
1. <arch-model id="am1" 
2.   reference="CCS-AM.xml" name="CCS"> 
3. <view id="mv1" reference="ccs-mv.xml" 
4.    name=”CCS Module View” type=”module view”/> 
5. <view id="cc1" reference="ccs-cc.xml" 
6.    name="CCS CC View" type="cc view"/> 
7. <view id="dv1" reference="ccs-dv.xml" 
8.    name="CCS Deployment View"/> 
9. </arch-model> 

Figure 8. Architectural Model for CCS 

Figure 9 shows, for example, the XML representation of 
the components and connectors view of the CCS. The 
elements relation and entity refer to the corresponding 
elements in the metamodel. The type of the element is 
defined in the type attributes of relation and entity. Since 
in Figure 9 we are representing the C&C view the values 
for the type attribute of relation and entity are connector 
and component, respectively. Relations include the from 
and to attributes to denote the architectural entities that 
are connected by the relation. The module view and the 
deployment view are represented in a similar sense.  
1. <view id="cc1" reference="ccS-cc.xml"  
2.       name="CCS CC View" type="cc view"> 
3.  <relation id="r1" name="sense" type="connector">  
4.   <from><entity id="e1" name="Controller" 
5.          type="component"></entity></from> 
6.   <to><entity id="e2" name="Sensor"  
7.        type="component"></entity></to> 
8.  </relation> 
9.  <relation id="r2" name="actuate" type="connector"> 
10.   … 
11.  </relation> 
12.  … 
13. </view> 

Figure 9. C&C View of CCS  

 

5.2 Defining Trace Links 
After explicit modeling of the concerns we will now 
define the trace links among the concerns and the 
architecture elements within a view.  

In the implementation of CTM we use a separate DTD to 
describe the structure of the trace model. As indicated 
before, the dependency relations are defined through trace 
models including traces.  Traces define the dependency 
between a source and a target. The dependency is either 
directly enumerated (extensional) or indirectly defined 
through queries (intensional). Queries are written using 
XQuery, which is a technology developed by the W3C 
that is designed to query collections of XML-data. Trace 
links can be defined within or across architectural views. 
In the following we will explain these separately. 

5.2.1 Defining Trace links within Views  
Figure 10 shows an example of a query that can be used 
to define the trace links between a concern and 
architectural elements in the component and connector 
view. Note that trace links can be defined either in an 
intensional or extensional manner. Figure 10 shows a 
query in which the source is enumerated (extensional) 
and the target element to which it should be mapped is 
defined using a query defined as an XQuery expression. 
The query is a union of the results returned by the 
predefined function getElementFromView(). This 
function takes as parameter an id string that identifies the 
view, the element type it searches and a sub-string it 
should match with the name attribute of the element. It 
travels the tree of view elements within the architectural 
model, until it finds a view element that contains the 
given id string. From there on, all relation and entity 
elements are returned where the name attribute contains 
the given sub-string. This means for the example in 
Figure 10, that the concern “controlling” is related to all 
architectural elements from the C&C view that have a 
name that is related to controlling.  
<tracemodel> 
 <intensional-trace> 
  <source> 
   <traceable-element id="c1"> </traceable-element> 
  </source> 
  <target-query> 
   local:getElementFromView("cc1","","control") union 
   local:getElementFromView("cc1","","sens") union 
   local:getElementFromView("cc1","","actua") 
  </target-query> 
 </intensional-trace> 
 … 
 </trace-model> 

 

Figure 10. Query defining an Intensional Trace within 
C&C View 

The set returned by the query contains the components 
Controller, Sensor and Actuator, as well as the connector 
sense and actuate.  



Using XQuery we can define easily other matches like 
getElementFromViewStartingWith(), getElementFrom-
ViewEndingWith() or getElementFromViewWithName() 
that select architectural elements of a given type within a 
view, that start, end or exactly match a given string. The 
mappings between the concerns and the architectural 
elements in the module- and deployment view are defined 
in a similar way.  

5.2.2 Defining Trace links Across Views 
Some concerns might not be limited to a single view but 
appear in different views. To define the trace links of 
these concerns the similar queries as defined before can 
be used. The only difference will be the reference to 
multiple views.  Figure 11 specifies, for example, a trace 
using a query across multiple views. The concern 
“controlling” with id “c1” (Line 4) that was defined in 
Figure 7, Line 5, is the source of the trace link. It is 
related to all kinds of units (denoted by the empty String 
“” as 2nd parameter in Line 7) in all architectural views 
(1st parameter) named “controller”. To refer to specific set 
of views, the first argument of 
getElementFromViewWithName can include a set of 
views separated by a comma.  
1. <tracemodel> 
2.  <intensional-trace> 
3.   <source> 
4.    <traceable-element id="c1"> </traceable-element> 
5.   </source> 
6.   <target-query> 
7. local:getElementFromViewWithName("","","controller")  
8.   </target-query>  
9.  </intensional-trace></tracemodel> 

Figure 11.  Trace Model across Views 

5.3 Tracing Concerns for Impact Analysis 
So far we have defined the concern model, the 
architecture model including the views, and the mappings 
between the concerns and the architectural elements. In 
principle we can now trace any concern to the 
architectural elements in the views. Tracing concerns can 
support several goals. In this paper we will focus on 
impact analysis of evolution of concerns.  
We have implemented a set of queries that can trace 
concerns to elements and vice versa. There are two types 
of queries: forward tracing queries that trace concerns to 
architectural elements, and backward tracing queries that 
trace architectural elements to concerns. We use the XML 
database ‘exist’2 to execute the queries over our models 
and calculate the traces. For example, the function 
traceForward() is presented in Figure 12. The function 
determines first the trace links where the source of the 
link is one of the elements in the start set. Then all the 
target elements are determined for these trace links. The 
target elements in trace links are recursively calculated 
                                                           
2 http://www.exist-db.org 

for all elements in the start set and the identified target 
elements. 
declare function local:traceForward( $startSet ){ 
 let $targetElements :=  
  local:targetElementsForElements( $startSet ) 
 return 
  if( empty( $targetElements ) )  
   then $startSet 
   else $startSet union  
         local:traceForward( $sourceElements )}; 

 

Figure 12. Forward Traceability 
This function can be called to trace the impact of 
concerns. For example to analyze the impact of the 
scenario sensing (id=c2) we can invoke the following 
call: 
 traceForward(concern[@id=”c2”]) 
 

This results in a XML file that includes all the elements 
that are related to the concern sensing. We transform the 
XML files to human readable documents that list all the 
elements. Obviously it is not always possible to directly 
trace the concerns by providing specific names (like 
sensing). In this case we have to apply domain knowledge 
to characterize the concerns. For example, to analyze the 
impact of adding humidity control we need to identify all 
the elements that use cooling, heating, sensing or fan. The 
start set of the query is then determined by the following 
expression: 
let startSet :=     
f:getElementFromViewStartingWith("","","sens") union           
f:getElementFromViewStartingWith("","","cool") union 
f:getElementFromViewStartingWith("","","heat") union               
f:getElementFromViewStartingWith("","","fan") 

6. CONCLUSION 
In this paper we have built on the general literature on 
traceability, concern modeling and the recent work on 
traceability of aspects. We have defined a case study on 
Climate Control System and defined a set of change 
scenarios to illustrate the problem of traceability of 
concerns in architectural views. Based on our 
observations and the literature on traceability we have 
defined a set of requirements for tracing concerns in 
architectural views. We have proposed the concern 
traceability metamodel (CTM) that enables traceability of 
concerns in architectural views. CTM has been 
implemented in our tool M-Trace, that uses XML-based 
representations of the models and XQuery queries to 
represent tracing information.  
The metamodel has been applied to trace concerns for 
impact analysis of selected concerns for the case. It was 
not difficult to explicitly model the concerns and the 
architectural elements, and the mapping of the concerns 
to the elements. By defining expressive queries we could 
also easily realize both forward and backward traceability 
of concerns. However, for some concerns it appeared that 
sufficient domain knowledge was necessary to define the 



appropriate queries. Our future work will include a 
systematic application of domain knowledge to provide 
more expressive queries. Another issue is the 
visualization of the tracing. In our tool the impact analysis 
results in a set of XML files. We are working on 
enhancing the M-Trace tool for better visualization. 

ACKNOWLEDGMENTS 
This work is supported by the European Network of 
Excellence on AOSD project, and the Aspect-Oriented 
Software Architecture Design project funded by the 
Dutch Scientific Organisation in the Jacquard Software 
Engineering Program. 

REFERENCES 
[1] J. Bakker, Traceability of Concerns, MSc thesis, Faculty of 

Electrical Engineering, Mathematics and Computer 
Science, University of Twente, Enschede, NL, April 2005.  

[2] E. Baniassad, P. Clements, J. Araujo, A. Moreira, A. 
Rashid, B. Tekinerdogan, Discovering Early Aspects, 
IEEE Software, Vol. 23, No. 1, pp. 61-70, January, 2006. 

[3] L. Bass, P. Clements, and R. Kazman, Software 
Architecture in Practice, 2nd ed., Addison-Wesley, 2003. 

[4] L. Bonde, P. Boulet, J.-L. Dekeyser. 
Traceability and interoperability at different levels of 
abstraction in model transformations, in: Proceedings of 
FDL'05, Lausanne, Switzerland, September 2005. 

[5] J. Champeau, J. and E. Rochefort. Model Engineering and 
Traceability. in UML 2003. SIVOES-MDA Workshop. 
2003. San Francisco, California, USA. 

[6] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto, J. 
Bakker, B. Tekinerdogan, S. Clarke, and A. Jackson, 
Survey of Analysis and Design Approaches, Network of 
Excellence AOSD-Europe, 2005. 

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. 
Little, R. Nord, J. Stafford, Documenting Software 
Architectures. Addison-Wesley, 2002. 

[8] P. Clements, R. Kazman, M. Klein. Evaluating Software 
Architectures, Addison-Wesley, 2002 

[9] R. Chitchyan and A. Rashid. Tracing Requirements 
Interdependency Semantics. in Proc. of workshop on Early 
Aspects (held with ASOD 06), Bonn, Germany, 2006. 

[10] L.Dobrica & E.Niemela. A survey on software architecture 
analysis methods. IEEE Trans. on Software Engineering, 
Vol. 28, No. 7, pp.638-654, July 2002. 

[11] Early Aspects: Aspect-Oriented Requirements Engineering 
and Architecture Design web site: http://www.early-
aspects.net/, 2003. 

[12] Early Aspects Workshop: Traceability of Aspects in the 
Early Life Cycle, in conjunction with the fifth international 
Conference on Aspect-Oriented Software Development 
(AOSD), March 21, 2006, Bonn, Germany.  

[13] IEEE P1471, IEEE Recommended Practice for 
Architectural Description of Software-intensive Systems--
Std. 1471-2000.  2000.  

[14] O. Gotel and A. Finkelstein, An analysis of the 
requirements traceability problem, in First International 
Conference on Requirements Engineering (ICRE'94), 
pp. 94-101, Apr. 1994.  

[15] W. H. Harrison, H. L. Ossher, and P. L. Tarr, 
Asymmetrically vs. symmetrically organized paradigms for 
software composition, Tech. Rep. RC22685, IBM 
Research, 2002. 

[16] IEEE Std. 610.12-1990. Standard Glossary of Software 
Engineering Terminology, 1990. 

[17] A, Jackson, P. Sanchez, L. Fuentes, S. Clarke. Towards 
Traceability between AO Architecture and AO Design, in 
Proc. of workshop on Early Aspects (held with ASOD 06), 
Bonn, Germany, 2006 

[18] M. Kandé, A Concern-Oriented Approach to Software 
Architecture. PhD thesis, Ecole polytechnique fédérale de 
Lausanne, 2003.  

[19] P. Letelier. A Framework for Requirements Traceability in 
UML-based Projects. In Proceedings of the1st 
International Workshop on Traceability, co-located with 
ASE 2002, Edinburgh, Scotland, UK, 2002. 

[20] N.Medvidovic & R.N. Taylor. A classification and 
comparison framework for Software Architecture 
Description Languages, IEEE Trans. on Software 
Engineering, Vol. 26, No.1 pp. 70-93, 2000.. 

[21] F. Pinheiro, J. Goguen, An Object-Oriented Tool for 
Tracing Requirements, IEEE Software, v.13 n.2, p.52-64, 
March 1996.  

[22] B. Ramesh & M. Jarke. Towards Reference Models for 
Requirements Traceability. IEEE Trans. On Software 
Engineering, Vol. 27., No. 1. January, 2001. 

[23] A. Rashid, A. Moreira & J. Araujo, Modularisation and 
Composition of Aspectual Requirements, in: Proc. of 2nd  
AOSD Conference, pp. 11-21, Boston, US, 2003.  

[24] B. Tekinerdogan. ASAAM: Aspectual Software 
Architecture Analysis Method. Proc. 4th Working 
IEEE/IFIP Conf. Software Architecture (WICSA 04), IEEE 
CS Press, pp. 5–14, 2004. 


